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THE BEHAVIOR OF INVARIANT INTEGRALS
ON SEMISIMPLE SYMMETRIC SPACES
AND ITS APPLICATION

AOKI, SHiceru' KATO, SUEHIRO?

§0. Introduction

Let X = G /H be a semisimple symmetric space. We assume that G is a con-
nected reductive Lie group, and H is a subgroup of G defined by ’

H=G={geGlo(g9) =g},

where ¢ is an involution of G.

Example 0.1. We give a few examples of semisimple symmetric spaces X = G / H
satisfying the above assumptions:

Up,q)/ U xUp-7q),  Ulnn)/CL@,C),
U@2,2)/(UQ1,1)xUQ,1), GL(m+n,R)/(GL(m,R)x GL(n,R)).

Let & be the natural imbedding X < G given by 6(gH) = go(g~!). We identify
X with the submanifold &(X) of G.

Let X’ be the set of regular semisimple elements in X, which is H-invariant,
open dense in X. We choose a complete system {J;|l € L} of representatives of
H-conjugacy classes of Cartan subspaces of X. For any subset S of X, we write

"'=SNX' It is well-known that X' = | | H.J].
I€L
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Definition 0.1. Let f be a function in'C5°(X). By the invariant integral Fy of f,

we mean a function Fy on || J/ defined by
y IEL |

Fy(@) = xFy(@) = | o (B2

where dh is a suitably normalized H-invariant measure on H/Z 1 (6(x)).

Let 2o be a singular (that is, not regular) semisimple element of X, and let
X{z} be the the symmetric subspace attached to xq (cf. Definition 1.1). We
are interested in examining the asymptotic behavior of invariant integrals around
zo. The objective of the first part (§1~§3) of this article is to show that this
behavior is reduced to that of invariant integrals on X,y around 2 (Proposition
1.1 and Proposition 1.2). In particular, when z is a semiregular semisimple element
(cf. Definition 1.2), this fact shows us that one has only to examine invariant
integrals for a semisimple symmetric space of rank one, which is well investigated
by many authors (for example, see Faraut [6] for U(p, ¢; F)/(U(r; F)xU (p—r, q; F))
(F=R,C,H)). ' '

In the case where X is a group manifold (G x G)/AG, invariant integrals on
X are studied in detail in early stages by Harish-Chandra and Hirai and so on.
Our approach is based on that of Hirai [7] for group manifolds. We also make use
of a result of Matsuki [10] for the Jordan decomposition for semisimple symmetric
spaces. ' ' ‘

In the second part (§4, §5) of this article, we apply our results on invariant
integrals to the theory of invariant eigendistributions (IED’s) on X (cf. Defini-
tion 4.1). We discuss the following problem : What are the conditions for an
IED on X' to be extensible to an IED on X ? In order to answer this problem,
we first find the conditions (local matching conditions) that such an IED satisfies
around each semiregular semisimple element of X, and we derive an answer to
the problem by gathering these local matching conditions. After a few reviews on
IED’s in §4, we shall describe the above procedure in further detail in the case of
X =GL4,R)/(GL(2,R) x GL(2,R)). In particular, we explain how the local
matching conditions are deduced from our results obtained on invariant integrals
on this space X. In case of X = GL(4, R)/ (GL(2, R) x GL(2, R)), as the semisim-
ple part of the symmetric subspaces X, ) attached to a semiregular semisimple
element xo, appears the symmetric space GL(2, R)/(GL(1, R) x GL(1, R)). This
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space belongs to a series X = GL(n + 1, R)/(GL(1, R) X GL(n, R)) of rank one
semisimple symmetric spaces, which are non-isotropic for n > 1 (cf. Kosters
[9]). We note that the above problem has already been discussed in [1], [2],

(3], [4] and [5] for all symmetric spaces enumerated in Example 1.1 but X =
GL(m +n, R)/ (GL(m, R) x GL(n, R)).
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§ 1. Main Results

Definition 1.1. For an element xp € |J Ji, let G1 and H; be the centralizers
- lEL

Zg(6(x0)) and Zg(6(zo)) of 6(zo) in G and H respectively. Then, the symmetric

space X(z,} = G1/H; is considered as a subspace of X = G/H by the natural

imbedding Xy;,} < X. We call the space X¢,,} the symmetric subspace attached

to xg. :

We note that a Cartan subspace J; of X with zg € J; is also a Cartan subspace
of X(z,). Let f be a function in CZ°(X(4,}). We define the invariant integral of f
by

X Fr@) = [ fha)dh (e U ),
H1/Zw, (5(z)) ~ =EQ
where dh is a suitably normalized Hj-invariant measure on H;/Z m,(6(z)). We

remark that Zy, (6(x)) = Zg, (6(J1)) for each z € J].
Now we shall state the main results of this article.
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Proposition 1.1. Fiz an element zo of |J Ji. For any | € L with zo € J, there
leL
exists an open neighborhood O1 of xo in Ji satisfying the following condition : For

any function f € C°(X), there exists a function g € C°(X(z01) such that

xFrlo = X (a3 £'g o

supp g C (H.supp f) N X(z01,

where we write ' = || 0.
zo€Jy

Proposition 1.2. Fiz an element o of J Ji. We set §' = || J/. Then we
leL zo€J) ,
can take an open neighborhood U of g in X (., satisfying the following condition:

For any function g € C°(U), there exists a function f € C(X) such that

XFf|3'nU = ,X{wo}Fg P
supp f C H.suppg.

Proposition 1.1 and 1.2 show us that the behavior of invariant integrals on" X
around o is reduced to that of invariant integrals on Xy, around zo. In the fol-
lowing discussion, it is important for us to consider the case where x is semiregular
semisimple.

Definition 1.2. z € X is called a semireqular semisimple element, if it satisfies
the conditions:

(1) = : semisimple.

(2) x is not regular semisimple: z ¢ X'.

(3) There is a neighborhood V of z in X such that

y : semisimple and y € V\ X' = Xy} = X{z3-

That is, a semiregular semisimple element  has regularity next to the regular
elements in a neighborhood of z.
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Let = be a semiregular semisimple element of X. We find easily that

X=X {f} x X {Z;} (locally isomorphic)
X {f} = a semisimple symmetric ‘space of rank one,

X{f} = R" xT° withr+s=rank X — 1.

In case of rank one semisimple symmetric spaces, the behavior of invariant inte-
grals is well-known. Hence, we know the behavior of invariant integrals on Xy, 1,
in case where z¢ is a semiregular semisimple. Thus we deduce the behavior of
invariant integrals on X around zo, thanks to Proposition 1.1 and 1.2.

We shall prove the above propositions in §2, §3. Our approach is based upon the

method by [Hirai, 7] and so on, which is used in proving the corresponding results
for semisimple Lie groups .

§2. Proof of Proposition 1.1

We first quote the following statement for semisimple Lie groups, which is known
as-“a theorem of compacity”

Lemma 2.1(A theorem of compacity, Harish-Chandra). Let G be a semi-
simple Lie group and let yo be an element in a Cartan subgroup J of G. Let
Za(v0) be a centralizer of o in G, x — T the natural mapping of G onto the space
G/Zc(v0). Then there exists an open neighborhood O 7(vo) of yo in J with the
following property: Given any compact subset W in G, there exists a compact subset
Q = Q@,0;3(1)) in G/Zg(0) such that

')’E@j(’}’o) and zyrlew = ieq.

For a proof of the lemma, refer to Warner[11, Theorem 8.1.4.1 (p.75)] for in-
stance. The theorem of compacity for the case of semisimple Lie groups is general-
ized to the case of semisimple symmetric spaces as follows:
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Lemma 2.2 (A theorem of compacity for semisimple symmetric spaces).
Let X = G/H be a semisimple symmetric space and let xo be an element in a Cartan
subspace J of X. We set X,y = G1/H1 as before (Definition 1.1 ). Then there
exists an open neighborhood O(xo) of zo in J with the following property: Given
any compact subset w in X, there ezists a compact subset @ = Qw,O0;(z0)) in
H/H; such that . R

z€0s(zo) and hx Ew => h=h.H €.

Outline of the proof of Lemma 2.2. (See [Aoki-Kato, 1] for the detail of the proof.)
For a Cartan subspace J with zo € J, let J be a Cartan subgroup of G including
&(J), and put v = &(zo). It is clear that 7o € J. Applying Lemma 2.1 for
~o and J, we take an open neighborhood O 7(70) of 7o in J with the property as
in the lemma 2.1. Let Oj(zo) be an open neighborhood of zo in J defined by

O0s(zg) = (&l j) (‘(‘] j('y())). Then, by an elementary observation, we can verify
that Os(xo) has the property in Lemma 2.2. Q.E.D.

Let us turn now to the proof of Proposition 1.1. Let o be a semisimple element
of a Cartan subspace J;. Then, by Lemma 2.2, there exists an open neighborhood
O1,(zo) of zy in J; with the property as in the lemma. Put O, = 0y, (z). We shall
show that O; admits the condition in Proposition 1.1. Fix a function f € Cg°(X).
We choose the support of f as a compact set w in"X in Lemma 2.2: w = supp f.
Thus, according to Lemma 2.2, there exists a compact subset Q;(f) := Q(supp f, 0y)
in H/Hy such that

€0, and ha€suppf = h:=h.Hi € U(f).

Put Q; = U Qu(f),and O = |J O;. It is clear that
zo€Ji IEL ,
(1) £ is a compact subset of H/Hj.

(2) f(ha)#0 (heH,z€0) = heQy.

In order to define g = gy € C°(X{4,}) for each f € C>(X), we take an auxiliary
function a = aq, € C°(H) satistying the condition:

/ a(h£)dé =1 for any h € H with h € Q.
H,
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Define a function g5 = gf,o € C¢°(X(z,}) by

gr(n) = /H o(h) f(h.n) dh.
As is seen easily, we have

supp gy C H.supp f N X{z.}-

Let & be an element of O’ = UO,sayxze0;cO (I €L). Wenormalize the
lEL _

H-invariant measure dh on H/H; by the requirement

xFy)= [ fha)dh
H/Zu(J1)

= / ( / | f(h.g.x)dé)dﬁ.
H/Hy \VH:/Zy, (J)

We note that Zg(Ji) = Zn, (Ji1). Then it follows that

xFy(@) = /H . ( /H oy [0 dg) dh
_ /H " /H alh e ( /H . f(ht) dg) dh
= / a(h) ( / f(h.f.a:)dé) dh
H Hy/Zg, (1)

/H . ( /H a(h) f(h.é.m)dh) dé
g5(€.z) dE

Hi/Zu, (J)
X{zo}Fgf (.’B)

Thus, we have completed the proof of Proposition 1.1.
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§3. Proof of Proposition 1.2

Retam the previous notations. In particular, for any zo € X, we ldentlfy Xz}
with the subspace t(X{z0}) of X, by the natural embedding:

L X{xo} —Gl/Hl — G/H— X.

Before giving the proof of Proposition 1.2, we shall review the result for the Jordan
decomposition for semisimple symmetric spaces X = G/H due to [Matsuki 10,
Proposition 2 (p.52)].

Lemma 3.1 (The Jordan decomposition for semisimple symmetric spaces,
Matsuki). Let g be the Lie algebra of a reductive Lie group G, and gs(= [g, g]) the
semisimple part of g. Let o be an involution of G. Then we ha'ue the following:

(1) Ewvery element of G can be uniquely written as

g = (exp Xy)gs-

Here g, is an element of G such that Ad(6(gs)) is semisimple, and X, is a
nilpotent element of g such that 0 X, = Ad(gs)oAd(gs) 1 Xy = —Xu.
(2) Let ¢’ be another element of G and write

9’ = (exp X,) g,
as in (1). Then, for h,h' € H, we have

g’ = hgh! <> ¢, = hgsh' and X, = Ad(h)X..

Hereafter, g = (exp X.)gs denotes the Jordan decomposition of g € G for the
symmetric space X = G/H as in Lemma 3.1 (1). We fix an element zo of |J Ji.

leL
Let
(3.1) X{mo} = I_I Hiv;Hy (’Ui, € Gl)
- iel

be the Hj-orbit decomposition of the symmetric space Xyz,} = G1/H:. Since, for

every ¢ € I, there exist some h,h’ € Hy with h(v;)sh' € |J Ji, we may assume
zo€J;
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from the beginning that the family {v; |i € I'} of representatives of H1\G1/H; has
the property:

(3.2) Forallie I, (w)Hie |J J
R . w()ejl

Let us write g = goH1 with go € G1 . We can choose an open neighborhood U
of go in G satifying the following properties: ‘

(@) e U = hah' € U for any h,h' € H;
| (b) Zo(6(gH))/Zu(6(gH)) C X(zyy forallge U
(3.3) ()iel = i, €U
(d) For h € H, and 4; € U satisfying 4, H1 € | Ji (i=1,2),

xo€J;
hi1H = uoH = h € H;i.

Remark 3.1. For each u € U, let us write u = hv;h’ for some h, h' € H; and some
i € I. Then, the property (a) in (3.3) implies v; € U.

Lemma 3.2. Let S be a C¥ local cross section defined on an open neighborhood of

the origin eH, of H/Hy. Then, for xo € J Ji, there exists an Hy-invariant open
leL
neighborhood U of xo in X (4.} such that

(1) For every H, € H, u; € U,
hiuy = houg € X =G/H = h1H; :'thl.
(2) For every s; € S, u; € U,

S1U1 = S2U9 EXIG/H = 81 =81, U3 = U2.

Proof. Fix go € Gy such that zo = goH;. Fix an open neighborhood U of gy € Gy
with the property (3.3). Let m; be the natural projection m : G1 — Xz} =

G1/Hi. If we put U = m1(U), then U is a Hy-invariant open neighborhood of zg
in Xz} = G1/Hy. We shall verify that (1) (2) hold for U. -
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(1) Suppose that hiuy = houg (h1,h2 € H, ut,u2 € U) in X = G/H. When we
write u; = 4, Hy € U (@; € U; i = 1, 2), this condition is rewritten as

(34) - hitiph’ = hoilip.  for some b’ € H.
We set
(3:5) =&kl (G, &€ H, el i=1,2),

according to (3.1). Note that v,,, Vs, € U by Remark 3.1. Let us write
Vo; = (exp Xai)u (/Uai)s (Z = 17 2)a
for the Jordan decomposition of v,,. It follows from (3.4) and (3.5) that we have

= (hoba) th1€1va, E1REL!

In view of Lemma 3.1, we get

(Vas)s = (haé2)™ 1h1£1 (Vo )s E1H'ES™

On the other hand, with the combination of the property (c) in (3.3) and the
assumption (3.2) for v; (i € I), we have (va,)s € U and (va,;)sHy € U Ji for
: zo€Jy

i = 1,2. Thus, it follows from the property (d) in (3.3) that (hef2) thi& € Hi,
which asserts h1 H1 = hoHj. 7

(2) Suppose that sju; = squg in X = G/H (s; € S, u; € U). Then, as above,
we write 1 h/ = sqily for u; = WHy (il; € U; i =1,2) and some b’ € H. Since
S is a subset of H, we have s;H; = soH; by the assersion of (1), and whence
s1 = 89. Thus we have @i1h = 1z, and consequently we get U1 Hy = o H 1 because
ul UQ—hEGlﬂH H1 QED

Now we are ready to prove Proposition 2.2. Let S and U be the ones as Lemma
3.2. For any function g € CZ°(U), we define a function f € C2°(X) determined by
g. We fix a function ¥ € C(S) such that

/ W(s(k)) dh =
H/H,
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Here we write s = s(h) for sH; = h € H/H;. Put Us = {su € X|s€ S, ueU}.
Then Lemma 3.2 (2) tells us that
' ‘81U1=32’U.2€US (S,’ES,U,’EU) = 31=32andu1=u2.

On the other hand, since we find by an easy observation that the dimension of Ug
coincides with the dimension of G/H, Us is an open subset in X = G/H. Thus,
we can define f € C°(X) by

[ ¥(s)g(u) (z=sueUs)
f("’)”{o (x ¢ U).
Obviously one has
supp f C H.suppg.

Lemma 3.3. Keep the notations in Lemma 3.2. Fiz a Cartan subspace J; such
that zo € Ji;. Let x be an element of JJNU. If h € H satisfies the condition

le/ZHl(Jl) f(héx)dE # 0, then we have h = hHy € 7(S) and £z € U. Here 7 is
the natural projection of H to H/H;.

Proof. Let h be an element of H satisfying the above condition. Then there exists
some § € Hy such that héx € Us = SU. We write héz = h'2’ (b € S,z' € U).
Since U is Hy-invariant, {x € U follows. Hence, thanks to Lemma 3.2 (1), we have
hH; = h'Hy, which implies 4 € 7(S). Q.E.D.

Let us consider the integration:

xF;(z) = / f(hz) dh
H/Zy(Jy)

= / ( / f(héx) dé) dh  forz e JinNU,
H/Hl Hl/ZHl(Jl)

with J; € || J{. (The H-invariant measure dh on H/H; is already normalized
zo€Js ‘

in §2 so that the above formula holds). In view of Lemma 3.3, the condition
le/ZHl(Jl) f(h€x)d¢ # 0 means h = hH; € ©(S) and £z € U. Hence the above
integration is written as follows:

/ ( / ‘I’(s(ﬁ))g(éw)dé) dh = / w(s(R)) dh o(ex) d
H/Hy, \JH1/Zu, (J1) H/H, Hi/Zw, (Ji)

=X {20} Fy (37)
The proof of Proposition 1.2 is now complete.
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§4. Invariant Eigendistribution

Let X = G/H be a semisimple symmetric space and O an H-invariant open
subset of X. Let D(X) be the ring of invariant differential operators on X, and x
a character of D(X) : x € Hom(D(X),C).

Definition 4.1. A distribution © € D’ (0) is said to be an Invariant Eigendistri-
bution (IED) with x on O, if it satisfies the following two conditions:

i) © : H-invariant

ii) D.0 = x(D)© (VD e D(X))
Remarks. i) If O3 C Og, then, for any IED © with x on O, the restriction O], is
an IED with x on Q4.

ii) Let X’ be the set of regular semisimple elements of X, which is open dense
and H-invariant in X. Any IED on X’ is necessarily a real analytic function.

In view of above remarks, for any IED © on X, the restriction II = O|x- is an

IED on X', hence it is a real analytic function on X’ = || H.J/. In this way,
lEL
putting II; := ©| j;, we have a system of real analytic functions {I;};cz. We study

global matching condltlons i.e. compatibility conditions among II;’s, to give an
explicit form of IED’s.

To this end, for every semiregular semisimple element zy € |J J;, we establish,
leL ‘
by the procedure described in Diag. 1, local matching conditions, i.e. compatibility

conditions on a neighborhood of zg.

(a) Explicit form of radial parts of
invariant differential operators
!
(b) Explicit form of IED’s on H.J]
(Jl =] .’Bo)

(c) Behavior of invariant integral Fy
around zo

\ /
Integratlon by parts via
Weyl’s integral formula
Local matching conditions of IED
around o
Diag. 1
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§5. Case of X = GL(4,R)/(GL(2,R) x GL(2, R))

Let G =
I.2,2 = dlag(L 1

GL(4,R), and ¢ an involution defined by o(g) = '12,29I2,2, where
,—1,—1). Then H = G? is isomorphic to GL(2, R) x GL(2,R). In

this section, we treat IED’son X = G/H = GL(4,R)/ (GL(2, R) x GL(2, R)). -

Cartan Subspaces.

€1 sinh 64

€1 cosh01
Jo(01,62;€1,€9) = (

cos 04
01,92,6) (—311101

cos 64
§1(01,62) =

—sin 64

COs 01

J2(61,62) = —sin 6y

0 €1 sinh 64 0

€9 cosh 09 0 €; sinh 6,
0 €1 cosh 04 0

€9 sinh 09 0 €2 cosh 6o

0 sin 64 0

ecosh 6, 0 e sinh 0y
0  cosf 0
esinh 6, 0  ecoshf,
0 0 sin 6;
cosfy —sinfy O ’ .
sin01 C0391 0 .70(02’92’+7+)
0 0 cos 01

0 sin 91 0

cos 89 0 sin 6y
0 cosfy O
—sin @, 0 cos 65

Table 1
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Using the notations of Table 1, put -

JSI’EZ = {jo(61,02;€1,€) 01,00 € R} (€1,€0 = %),
Ji = {j1(61,02;€) | 01,00 € R} (e = %),
Jo = {j2(01,02) | 01,62 € R},
J1 = {j1(61,62) ] 61,0 € R},
Jo=JTuJyTuJdyTuJy T, and
Ji=JHuJdr.

Then we have a complete system {Jo, J1,J1, Jo} of representatives of H-conjugacy
classes of Cartan subspaces for X = GL(4, R)/ (GL(2, R) x GL(2, R)). We note
that these Cartan subspaces are now considered as the subspaces of 5(X) which is
identified with X. .

For an element z in J; (! = 0,1,2), we denote by t; its (4, j)-entry (j = 1, 2).
For example, we have t; = €; cosh 1, t2 = eacosh 62 for x = jo(61, 62;€1,€2) € Jo.
Furthermore, for an element £ = j;(01,60q;€) € J;, we put t; = cosh(—6; + 16;)
and tp = cosh(f; + i61). By the correspondence of z € Jo U J; U Jy U JQ to the “t-
variables” (t1, t2), one can identify Jo/(Z2)? with ((—oo, —1] LI [1,00))?, J1/(Z2)?
with [—1, 1] x ((—o0, —1] U [1,00)), and Ja/(Z3)? with ([-1,1])*. Then, for elements
(t1,t2), (t,t5) € Jl/(Z2)2 with [ = 0,1,2, (tl,tz) is mapped to (t},t5) by the Weyl
group W(Jl) if and only if

{ (t1,82) = (£1,¢3) or (t1,t2) = (té,ti) (=0,2)
(t1,t2) = (21, t3) | (=1).
For Ji, j1(61,62) is mapped to j1(6}, 63) by the Weyl group W (J;) if and only if
61 = +67 (mod27) and 6y = +6. |
Put |

w =ty — 1y,

d? d
L-—4( —-1)—dt2+8td
9 0? %) .
Li =4(t5 — 1) 5 512 + 8tj§t (j=1,2), and

8 = {w™tS(L1, Lo)w | S is a symmetric polynomial with 2-variables}.
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Then we have the isomorphism ® of D(X) to 8 satisfying
(D) (flar) = (D)o
for any De D(X)? f € C}?IO(X)7 J = J(), J17j17J27

where C§7(X) is the space of all H-invariant C*°-functions on X. (cf. Hoogenboom

[8]). In virtue of this fact, we denote by X, », the unique character x of D(X)
satisfying the condition

X((I)—l(w_IS(Ll,Lg)u))) = S()\l, )\2)

for any symmetric polynomial S with 2-variables. In case A1 # A2, X = Xa,,5, IS
called regular. We call ®(D) the radial part of D.

Symmetric Subspaces.

b

JiT —s g L gt

Fig. 1

In case of X = GL(4, R)/(GL(2, R) x GL(2, R)), a semiregular semisimple el-
ement xo in Jo U J; U J; U Ja corresponds to one of three symbols §, §, b in Fig.
1:

i) o corresponds to 4 if it belongs to (Jo N J1) U (J1 N J2)
ii) zo corresponds to f if it bel_ongs to JoNJ; N
iii) zo corresponds to b if it belongs to (hJoh~1NJ1 )U(JoNh~1J1h),
1 0 0 O

where h = h~! = g _01 g (1) . In each case, the Symmetric subspace attached
0O 0 1 0

to xo is as follows:
i) X(zo} @ GL(2,R)/(GL(1,R) x GL(1,R)) x (R or T),
ii) Xz ~ (GL(2,R) x GL(2,R)) /AGL(2, R) ~ SL(2, R) X R,
iii) Xz} ~ GL(2,C)/GL(2, R) ~ SL(2,C)/SL(2,R) x T,
where we denote by ~ a local isomorphy.
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Let 2o be a semiregular semlslmple element corresponding to §. For simplicity,
We assume moreover Iy € Jl N JJ +. Note that ¢t; = 1 for zo. In the case of
= GL(2, R)/ (GL(1, R) x GL(1, R)) (a symmetric space of rank 1), we have,

on a small neighborhood of the origine (¢t = 1),

(x) {Fr(t)| f € C(X1)}
={8(t) | 6(t) = ¢o(t) + #1(t) log[t — 1| (o, ¢1 € C)}.

Since X, is (locally) isomorphic to GL(2, R)/ (GL(1, R) x GL(1, R)) x R, we
have, from Proposition 1.1, 1.2, and (), on a small neighborhood of zg,
(k%) {Fy(t1,t2) | f € CZ(X)}

= {¢(t1,t2) | §(t1,t2) = do(t1,t2) + d1(t1,t2) log[ts — 1]; o, ¢1 € C=}.
From (), by the procedure sketched in §4, we have the local matching conditon
around zo:

Let © be an IED defined on X = GL(4,R)/(GL(2, R) x GL(2, R)), and \Il ’s
(7 =0, 1) real analytic functions defined on a neighborhood of xo. Then we have

O| i+ (b1, t2) = Wo(t1, t2) + Wi, o) logts — 1 (t1 > 1)
<~ @|J;r' (t1,t2) = Wo(t1,t2) + Ui(ty,t2)loglts — 1] (41 < 1)

In other words, ©| 1+ and O| ;1 are determined mutually in a natural way.
0 1

For other semiregular semisimple elements of type 4, we can prove similar local
matching conditions.

We note that these local matching conditions are the same as those between two
adjacent Cartan subspaces for IED’s on X = U(2,2)/GL(2,C).

For semiregular semisimple elements of type f or of type b, local matching condi-
tions are essentially the same as those between two adjacent Cartan subspaces for
IED’son X =U(2,2)/(U(1,1) xU(1,1)).

Although the details are different and more complicated, we can also derive local
matching conditions in these cases, along the lines mentioned above for elements
of type § (cf. Aoki-Kato [4]). For example, in the case of o € Jy N Jl, the local
matching condltlons around z is given as follows:

Let © be an IED defined on X = GL(4,R)/ (GL(2, R) x GL(2, R)) Then wO| s
is extensible as a real analytic function to a neighborhood of zg in Jy, and we have

1d d ) .
77 w@]J, (gl(s 0)zo) = —wO| j; (Jo(—s, 8;+, +)Z0)
S s=+40 ds 8==40
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In case of zg € Jo N jl, we have a similar local matching conditions around z.

Gathering and refdrmulating‘ all the local matching conditions mentioned above,
we have a theorem which gives a rather explicit form for IED’s on J§U Jj U J] U J}
(cf. Aoki-Kato [5]).

Explicit Form of IED’s.

d2
+ 815—(i Any solution of

Let A be a complex number and put L = 4(¢2 — 1)d—t—2- e

the equation-

(+) Lo= )
is real analytic on (—oo, —~1)U(~1,1) LI(1, 00), and a solution ¢ defined on (—1,1)
is of the form:

¢(t) = ¢1(t) +log |1~ t|a(t)

= ¢3(t) + log |1+ t|pa(t),
where ¢1(t), ¢2(t) are real analytic on (—1,00), and @3(t), ¢4(t) are real analytic
on (—00,1). So we can extend naturally to (—oco, —1)U(—1,1)U(1, c0) the solution
¢ initially defined only on (—1,1) as follows:
b= { PO TIosll 0 (1<
$3(t) +log |l +t|pa(t) (t<1).

Let «, 3 be complex numbers satisfying the conditions a+ 3 =1, a8 = —\. We
consider the following two solutions of the equation (x) on (—1,1):

Fla,p,1; 220,

2
1—t, . 1-t, . 1—t
F(a,ﬁ,l;—z—) log| 5 |+ F (T)a

where F™*(z) is analytic on |2| < 1,

¢+ (t’ )‘) .
¢-(t:A) :

and extend these solutions naturally to (—oo, —1) LI (—1,1) U (1, 00) in the manner
described above. We denote by the same symbols the extended solutions.
Let A()) be the 2 x 2 matrix determined by the equation :

(¢+(t7 )‘)’ ¢ (tv )‘)) = (¢+(_t7 /\)’ ¢—("'t7 )‘))A()‘)

Using these notations we can state:
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Theorem 5.1. Let x = Xa,.x, be a generic character of D(X). Then, for an IED
© with x defined on X, there exsist constants Cy, ,,’s (V1,v2 = %) such that we
have

s (t1s M) dug(te, Ao)

(i) @IJ'uJ'uJ’(tl’tQ =w™! Z Criv Gui(t2, A1) oy (b2, A2)

Vi, Vo= =%

(ii) ,
. _ -1 » Guy (P15 A1) oy (t1, A2)
@'J{ (tl'; t2) =w { Zi Czq,l/g ¢V1 (tQ, Al) ¢Vz (tg, A2)
Vi, V=
-I-sgn 0102 z C,l,l,,,z{(lsyl (tl, /\1)¢V2 (t2, )\2) + ¢u, (tl, )\2)¢,,1 (tQ, )\1)}}
vi,ve==%
where ' v i
- 70—
Cc'_=0, c'._|=B""1 0
N ro

Here B is a non-singular 3 x 3 matriz explicitly determined by A(A\1) and A(X2).

Estimate of the Dimension.
As a corollary of the above theorem, we have

Corollary 5.1. If x is generic, then

dim {O|x+; © is an IED on X with x} < 4.
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