An Example of a p-Quasihyponormal Operator

東北大学大学院理学研究科 内山 敦 (Atsushi Uchiyama)

Introduction. A bounded linear operator T on a Hilbert space \mathcal{H} is called p-hyponormal if $(T^*T)^p \geq (TT^*)^p$ for p>0, and T is called p-quasihyponormal if $T^*\{(T^*T)^p-(TT^*)^p\}T\geq 0$ for p>0. T is called paranormal[8] if $||Tx||^2\leq ||T^2x||\,||x||$ for all $x\in \mathcal{H}$. It is well-known by Ando[3] that every p-hyponormal operator is paranormal. M. Lee and S. Lee showed that every p-quasihyponormal operator for $0< p\leq 1$ is paranormal. It is well-known that every p-hyponormal operator T=U|T| is q-hyponormal for all $q\in (0,p)$ by Heinz's inequality and its generalized Aluthge transform $T(s,t)=|T|^sU|T|^t$ for s,t>0 is a q-hyponormal for some q=q(s,t,p)>0. (See [1],[2],[6],[7] and [13]). But the assertions that p-quasihyponormal is q-quasihyponormal if 0< q< p and the generalized Aluthge transform $T(s,t)=|T|^sU|T|^t$ for s,t>0 of a p-quasihyponormal operator T=U|T| is a q-quasihyponormal for some q=q(s,t,p)>0 are not true.

In this paper, we give a p-quasihyponormal operator T = U|T| such that (i) T is not q-quasihyponormal for all $q \in (0, p)$, (ii) $|T|^s U|T|^t$ for s, t > 0 is not q-quasihyponormal for all $q \in (0, \infty)$ and (iii) T is a p-quasihyponormal for a p > 1, but is not paranormal.

Lemma 1. (Hölder-McCarthy Inequality[9]) For any positive operator A and $x \in \mathcal{H}$,

(1)
$$(A^r x, x) \le ||x||^{2(1-r)} (Ax, x)^r$$
 (if $0 < r \le 1$),

(2)
$$(A^r x, x) \ge ||x||^{2(1-r)} (Ax, x)^r$$
 (if $r \ge 1$).

Using above lemma, M. Lee and H. Lee obtained the following.

Theorem 1. (M. Lee and H. Lee[10]) If T is a p-quasihyponormal operator such as 0 , then <math>T is paranormal.

Here, we construct an example of p-quasihyponormal operator which satisfies the conditions(i)-(iii) in the introduction.

Let $\{\varepsilon_n; n \in \mathbb{Z}\}$ be the canonical orthonormal basis of $\ell^2(\mathbb{Z})$ and p_n the projection of $\ell^2(\mathbb{Z})$ to $\mathbb{C}\varepsilon_n$. Using the shift operator S on $\ell^2(\mathbb{Z})$ with $S\varepsilon_n = \varepsilon_{n+1}$ and positive 2×2 Hermitian matrices A and B, we define operators H and T on $\mathbb{C}^2 \otimes \ell^2(\mathbb{Z})$ by

$$H = \sum_{n < 0} A \otimes p_n + \sum_{n \ge 0} B \otimes p_n$$

and

$$T = (1 \otimes S)H.$$

T = U|T|, where $U = 1 \otimes S$ and |T| = H. Since $|T^*| = U|T|U^* = \sum_{n \leq 0} A \otimes p_n + \sum_{n > 0} B \otimes p_n$, it is easy to see that

$$T^*(|T|^{2p} - |T^*|^{2p})T = A(B^{2p} - A^{2p})A \otimes p_{-1}$$

for p > 0. Hence we have the following.

Lemma 2. T is p-quasihyponormal if and only if $A(B^{2p}-A^{2p})A \geq 0$.

In what follows we assume that A and B are of the form

$$\begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$,

respectively, here $\alpha > 0$. Let f be a function on the half interval $(0, \infty)$ defined by

$$f(p) = \left(\frac{9^p + 1}{2}\right)^{\frac{1}{2p}}.$$

Then it is strictly increasing.

Theorem 2. (1) T is p-quasihyponormal if and only if $\alpha \leq f(p)$. (2) If $\alpha = f(p)$, then T is not q-quasihyponormal for $q \in (0, p)$, but q-quasihyponormal for $q \in [p, \infty)$. Hence T satisfies the condition(i).

Proof. (1) Since

$$B^{2p} = \frac{1}{2} \begin{pmatrix} 9^p + 1 & 9^p - 1 \\ 9^p - 1 & 9^p + 1 \end{pmatrix},$$

it is easy to see that T is p-quasihyponormal if and only if $(9^p + 1)/2 - \alpha^{2p} \ge 0$.

(2) It is immediate from (1). QED

Theorem 3. Let $T(s,t) = |T|^s U |T|^t$ for s, t > 0.

- (1) If T(s,t) is p-quasihyponormal, then $\alpha \leq f(s)$.
- (2) If $\alpha = f(p)$ and $s \in (0, p)$, then T(s, t) is not q-quasihyponormal for all q > 0. Hence T satisfies the condition(ii).

Proof. (1) Since

$$T(s,t)^*(|T(s,t)|^{2p} - |T(s,t)^*|^{2p})T(s,t)$$

$$=A^{s+t}\{(A^tB^{2s}A^t)^p - A^{2(s+t)p}\}A^{s+t} \otimes p_{-2}$$

$$+A^tB^s\{B^{2(s+t)p} - (B^sA^{2t}B^s)^p\}B^sA^t \otimes p_{-1},$$

T(s,t) is p-quasihyponormal if and only if

$$(A^t B^{2s} A^t)^p - A^{2(s+t)p} \ge 0$$
, and $A^t B^s \{B^{2(s+t)p} - (B^s A^{2t} B^s)^p\} B^s A^t \ge 0$.

The former inequality implies that $\alpha \leq f(s)$.

(2) It is immediate from (1). QED

Theorem 4. T is paranormal if and only if $\alpha \leq \sqrt{5} = f(1)$.

Proof. It is well-known by Ando[3] that an operator S is a paranormal if and only if $S^{*2}S^2 - 2kS^*S + k^2 \ge 0$ for all $k \in \mathbb{R}$. Since

$$T^{*2}T^{2} - 2kT^{*}T + k^{2} = \sum_{n < -1} (A^{2} - k)^{2} \otimes p_{n} + (AB^{2}A - 2kA^{2} + k^{2}) \otimes p_{-1} + \sum_{n > 0} (B^{2} - k)^{2} \otimes p_{n}.$$

$$T$$
 is a paranormal $\Leftrightarrow AB^2A - 2kA^2 + k^2 \ge 0 \quad \forall k \in \mathbb{R}$
 $\Leftrightarrow 5\alpha^2 - 2k\alpha^2 + k^2 \ge 0 \quad \forall k \in \mathbb{R}$
 $\Leftrightarrow \alpha^4 - 5\alpha^2 \le 0$
 $\Leftrightarrow \alpha \le \sqrt{5} = f(1) \text{ (since } \alpha > 0). \quad \text{QED}$

Remark. If $\alpha = f(p)$ for p > 1, then T is a p-quasihyponormal by Theorem 2, but T is not paranormal by Theorem 4. Hence T satisfies the condition(iii).

REFERENCES

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integral Equations and Operator Theory., 13 (1990), 307-315.
- [2] A. Aluthge, Some generalized theorem on p-hyponormal operators, Integral Equations and Operator Theory., 24 (1996), 497-501.
- [3] T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged), 33 (1972), 169-178.
- [4] S. C. Arora and P. Arora, On p-quasihyponormal operators for 0 , Yokohama Math. J., 41 (1993), 25-29.
- [5] T. FURUTA, $A \geq B \geq 0$ assures $(B^r A^p B^r)^{\frac{1}{q}} \geq B^{(p+2r)/q}$ for $r \geq 0$, $p \geq 0$, $q \geq 1$ with $(1+2r)p \geq p+2r$, Proc. Amer. Math. Soc., 101 (1987), 85-88.
- [6] T. Furuta, Generalized Aluthge transformation on p-hyponormal operators, Proc. Amer. Math. Soc., 124 (1996), 3071-3075.
- [7] T. HURUYA, A note on p-hyponormal operators, Proc. Amer. Math. Soc., 125 (1997), 3617-3624.
- [8] V. ISTRĂŢESCU, T. SAITÔ AND T. YOSHINO, On a class of operators, Tôhoku Math. J. (2), 18 (1966), 410-413.
- [9] C. A. McCarthy, C_{ϱ} , Israel J. Math., 5 (1967), 249-271.
- [10] MI. YOUNG. LEE AND SANG. HUN. LEE, Some generalized theorems on p-quasihyponormal operators for 0 , Nihonkai Math. J., 8 (1997), 109-115.
- [11] A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integral Equations and Operator Theory (to appear).
- [12] A. Uchiyama, Inequalities of Putnam and Berger-Shaw for p-quasihyponormal operators, Integral Equations and Operator Theory (to appear).
- [13] T. Yoshino, The p-hyponormality of the Aluthge transform, Interdiscip. Inform. Sci., 3 (1997), 91-93.

Mathematical Institute, Tohoku University, Sendai 980-8578 Japan uchiyama@math.tohoku.ac.jp