CONTROLS OF THE OUTPUTS
BY MEANS OF INPUTS

Saburou Saitoh
Department of Mathematics, Faculty of Engineering,
Gunma University, Kiryu 376-8515, Japan
e-mail: ssaitoh@eg.gunma-u.ac.jp

Abstract: Let \(f_j \) be a member of a Hilbert space \(\mathcal{H}_j \), \(S_j \) be a linear system of \(\mathcal{H}_j \) and \(f_j \) be the output of \(f_j \) in the system. We assume that the outputs \(f_j \) are functions on a same set \(E \). Then we consider the problems:

How to find the sum \(f_1 + f_2 \), the product \(f_1 f_2 \), and etc by means of their inputs \(f_j \) ?

The theory of reproducing kernels will give natural answers in natural situations for these problems.

Surprising enough, for very general nonlinear system \(S_j \), we will be able to discuss the similar problems.

Key Words: Hilbert space, reproducing kernel, linear transform, nonlinear transform, convolution, norm inequality, integral equation, nonlinear differential equation, algebraic structure in Hilbert spaces.

1. A General Concept

Following Saitoh [1], we shall introduce a general theory for linear transforms in the framework of Hilbert spaces.

Let \(\mathcal{H} \) be a Hilbert (possibly finite-dimensional) space. Let \(E \) be an abstract set and \(h \) be a Hilbert \(\mathcal{H} \)-valued function on \(E \). Then we shall consider the linear transform

\[
 f(p) = (f, h(p))_\mathcal{H}, f \in \mathcal{H}
 \]

(1.1)

from \(\mathcal{H} \) into the linear space \(\mathcal{F}(E) \) comprising all the complex valued function on \(E \). In order to investigate the linear transform (1.1), we form a positive matrix \(K(p, q) \) on \(E \times E \) defined by

\[
 K(p, q) = (h(q), h(p))_\mathcal{H} \text{ on } E \times E.
 \]

(1.2)
Then, we obtain the following:

(I) The range in the linear transform (1.1) by \mathcal{H} is characterized as the reproducing kernel Hilbert space $H_K(E)$ admitting the reproducing kernel $K(p, q)$.

(II) In general, we have the inequality

$$\|f\|_{H_K(E)} \leq \|f\|_{\mathcal{H}}.$$

Here, for a member f of $H_K(E)$ there exists a uniquely determined $f^* \in \mathcal{H}$ satisfying

$$f(p) = (f^*, h(p))_{\mathcal{H}} \text{ on } E$$

and

$$\|f\|_{H_K(E)} = \|f^*\|_{\mathcal{H}}.$$

(III) In general, we have the inversion formula in (1.1) in the form

$$f \rightarrow f^* \quad (1.3)$$

in (II) by using the reproducing kernel Hilbert space $H_K(E)$. However, this formula is, in general, involved and delicate. We need, case by case, arguments. In this paper, we assume that the inversion formula (1.3) is established.

(IV) Conversely, we assume that an isometrical mapping \tilde{L} from a reproducing kernel Hilbert space $H_K(E)$ admitting the reproducing kernel $K(p, q)$ on E onto a Hilbert space \mathcal{H}. Then we have the representation (1.1) by

$$h(p) := \tilde{L}K(., p).$$

Furthermore, $\{h(p); p \in E\}$ is complete in \mathcal{H}.

Now we shall consider two systems

$$f_j(p) = (f_j, h_j(p))_{\mathcal{H}_j}, \quad f_j \in \mathcal{H}_j \quad (1.4)$$

in the above way by using $\{\mathcal{H}_j, E, h_j\}_{j=1}^2$. Here, we assume that E is a same set for the two systems in order to have the output functions $f_1(p)$ and $f_2(p)$ on the same set E.

For example, we can consider the operators

$$f_1(p) + f_2(p)$$

and

$$f_1(p) f_2(p)$$

in $\mathcal{F}(E)$. Then, we can consider the following problems: How to represent the...
sum $f_1(p) + f_2(p)$ and the product $f_1(p) f_2(p)$ on E in terms of their inputs f_1 and f_2?

In this paper, we shall show that by using the theory of reproducing kernels we can give natural answers for these problems. Furthermore, for some very general nonlinear systems, we shall show that we can consider similar problems and solutions.

After introducing several operators in \mathcal{H}_1 and \mathcal{H}_2 based on the above idea, we shall give typical and concrete operators, as examples.

2. Sum

By (I), $f_1 \in H_{K_1}(E)$ and $f_2 \in H_{K_2}(E)$, and we note that for the reproducing kernel Hilbert space $H_{K_1+K_2}(E)$ admitting the reproducing kernel $K_1(p, q) + K_2(p, q)$ on E, $H_{K_1+K_2}(E)$ is composed of all functions

$$f(p) = f_1(p) + f_2(p); \quad f_j \in H_{K_j}(E) \quad (2.1)$$

and its norm $\|f\|_{H_{K_1+K_2}(E)}$ is given by

$$\|f\|^2_{H_{K_1+K_2}(E)} = \min\{\|f_1\|^2_{H_{K_1}(E)} + \|f_2\|^2_{H_{K_2}(E)}\} \quad (2.2)$$

where the minimum is taken over $f_j \in H_{K_j}(E)$ satisfying (2.1) for f. Hence, in general, we have the inequality

$$\|f_1 + f_2\|^2_{H_{K_1+K_2}(E)} \leq \|f_1\|^2_{H_{K_1}(E)} + \|f_2\|^2_{H_{K_2}(E)}. \quad (2.3)$$

For the positive matrix $K_1 + K_2$ on E, we assume the expression in the form

$$K_1(p, q) + K_2(p, q) = (h_S(q), h_S(p))_{\mathcal{H}_S} \quad \text{on } E \times E \quad (2.4)$$

with a Hilbert space \mathcal{H}_S-valued function on E and further we assume that

$$\{h_S(p); p \in E\} \text{ is complete in } \mathcal{H}_S. \quad (2.5)$$

Such a representation is, in general, possible (Saitoh [1], page 36 and see chapter 1, §5). Then, we can consider the linear mapping from \mathcal{H}_S onto $H_{K_1+K_2}(E)$

$$f_S(p) = (f_S, h_S(p))_{\mathcal{H}_S}, \quad f_S \in \mathcal{H}_S \quad (2.6)$$

and we obtain the isometrical identity

$$\|f_S\|_{H_{K_1+K_2}(E)} = \|f_S\|_{\mathcal{H}_S}. \quad (2.7)$$

Hence, for such representations (2.4) with (2.5), we obtain the isometrical mappings among the Hilbert space \mathcal{H}_S.
Now, for the sum \(f_1(p) + f_2(p) \) there exists a uniquely determined \(f_S \in \mathcal{H}_S \) satisfying
\[
f_1(p) + f_2(p) = (f_S, h_S(p))_{\mathcal{H}_S} \text{ on } E. \tag{2.8}
\]
Then, \(f_S \) will be considered as a sum of \(f_1 \) and \(f_2 \) through these transforms and so, we shall introduce the notation
\[
f_S = f_1 [+ f_2. \tag{2.9}
\]
This sum for the members \(f_1 \in \mathcal{H}_1 \) and \(f_2 \in \mathcal{H}_2 \) is introduced through the three transforms induced by \(\{ \mathcal{H}_j, E, h_j \} (j = 1, 2) \) and \(\{ \mathcal{H}_s, E, h_S \} \).

The operator \(f_1 [+ f_2 \) is expressible in terms of \(f_1 \) and \(f_2 \) by the inversion formula
\[
(f_1, h_1(p))_{\mathcal{H}_1} + (f_2, h_2(p))_{\mathcal{H}_2} \rightarrow f_1 [+ f_2 \tag{2.10}
\]
in the sense (II) from \(H_{K_1 + K_2}(E) \) onto \(\mathcal{H}_S \). Then, from (II) and (2.5) we have

Theorem 2.1. We have a triangle inequality
\[
\|f_1 [+ f_2\|_{\mathcal{H}_S}^2 \leq \|f_1\|_{\mathcal{H}_1}^2 + \|f_2\|_{\mathcal{H}_2}^2. \tag{2.11}
\]

If \(\{ h_j(p); p \in E \} \) are complete in \(\mathcal{H}_j \) \((j = 1, 2) \), then \(\mathcal{H}_j \) and \(H_{K_j} \) are isometrical. By using the isometrical mappings induced by Hilbert space valued function \(h_j \) \((j = 1, 2) \) and \(h_S \), we can introduce the sum space of \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) in the form
\[
\mathcal{H}_1 [+ \mathcal{H}_2 \tag{2.12}
\]
through the transforms.

For example, if for some positive number \(\gamma \)
\[
K_1 \ll \gamma^2 K_2 \text{ on } E \tag{2.13}
\]
that is, \(\gamma^2 K_2 - K_1 \) is a positive matrix on \(E \), we have
\[
H_{K_1}(E) \subset H_{K_2}(E) \tag{2.14}
\]
and
\[
\|f_1\|_{H_{K_2}(E)} \leq \gamma \|f_1\|_{H_{K_1}(E)} \text{ for } f_1 \in H_{K_1}(E) \tag{2.15}
\]
(Saitoh [1], page 37). Hence, in this case, we need not to introduce a Hilbert space \(\mathcal{H}_S \) and the linear mapping (2.6) in Theorem (2.1) and we can use the linear mapping
\[
(f_2, h_2(p))_{\mathcal{H}_2}, \ f_2 \in \mathcal{H}_2
\]
instead of (2.6) in Theorem 2.1.

3. Product
The product $K_1(p, q) K_2(p, q)$ is a positive matrix on E and the reproducing kernel Hilbert space $H_{K_1, K_2}(E)$ admitting the reproducing kernel $K_1(p, q) K_2(p, q)$ is composed of all functions

$$f(p) = \sum_{n=1}^{\infty} f_{1,n}(p) f_{2,n}(p) \text{ on } E; \quad (3.1)$$

and the norm in $H_{K_1, K_2}(E)$ is given by

$$\|f\|_{H_{K_1, K_2}(E)}^2 = \min \sum_{n=1}^{\infty} \|f_{1,n}\|_{H_{K_1}(E)}^2 \|f_{2,n}\|_{H_{K_2}(E)}^2 \quad (3.2)$$

where the minimum is taken over all functions satisfying (3.1) for f. In particular, (3.1) converges absolutely on E. Especially we obtain the inequality

$$\|f_1 f_2\|_{H_{K_1, K_2}(E)} \leq \|f_1\|_{H_{K_1}(E)} \|f_2\|_{H_{K_2}(E)}. \quad (3.3)$$

As in the sum, we assume that the representation

$$K_1(p, q) K_1(p, q) = (h_P(q), h_P(p))_{\mathcal{H}_P} \text{ on } E \times E \quad (3.4)$$

with a Hilbert space \mathcal{H}_P-valued function on E, and we assume that

$$\{h_P(p); p \in E\} \text{ is complete in } \mathcal{H}_P. \quad (3.5)$$

Then we consider the linear mapping

$$f_P(p) = (f_P, h_P(p))_{\mathcal{H}_P}, \quad f_P \in \mathcal{H}_P \quad (3.6)$$

and we obtain the isometrical identity

$$\|f_P\|_{H_{K_1, K_2}(E)} = \|f_P\|_{\mathcal{H}_P}. \quad (3.7)$$

Hence, for any product $f_1(p) f_2(p)$ there exists a uniquely determined $f_P \in \mathcal{H}_P$ satisfying

$$f_1(p) f_2(p) = (f_P, h_P(p))_{\mathcal{H}_P} \text{ on } E. \quad (3.8)$$

Then, f_P will be considered as a product of f_1 and f_2 through these transforms and so, we shall introduce the notation

$$f_P = f_1[\times] f_2. \quad (3.9)$$

This product for the members $f_j \in \mathcal{H}_j$ $(j = 1, 2)$ is introduced through the three transforms induced by $\{\mathcal{H}_j, E, h_j\} (j = 1, 2)$ and $\{\mathcal{H}_P, E, h_P\}$. The operator $f_1[\times] f_2$ is expressible in terms of f_1 and f_2 by the inversion formula

$$(f_1, h_1(p))_{\mathcal{H}_1} (f_2, h_2(p))_{\mathcal{H}_2} \rightarrow f_1[\times] f_2 \quad (3.10)$$
in the sense (III) from $H_{K_1, K_2}(E)$ onto H_P. Then, we obtain

Theorem 3.1. We have a Schwarz type inequality

$$||f_1 \times f_2||_{H_P} \leq ||f_1||_{H_1} ||f_2||_{H_2}.$$ \hspace{1cm} (3.11)

As in the sum space $H_1[+]H_2$ we can introduce the product space

$$H_1[\times]H_2$$ \hspace{1cm} (3.12)

through the three transforms under the completeness assumptions of h_j in H_j ($j = 1, 2$).

For example, if for a positive γ

$$K_1K_2 \ll \gamma^2 K_1$$ on E, \hspace{1cm} (3.13)

as in the sum, we can consider the linear transform

$$(f_1, h_1(p))_{H_1}, \quad f_1 \in H_1$$

instead of (3.6).

In particular, in the setting in Section 1, we obtain

Corollary 3.1. If $K^2 \ll \gamma^2 K$ on E for a positive constant γ and $\{h(p); p \in E\}$ is complete in H, then H is a commutative ring with the product $f[\times]g$ through the same three transforms $\{H, E, h\}$. Furthermore if $\gamma = 1$, H is a Banach ring with the product.

4. Differential

In the setting in Section 1, for simplicity we shall assume that E is an interval on the real line and the reproducing kernel Hilbert space $H_K(E)$ is composed of C^1-class functions on E. This smoothness reflects to the smoothness of the reproducing kernel $K(p, q)$ that

$$K_{1,1}(p, q) := \frac{\partial^2 K(p, q)}{\partial p \partial q}$$ \hspace{1cm} (4.1)

and $h(p)$ is differentiable on E in the space H. Furthermore, we have

$$f'(p) = \left(f, \frac{\partial h(p)}{\partial p}\right)$$ \hspace{1cm} (4.2)

(Saitoh [1], pages 40-41). For the positive matrix (4.1) we have the expression
\[K_{1,1}(p,q) = \left(\frac{\partial h(q)}{\partial q}, \frac{\partial h(p)}{\partial p} \right) \text{ on } E \times E. \]

Here, we assume that

\[\{ \frac{\partial h(p)}{\partial p}; p \in E \} \text{ is complete in } \mathcal{H}. \]

Then, the derived function \(f'(p) \) belongs to the reproducing kernel Hilbert space \(H_{K_{1,1}(E)} \) admitting the reproducing kernel \(K_{1,1}(p,q) \) and we have the isometrical identity

\[\|f'\|_{K_{1,1}} = \|f\|_{\mathcal{H}}. \]

However, for the positive matrix \(K_{1,1}(p,q) \) if we use a representation

\[K_{1,1}(p,q) = (h_D(q), h_D(p))_{\mathcal{H}_D} \text{ on } E \times E \]

for a Hilbert space \(\mathcal{H}_D \)-valued function such that

\[\{h_D(p); p \in E \} \text{ is complete in } \mathcal{H}_D, \]

there exists a unique vector \(f_D \in \mathcal{H}_D \) satisfying

\[f'(p) = (f_D, h_D(p))_{\mathcal{H}_D} \text{ on } E. \]

Then, \(f_D \) will be considered as a derived vector through the transforms induced from \(\{\mathcal{H}, E, h\} \) and \(\{\mathcal{H}_D, E, h_D\} \). So, we shall write

\[f_D = Df \]

and the operator \(Df \) is expressible in terms of \(f \) by the inversion formula

\[\frac{\partial}{\partial p} (f, h(p))_{\mathcal{H}} \rightarrow Df \]

in the sense (III) from \(H_{K_{1,1}(E)} \) onto \(\mathcal{H}_D \). Then we have

Theorem 4.1. We have the inequality

\[\|Df\|_{\mathcal{H}_D} \leq \|f\|_{\mathcal{H}}. \]

As in the sum and the product spaces, we can introduce the derived Hilbert space

\[D\mathcal{H} \]

through the transforms induced by \(\{\mathcal{H}, E, h\} \) and \(\{\mathcal{H}_D, E, h_D\} \) if \(\{h(p); p \in \mathcal{H} \} \) is complete in \(\mathcal{H} \).
5. Integral

In the setting in Section 4, we can consider an integral of a Hilbert space \mathcal{H} as in the derived space $D\mathcal{H}$.

We assume that

$$K^{1,1}(p, q) := \int_{p_0}^{p} \int_{q_0}^{q} K(\tilde{p}, \tilde{q}) d\tilde{p} d\tilde{q} \text{ on } E \times E$$ \hspace{1cm} (5.1)

exists, and $K^{1,1}(p, q)$ is expressible in the form

$$K^{1,1}(p, q) := (h_t(q), h_t(p))_{\mathcal{H}} \text{ on } E \times E$$ \hspace{1cm} (5.2)

for a Hilbert space \mathcal{H}_I-valued function h_I on E such that

$$\{h_I(p); p \in E\} \text{ is complete in } \mathcal{H}_I.$$

Then, as in the derived vector we can introduce the integrated vector

$$\int_{p_0}^{p} f$$ \hspace{1cm} (5.3)

and the space

$$\int_{p_0}^{p} \mathcal{H}.$$ \hspace{1cm} (5.4)

The vector (5.3) is expressible in terms of f by the inversion formula

$$\int_{p_0}^{p} (f, h(p))_{\mathcal{H}} dp \longrightarrow \int_{p_0}^{p} f$$ \hspace{1cm} (5.5)

in the sense (III) from $H_{K^{1,1}}(E)$ onto \mathcal{H}_I. Then we have

Theorem 5.1. We have the inequality

$$\| \int_{p_0}^{p} f \|_{\mathcal{H}_I} \leq \| f \|_{\mathcal{H}}.$$ \hspace{1cm} (5.6)

6. Integral of Hilbert spaces

In the setting in Section 2, we shall consider systems with a continuous parameter t on an index set T as follows:

$$\{\mathcal{H}_t, E, h_t\}, \ t \in T.$$ \hspace{1cm} (6.1)

We assume that the associated reproducing kernel
$$K_t(p, q) = (h_t(q), h_t(p))_{\mathcal{H}_t},$$ on $E \times E. \quad (6.2)$$

is integrable on T with respect to a σ-finite positive measure $d\sigma$ on T and

$$K_T(p, q) = \int_T K_t(p, q)d\sigma(t)$$ on $E \times E. \quad (6.3)$$

As a generalization of the sum of reproducing kernels, note that the reproducing kernel Hilbert space $H_{K_T}(E)$ is composed of all functions $f(p)$ which are expressible in the form

$$f(p) = \int_T f(p, t)d\sigma(t), \quad f(p, t) \in H_{K_t}(E) \quad (6.4)$$

and the norm $\|f\|_{H_{K_T}(E)}$ is given by

$$\|f\|^2_{H_{K_T}(E)} = \min \int_T \|f(p, t)\|^2_{H_{K_T}(E)}d\sigma(t) \quad (6.5)$$

where the minimum is taken over all the expressions (6.4) for f.

We shall assume the expression

$$K_T(p, q) = (h_T(q), h_T(p))_{\mathcal{H}_T}$$ on $E \times E \quad (6.6)$$

by a Hilbert space \mathcal{H}_T-valued function h_T on E and $\{h_T(p); p \in E\}$ is complete in \mathcal{H}_T. Then, we can introduce the integral of f_t

$$\int_T f_t \quad (6.7)$$

and

$$\int_T \mathcal{H}_t \quad (6.8)$$

similarly. The integral (6.7) is expressible in terms of f_t by the inversion formula

$$\int_T (f_t, h_t(p))_{\mathcal{H}_t}d\sigma(t) \rightarrow \int_T f_t \quad (6.9)$$

from $H_{K_T}(E)$ onto \mathcal{H}_T. Then we have

Theorem 6.1. We have the inequality

$$\|\int_T f_t\|^2_{\mathcal{H}_T} \leq \int_T \|f_t\|^2_{\mathcal{H}_T}d\sigma(t). \quad (6.10)$$

As shown in Appendix 1 in Saitoh [1], for very general nonlinear transforms of a reproducing kernel Hilbert space, their ranges belong to naturally determined reproducing kernel Hilbert spaces and norm inequalities hold in the nonlinear
transforms. Therefore, for very general nonlinear transforms we can obtain similar results as in the linear transforms. In order to reduce this paper in a reasonable size, we shall present their exact formulations and applications in another papers. In the last part, we shall give a concrete example as a prototype result.

Our background idea comes from the idea of "convolution" and for our concrete applications we can give various solution of integral equations. In fact, the product $f_1 \times f_2$ will be regarded as a convolution of f_1 and f_2. As a first step paper in our new concept, in the sequel we shall present typical concrete examples in the general and abstract operators. It seems that to examine concrete operators in various concrete transforms is to rich our mathematics.

7. Examples of Operators

7.1. We shall consider two linear transforms

$$f_j(p) = \int_T F_j(t)\overline{h(t,p)}\rho_j(t)dm(t), \quad p \in E$$

(7.1.1)

where ρ_j are positive continuous functions on T,

$$\int_T |h(t,p)|^2 \rho_j(t)dm(t) < \infty \text{ on } p \in E$$

(7.1.2)

and

$$\int_T |F_j(t)|^2 \rho_j(t)dm(t) < \infty.$$

(7.1.3)

We assume that \{h(t,p); p \in E\} is complete in the spaces satisfying (7.1.3). Then, we consider the associated reproducing kernel on E

$$K_j(p,q) = \int_T h(t,p)\overline{h(t,p)}\rho_j(t)dm(t)$$

and, for example we consider the expression

$$K_1(p,q) + K_2(p,q) = \int_T h(t,p)\overline{h(t,p)}(\rho_1(t) + \rho_2(t))dm(t).$$

(7.1.4)

So, we can consider the linear transform

$$f(p) = \int_T F(t)\overline{h(t,p)}(\rho_1(t) + \rho_2(t))dm(t)$$

(7.1.5)

for functions F satisfying

$$\int_T |F(t)|^2(\rho_1(t) + \rho_2(t))dm(t) < \infty.$$
Hence, through the three transforms (7.1.1) and (7.1.5) we have the sum

\[(F_1[F_2](t) = \frac{F_1(t)\rho_1(t) + F_2(t)\rho_2(t)}{\rho_1(t) + \rho_2(t)}. \tag{7.1.6} \]

7.2. We shall consider two linear transforms

\[f_j(x) = \int_{-\infty}^{\infty} e^{i\xi t} F_j(t)\rho_j(t)dt \tag{7.2.1} \]

for positive \(L_1(-\infty, \infty) \) integrable functions \(\rho_j \) and for functions \(F_j \) satisfying

\[\int_{-\infty}^{\infty} |F_j(t)|^2 \rho_j(t)dt < \infty. \tag{7.2.2} \]

We consider the associated reproducing kernels

\[K_j(x, y) = \int_{-\infty}^{\infty} e^{i\xi t} F_j(t)\rho_j(t)dt \]

and, for example we have the expression

\[K_1(x, y)K_2(x, y) = \int_{-\infty}^{\infty} F_j(t)\rho_j(t)dt \tag{7.2.3} \]

and the induced linear transform

\[f(x) = \int_{-\infty}^{\infty} F(t)e^{i\xi t}(\rho_1 * \rho_2)(t)dt \tag{7.2.4} \]

for functions \(F \) satisfying

\[\int_{-\infty}^{\infty} |F(t)|^2(\rho_1 * \rho_2)(t)dt < \infty. \tag{7.2.5} \]

Meanwhile, we have the expression from (7.2.1)

\[f_1(x)f_2(x) = \int_{-\infty}^{\infty} e^{i\xi t}(F_1\rho_1) * (F_2\rho_2)(t)dt. \tag{7.2.6} \]

We thus have the product \(F_1[F_2 \] through the transforms (7.2.1) \(j = 1, 2 \) and (7.2.4)

\[(F_1[F_2](t) = \frac{(F_1\rho_1)(F_2\rho_2)(t)}{(\rho_1 * \rho_2)(t)}. \tag{7.2.7} \]

In particular, we obtain the inequality

\[\int_{-\infty}^{\infty} \frac{\left| \int_{-\infty}^{\infty} F_1(\xi)\rho_1(\xi)F_2(t - \xi)\rho_2(t - \xi)d\xi \right|^2}{\int_{-\infty}^{\infty} \rho_1(\xi)\rho_2(t - \xi)d\xi}dt \]
\[\leq \int_{-\infty}^{\infty} |F_1(t)|^2 \rho_1(t) dt \int_{-\infty}^{\infty} |F_2(t)|^2 \rho_2(t) dt. \quad (7.2.8) \]

7.3. Let \(K_j(z, \bar{u}) \) be two reproducing kernels on \(\{|z| < r_j\} \) defined by the expansions

\[K_j(z, \bar{u}) = \sum_{n=0}^{\infty} C_n^{(j)} z^n \bar{u}^n, \quad (C_n^{(j)} > 0). \quad (7.3.1) \]

Then, the reproducing kernel Hilbert spaces \(H_{K_j} \) are composed of all analytic functions \(f_j(z) \) defined by

\[f_j(z) = \sum_{n=0}^{\infty} a_n^{(j)} z^n \text{ on } \{|z| < r_j\} \quad (7.3.2) \]

with finite norms

\[||f_j||_{H_{K_j}}^2 = \sum_{n=0}^{\infty} \frac{|a_n^{(j)}|^2}{C_n^{(j)}}, \quad (7.3.3) \]

as we see easily, respectively. We have the expressions

\[K_1(z, \bar{u})K_2(z, \bar{u}) = \sum_{n=0}^{\infty} \left(\sum_{\nu+\mu=n} C_\nu^{(1)} C_\mu^{(2)} \right) z^n \bar{u}^n, \quad (7.3.4) \]

and

\[f_1(z)f_2(z) = \sum_{n=0}^{\infty} \left(\sum_{\nu+\mu=n} a_\nu^{(1)} a_\mu^{(2)} \right) z^n. \quad (7.3.5) \]

Hence, we have the sum \(a^{(1)}[+]a^{(2)} \quad (a^{(j)} = (a_0^{(j)}, a_1^{(j)}, \ldots)) \) satisfying (7.3.3) for \(j = 1, 2 \)

\[\{ \sum_{\nu+\mu=n} a_\nu^{(1)} a_\mu^{(2)} \}_{n=0}^{\infty} \quad (7.3.6) \]

through the two transforms (7.3.2) satisfying (7.3.3) and the transform

\[f(z) = \sum_{n=0}^{\infty} a_n z^n \quad (7.3.7) \]

satisfying
\[\sum_{n=0}^{\infty} \frac{|a_n|^2}{\sum_{\nu+\mu=n} C_{\nu}^{(1)} C_{\mu}^{(2)}} < \infty. \] (7.3.8)

In particular, we have the inequality
\[\sum_{n=0}^{\infty} \frac{\left| \sum_{\nu+\mu=n} a_{\nu} a_{\mu}^{(2)} \right|^2}{\sum_{\nu+\mu=n} C_{\nu}^{(1)} C_{\mu}^{(2)}} < \left(\sum_{n=0}^{\infty} \frac{|a_n^{(1)}|^2}{C_n^{(1)}} \right) \left(\sum_{n=0}^{\infty} \frac{|a_n^{(2)}|^2}{C_n^{(2)}} \right). \] (7.3.9)

7.4. Recall that
\[K(x, y) = \frac{1}{2} e^{-|x-y|} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{ix\iota e^{-i\gamma t}}}{t^2 + 1} dt \] (7.4.1)
is the reproducing kernel for the Sobolov space \(H_{K} \) comprising all absolutely continuous function \(f(x) \) on \((-\infty, \infty)\) with finite norms
\[\|f\|_{H_{K}}^2 = \int_{-\infty}^{\infty} (|f(x)|^2 + |f'(x)|^2) dx. \] (7.4.2)

Then,
\[
K(x, y)^2 = \frac{1}{4} e^{-2|x-y|} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{izt} e^{-iyt} dt
\]
\[
= \frac{1}{2} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i2zt} e^{-i2yt}}{t^2 + 4} dt
\]
\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{izt} e^{-iyt}}{t^2 + 1} dt. \] (7.4.3)

Hence,
\[K(x, y)^2 \ll K(x, y) \text{ on } (-\infty, \infty). \] (7.4.4)

We consider the linear transform induced from (7.4.1)
\[f_j(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_j(t) e^{izt} \frac{dt}{t^2 + 1} \] (7.4.5)
for functions \(F_j \) satisfying
\[\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|F_j(t)|^2}{t^2 + 1} dt < \infty. \] (7.4.6)

Then, we have
\[f_1(x)f_2(x) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \frac{1}{t^2 + 1} \left(\frac{F_1(t)}{t^2 + 1} \right) * \left(\frac{F_2(t)}{t^2 + 1} \right) (t)(t^2 + 1)e^{ix} dt \]

\[= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{F(t)e^{ix}}{t^2 + 1} dt \]

(7.4.7)

Hence, through the same three transforms (7.4.5) we have the product

\[(F_1[x]F_2)(t) = \frac{1}{2\pi} \left\{ \left(\frac{F_1(t)}{t^2 + 1} \right) * \left(\frac{F_2(t)}{t^2 + 1} \right) \right\}(t)(t^2 + 1). \]

(7.4.8)

By Corollary 3.1, the space (7.4.6) is a Banach ring under the product (7.4.8).

7.5. For any separable Hilbert space \(H \) and its complete orthonormal system \(\{f_n\}_{n=1}^{\infty} \), we shall consider the linear transform from \(H \) onto \(l^2 \)

\[a_n = (f, f_n)_H. \]

(7.5.1)

Then, the reproducing kernel for \(l^2 \) is Kronecker's \(\delta_{nm} \), and of course

\[\delta_{nm}^2 \ll \delta_{nm}. \]

(7.5.2)

Hence for

\[f = \sum_{n=1}^{\infty} a_n f_n \in H \]

and

\[g = \sum_{n=1}^{\infty} b_n f_n \in H \]

through the three transforms (7.5.1), we have the product

\[f[x]g = \sum_{n=1}^{\infty} a_n b_n f_n. \]

(7.5.3)

Under this product, \(H \) is a Banach ring.

7.6. For \(q > \frac{1}{2} \),

\[K_q(z, \bar{u}) = \frac{\Gamma(2q)}{(z + \bar{u})^{2q}} \]

\[= \int_{-\infty}^{\infty} e^{-zt} e^{-\bar{u}t} t^{2q-1} dt \]

(7.6.1)
is the reproducing kernel for the Bergman-Selbert space $H_{K^q}(R^+)$ on the complex half plane $R^+ = \{Re \, z > 0 \}$ comprising all analytic functions $f(z)$ on R^+ with finite norms

$$
\|f\|_{H_{K^q}}^2 = \frac{1}{\pi \Gamma(2q - 1)} \int \int_{R^+} |f(z)|^2 \langle 2Re \, z \rangle ^{2q-2} \, dx \, dy.
$$

(7.6.2)

Note that

$$
K_1(z, \bar{u}) = \int_0^\infty e^{-zt} e^{-\bar{u}t} \, dt
$$

(7.6.3)

and

$$
\frac{\partial^2 K_1(z, \bar{u})}{\partial z \partial \bar{u}} = \frac{6}{(z+\bar{u})^4}
$$

$$
= \int_0^\infty e^{-zt} e^{-\bar{u} t^3} \, dt
$$

$$
= K_2(z, \bar{u}).
$$

(7.6.4)

In the transform induced from (7.6.3)

$$
f(z) = \int_0^\infty e^{-zt} F(t) \, dt
$$

(7.6.5)

for functions F satisfying

$$
\int_0^\infty |F(t)|^2 t \, dt < \infty
$$

(7.6.6)

we have

$$
f'(z) = \int_0^\infty e^{-zt} F(t)(-t^2) \, dt.
$$

(7.6.7)

By using the transform induced from (7.6.4)

$$
f'(z) = \int_0^\infty e^{-zt} G(t)(t^3) \, dt
$$

(7.6.8)

for a function G satisfying

$$
\int_0^\infty |G(t)|^2 t^3 \, dt < \infty,
$$

(7.6.9)

we have the derived vector of F

$$
DF = -\frac{F(t)}{t}
$$

(7.6.10)
through the transforms (7.6.5) and (7.6.8).

Furthermore, by integrating (7.6.4) from ∞ to z and by using the corresponding transforms to (7.6.8) and (7.6.5) we have the integrated vector of F as follows:

$$\int F = -tF(t). \quad (7.6.11)$$

7.7. Note that for example, for the nonlinear transform

$$d_1 f'' + d_2 f' f + d_3 f^3 \quad (d_j: \text{ constants}) \quad (7.7.1)$$

for $f \in H_{K_1}$ in 7.6, it has a specially simple structure and it belongs to the space H_{K_3}. Furthermore we have the inequality

$$\frac{120}{127} \|d_1 f'' + d_2 f' f + d_3 f^3\|_{H_{K_3}}^2 \leq \|f\|_{H_{K_1}}^2 \left(\frac{1}{120} |d_1|^2 + \frac{1}{6} |d_2|^2 \|f\|_{H_{K_1}}^2 + |d_3|^2 \|f\|_{H_{K_1}}^4 \right) \quad (7.7.2)$$

(Saitoh [1], Appendix 2).

In the transform (7.6.5), we have

$$f''(z) = \int_0^\infty e^{-zt} F(t) t^3 dt,$$

$$f'(z) f(z) = \int_0^\infty e^{-zt} (F(t)(-t^2)) * (F(t)(t)) (t) dt$$

and

$$f(z)^3 = \int_0^\infty e^{-zt} (F(t)t)^3 (t) dt.$$

Here, $(\cdot)^3$ means the three times convolution product. Hence we have the expression

$$d_1 f''(z) + d_2 f'(z) f(z) + d_3 f(z)^3 = \int_0^\infty e^{-zt} \left\{ d_1 t^{-2} F(t) + d_2 t^{-5} \left[(F(t)(-t^2)) * (F(t)(t)) \right] (t) + d_3 t^{-5} (F(t)t)^3 (t) \right\} t^5 dt. \quad (7.7.3)$$

Hence, by using the transform

$$f(z) = \int_0^\infty e^{-zt} G(t) t^5 dt \quad (7.7.4)$$
for functions G satisfying
\[\int_0^\infty |G(t)|^2 t^5 dt < \infty \] (7.7.5)
induced from the expression (7.6.1) for $q = 3$, we have
\[G(t) = d_1 t^{-2} F(t) + d_2 t^{-5} ((F(t)(-t^2)) \]
\[\ast (F(t)t))t + d_3 t^{-5} (F(t)t)^3 (t). \] (7.7.6)

Note that the nonlinear transform (7.7.1) is transformed to the form (7.7.6) containing convolutions.

Acknowledgment

This research is partially supported by the Japanese Ministry of Education, Science, Sports and Culture, Grant-in-Aid, Kibankenkyu A(1), 10304009.

Reference