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EXTENSIONS OF HEINZ-KATO-FURUTA INEQUALITY

MasaTosHI Fuiir* AND RiTsuo NAKAMOTO**

B BN Y

ABSTRACT We give an extension of recent Lin’s improvement of a generalized Schwarz inequal-
ity, which is based on the Heinz-Kato-Furuta inequality. As a consequence, we can sharpen
the Heinz-Kato-Furuta inequality.

1. Introduction.

First of all, we cite a generalized Schwarz inequality which is a base of Lin’s recent paper
[9]. For a (bounded linear) operator T acting on a Hilbert space H,

) (T, ) < (ITP22, ) (1T POy, )

forall o € [0,1] and z, y € H, where | X| is the square root of X* X for an operator X on H.
It implies the Heinz-Kato inequality via the Léwner-Heinz inequality, cf. [3],{10]. On the
other hand, Furuta [7] extended the Heinz-Kato inequality, so called the Heinz-Kato-Furuta
inequality. Rephrasmg it parallel to (1), we have

(2 (T4 e, )| < (1T, 2)(I1T* Py, )
forall a, B €[0,1] witha+3>1andz, ye H.
Very recently, Lin [9] sharpened (1) as follows:
Theorem L. Let T be an operator on H and 0 #y € H. For z € H satisfying Tz # 0 and
(TZ, y) =0,

|(IT*>z, 2) P(JT* 2=y, y)

(3) [(T'z, y)|? + (|T|22z, z)

< (ITP*2, 2)(IT* 71y, y)

for all @ € [0,1] and x, y € H. The equality holds if and only if |T|**(x — %%lz:—:gz) and
T*y are proportional, or equivalently, Tx — %%&ET;T z and |T*|2(0=2)y are proportwnal

In this note, we extend Theorem L, which is based on the Heinz-Kato-Furuta inequality
(2). Our proof is quite simple, in which we clarify the meaning of the assumption in Theorem
L that Tz # 0 and (T'z,y) = 0. As a consequence, we can sharpen the Heinz-Kato-Furuta,
inequality, and Furuta’s further generalization [6; Theorem 3] of the Heinz-Kato inequality
via the Furuta inequality [4]. Incidentally we discuss Bernstein type inequality on the line
of our result.

2. Heinz-Kato-Furuta inequality.

For the sake of convenience, we first cite the Heinz-Kato-Furuta inequality [7]:
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2. Heinz-Kato-Furuta inequality.

For the sake of convenience, we first cite the Heinz-Kato-Furuta inequality [7]

The Heinz- Kato-Furuta inequality. Let T be an operator on H If A and B are positive
operators on H such that T*T < A? and TT* < B?, then

(4) [(T|T|** P~ e, y)] < IIA%IHIB"yH
forall a,f € (0,1] witha+>1andz,y€ H.

We here remark that the Heinz-Kato inequality is just the case a + = 1 in above and
that it corresponds to (1). Thus we have the following extension of Theorem L. Throughout
this paper, let T' = U|T'| be the polar decomposition of an operator T" on H.

Theorem 1. Let T be an opemtor on H and0# y € H. Forz € H satisfying T|T|>+P~12
# 0 and (1 ,y) =0,

(TP, 2) *(1T* [y, y)
TPz, 2)

for all a,p > 0 wzth a+ B >1 and z, y € H. In the case a,3 > 0, the equalzty in (5)

holds if and only if |T|**A=1T*y and |T|**(x - ﬂ%‘%z) are proportional, or equivalently,

TP, T|o+P-1 (g — %%%lz) are proportional.

(5) (T80 )2 + < (T2, 2)(1T* "y, y)

It is easily seen that Theorem L is the case a+ 3 = 1 in Theorem 1. As a consequence, we
have the following improvement of the Heinz-Kato-Furuta inequality via the Léwner-Heinz
inequality, i.e., A > B > 0 implies A% > B* for € [0, 1]:

Theorem 2. Let T be an operator on H. If A and B are posztwe operators on H such
that T*T < A% and TT* < B?, then

S (T =, 2)*(IT**y, v)
6 [T )P + Pz 3)

Jor all a,B € (0,1} with o+ > 1 and x,y,2 € H such that T|T|**P~1z # 0 and
(T|T)*+P=12,y) = 0. In the case a,f > 0, the equality in (6) holds if and only if

AP = T2z, B?Py = |T*|?Py and |T|°*P-1T*y and |T|2*(z — %%;;::—32) are propor-
tional; the third condition is equivalent to that |T*|Py and T|T|*P~1(z — %z) are
proportional.

< [lA%z|?|| B%y)?

Proof of Theorem 1. We only use the positivity of the Gram matrix
G = GU|T|*x,|T* Py, U|T|*2).

Noting that :

(IT* 1Py, UITI"2) = (.|

by the assumption, we have

iﬁUITl“Z) (y,TITl"”’ '2)=0

a1k (UIT)~x, |T*|Py)  (U|T|*2,U|T|*2)
G=| (U|T|=x,|T*|Py)* 11T 18y 0
(U|T|o2, U|T|*2)* 0 e

Since |T'|*z # 0, we have

z,2) *(1T**#y, )
| (IT]?>z, 2)

To prove the equality condition, we'set up the following lemma, which is applied to the
vectors u = =U|T|°z and w = |T*|Py.

i+ G— ‘(71 voz *
(TIT|*+P = e, y) 2 + < (ITPez, 2)(IT**#y, y).




Lemma. (1) If v # 0 and (v,w) = 0, then {u,v,w} is linearly dependent if and only if w
and u — (lT’:’—I‘I’%U are proportional.

(2) Let T = U|T| be the polar decomposition of an operator T on H, (namely ker(U) =
ker(T)). For o, > 0 with a+ > 1 and y,w € H, the following conditions are mutu-
ally equivalent; (i) |T*|Py and U|T|*w are proportional. (ii) |T|*+#=1T*y and |T|>*w are
proportional. (iii) |T*|Py and T|T|*'w are proportional.

Proof. (1) Suppose that au + bv + cw = 0 for some (a,b,c) # 0. Then a(u,v) + b||v||> = 0

and so b = —gﬂ(vll’ﬁ—)' Hence we have

(u, v)

l[vl?

O=au+bv+cw=a(u— v) + cw.

Since a = ¢ = 0 does not occur by v # 0, vectors u — %ﬁ%v and w are proportional. The
converse is easily checked.
(2) (i) is equivalent to that U|T|?U*y and U|T|*w are proportional. Noting that &, 8 > 0

and ker(U) = ker(T'), it is equivalent to (ii). Similarly we have the equivalence between (i)
and (iii).

3. Furuta inequality.

In [6], the Heinz-Kato-Furuta inequality is extended by the use of the Furuta, inequality;
Theorem 1 also gives us an improvement of the extension due to Furuta. For the sake of
convenience, we cite the Furuta inequality [4], see also [2],[5],[8].

The Furuta inequality. If A> B >0, then P (142r)g=p+2r
for each r > 0,
g=1 \ p=
(B"APB")/4 > (BT BPBr)\/a \\\\\
holds for p > 0 and q > 1 with ‘,s\\\
(L 1)K

* > "
™ I+2r)g>p+21 (1§

' q

(0, -2r) / . .

The domain representing (*) is drawn in the right ' Figure

and it is shown in [11] that this domain is best possible one for the Furuta inequality.
Theorem 3. Let T' be an operator on H. If A and B are positive operators on H such
that T*T < A? and TT* < B%. Then for eachr, s >0

2(142r)c 2017 2(1+2s)8
(142r)a+(14+2s)5-1 2, (T x, z)|*(|T*| Y, )
(7) (TT| . z,y)|” + (IT2(+2r)ay, )

< (TP APPIT ) 558 0, ) (T[22 BT 22) 558y, )
Jorallp, ¢ > 1, 0,8 € [0,1] with (14 2r)a+ (1+2s)8 > 1 and z,y,z € H such that
T|T|( 427t (U42008 -1, £ 0 nd (T|T|(1+20)e+ (1420815 4y — 0. In the case o, B > 0, the
equality in (7) holds if and only if |T|2(1+2N)eg = (]T[Z'AZPITPT)%P:B, |T* 214298y, —
(T[22 B2|T* [29) 5985y and [T20+20) (- UTETT e ) g [pja(i+20)at 2142908 -17ey



( T|2(1+2r)a

are proportional; the latter is equivalent to that T|T|(1+2r)a+(1+28)6-1(5 _ ([T, z) 2)

and |T*|*(1+29)8y are proportional.
Proof. We use Thcorem 1 by replacing « (resp. () to a; = (142r)a (resp. f1 = (1+2s)0).
Then we have

l(lle‘“’L APUT**Pry, y)

8)  [(TIT| 8 Ta, ) + (T2 2, 2)

< (|T|2°‘1$ D) (IT* 1y, y).

Next we use the Furuta inequality for |T|? < A? and |T*|?> < B?; namely (for the former)

we replace A, B; q in the Furuta inequality to A2, |T|?; ﬁEJr'Z—%rr respectively. Then we
have

(142r)a

— |T|2(1+2r)a < (ITIZrAZp'TIZr) T

and similarly :
(TP = [T PO < (7 PP ) SR
Combining with (8), we obtain the inequality (7).
The equality condition is showed similarly to Theorem 2.

Remark. (1) We remark that the condition (1 + 2r)a+ (1 + 2s)3 > 1 in Theorem 3 is
unneccessary if T is either positive or invertible.

(2) Though Theorem 3 is followed from the Furuta inequality, they are equivalent actually,
that is, Theorem 3 is an alternative representation of the Furuta inequality. As a matter of

fact, we put T = B, a = (3, » = s and also ¢ = y in Theorem 3. Thus it follows from the
above remark (1) that if A2 > B2, then for B2(1+27) 3 o£ 0 and (BX1+27) 5 7) = 0

|(32(1+2T)ar T)|2 N l(32(1+2r)a$’ Z)IZ(BZ(1+2r)a$, z)
i (B2(1+2r)ozz,z)

< ((B¥ AP B™) 5935 3, 2) (B2 4225, ),

that is, A% > B? ensures

{(14+2r)x

(B'Z(I-&-’Zr)am’m)‘Z < ((BZrAZPBZr) Pi2r T 117)

forall p>1, 7> 0 and a € [0,1]. This is nothing but the Furuta inequality.

4. Generalization.

In this section, we generalize Theorem 1 along with a generalization of Theorem L [9;
Theorem 4].

Theorem 4. Let T' be an operator on H and 0 # y € H. If T|T|**F-12z; # 0 and
(T|T|**P=12;,y) =0 for i =1,2,--- ,n, then

(TP, 2) P Pyl
Wi+

& Tl

< (1712, 2)(IT* [y, )

2o, . . .
fora,B >0 witha+8 > 1, where ug = © and u; = u;_ 1~ﬂ§|—|ﬁ%ﬁ[§‘—)zi fori=1,2,--- . n
The equality in (9) holds if and only if |T*|Py and U|T|*u,, are propotional.

Proof. By the definition of u;, we have

~ -. (ITP*ui—r, )
2T 2 T ) e
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and so
o (T w1, 2:) 5.
I T]ezl2 ™

Uy = T —

Also we have
(T ui—y, 2:)

TO‘ J— Ta f oy —
e (T

ITlazi)'

so that : )
(T2 ui-1, 23)|
T2 |2

T 1w ll® = N wial® ~

Summing up thisoni=1,---,n,

2a,,, " 2
“lTlaunnz = ”lTlafE“z - Z l(‘Tll”Tll";;tllalzzz)‘ .

Hence it follows from the assumption (T|T|%*#~1z;,y) = 0 that

- .. wg 2 TP w1, 20) 12
NT* Pyl =) = TPyl Z AR

= TPyl T un?
> |(IT*Py, UIT|"un)|?
" o (T 1*ui—q, 2 o
= |(IT* Py, UIT|*z - ZW—)UITl z)|?
(T Py, UIT|*z)?
(T|T|* P~ e, y)|2

i

The equality condition is obvious by seeing the only inequality in the above.

Another generalization of Theorem 1 is as follows:

Theorem 5. Under the same conditions as Theorem 4, the following inequality holds;

(T =1, g 2 4 2o (L 20T Py

S T2 < (1T, 2)(IT* Py, )

As a matter of fact, since

{Il

Tl PNT Pyl? = (T4, ) PHITI 202 2 N PyIPIT e, 2:) 12

by Theorem 1, we have it by summing up on .

Remark. Theorems 4 and 5 give us generalizations of Theorems 2 and 3, whose state-
ments and proofs are quite similar to them.

5. A concluding remark.

Lin also discussed Bernstein type inequalities independently on Theorem L, [Q;Theorem
3], see [1]. As an application of Thcorem 1, we have a generalization of it:
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Theorem 6. Let T be an operator on H having a nonzero normal eigenvalue A with an
eigenvector e. Ify € H satzsﬁes (e,y) = 0 and T*y # 0, then

T wlIZIIIT*I"T*yIIZ l(TITl"w T*‘y)l2
1T 1PT*yl|?

|/\12l(frf‘,e)l2

forallz € H and B € [0,1}.

Proof. We put o = 1, z = e and replace y to T*y in Theorem 1. Since (|T|Pe, T*y) = 0 by
(e, y) =0, It follows from Theorem 1 that,

(TIT V=, T*y)|2+ HIT*I"T*le ?|(, 6)I2 < HTmII llIT"l"T*yII2

so that we have the desired inequality.

We obtain Lin’s inequality [9; Theorem 3] by taking # = 0 in Theorem 6.
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