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§1. Introduction.

1.1. We consider a third order linear ordinary differential equation containing a small pa-
rameter €:

(1.1) y” +3epo(z)y" +3epi(z)y +po(z)y =0, 0<e<ey, |z|<ag,

where z is complex. ‘
We suppose that the coefficients of (1.1) are linear functions of z such as

pa(z) = az +b, pi(z) =cz +d, po(z) =ez + f,
where a,b,-- -, f are complex constants.

The characteristic equation of (1.1) is given by

(12) . k(A 2) := A3 + 3 po(2) 22 + 3p1(z)A + po(z) =0,

whose roots are called the characteristic roots for (1.1) and they are denoted by Aj(zx) (G =
1,2,3). We denote by D a discriminant of the algebraic equation (1.2).

1.2. We give a brief summéry on the complex WKB analysis about (1.1).

Definition 1. Zeros of the discriminant D are called turning points of the equation (1.1),
or a point T = a satisfying \j(a) = N(a) (j # 1) is a turning point of the equation (1.1).
8*k(\(2),2) Ok(A(z), z)
—aw PO ed T

The turning point r satisfying
order. '

7# 0 are called of simple

Definition 2. Curves on the :v-plaﬁe determined by
T
(13) §R5,7'1(0'1 I) = 0) €jl(a7 .’E) = / {k](x) - Al(x)} d.’B, A.7(a) = )\l(a’) (.7 '-lé l)
a .

are called Stokes curves of the equation (1.1). Curves determined by S &j(a,z) = 0 are called
anti-Stokes curves of the equation (1.1). They emerge from the turning point r = a.
Curves RE&ji(a, ) =const. and curves S &;i(a, ) =const. are called level curves.

Both of Stokes and anti-Stokes curves are level curves of level zero. It is known that Stokes
curves of the equation (1.1) emerging from one turning point do not intersect each other except
for this turning point and the point at infinity, and a Stokes curve of the equation (1.1) does
not make a loop (Kelly [12]). '
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We remark that someone calls curves defined by R¢;;(a, r) = 0 anti-Stokes curves, and calls
curves defined by ¥¢;(a, ) = 0 Stokes curves. Terminology is sometimes used conversely.

Definition 3. The main term §;(z,€) of a formal series solution of (1.1) is called a formal
WKB solution of the equation (1.1):

1 (1 (=
1.4) yi(z,e):= - Ai(x)d: 7 =1,2,3; Ag:= A1, A5:= ;
(1) 50 = s (G [ M) @ £ =X D 1= )

This is derived from the formulae given in Fedoryuk (7], [8] or Nakano et. al. [15].

Lemma 1. There exists an z-region D; such that the formal WKB solutions §;(x, ) possess
double asymptotic property:

y;(z, &) ~ gj(z, €)
(1.5) as x — o0 in Dj fore,
(1.6) as € — 0 for x € Dy,
where y;(z,€) i3 a true solution of (1.1).

This lemma can be proved by the similar method used for second order differential equations
(Evgrafov-Fedoryuk [5] or Nakano et. al. [15]).
W-K-B are originated from Wentzel [20], Kramers (13] and Brillouin [4].

Definition 4. The mazimal region D; of the x-plane, in which a formal WKB solution
9j(z,€) is an asymptotic expansion of the true solution y;(z,€), is called a )j-admissible region
of the equation (1.1).

An intersection of three )\j-admissible regions D1N De N D3 is called a canonical region of the
equation (1.1). ‘

The canonical region is the maximal region in which three linearly independent solutions
yj(z,€)’s of (1.1) possess formal WKB solutions ;(z, €)’s as asymptotic solutions. There are
several canonical regions of (1.1) (see §6).

In §2 it is shown that the equation (1.1) is classified into nine classes and they are shown on
the table. From §3 we study mainly about the equation type Ib on the table.

In §4 we study location of turning points and local Stokes curves for the equation type Ib, in
85 global Stokes curves are considered and they are shown in several figures, in §6 the canonical
region, eistence region of three independent solutions with some asymptotic property, are gained,
in §7 we show that the solution can be represented by the Laplace integral, in §8 we give a brief
skecth of the Airy functions and in §9, the last section, we study relation between solutions of
the equation type Ib and products of the Airy functions.

This article is a revised edition of Nakano [14].

§2. Classification of 3rd order equations.
2.1. We can classify the differential equation (1.1) in a six-dimensional space with respect

to the order and numbers of the turning points of (1.1) by using the discriminant D of (1.2).
The characteristic equation (1.2) can be reduced to

(2.1) 7 +3Pp+Q =0,
where

(2.1)2. ni=A+pz), P:=p@)-p)? Q:=2pz)® - 3pa(z)pi(z) + po(z).
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The solutions £ of (2.1); are given by the Cardano’s formula as follows:

(22)1 m:= \3/5+ VB) 2 :=w\3/a+w2\:7/—3-) 3 = w2€/a+w{7:57
where '
(2.2)q o= :91’2-@, 8= 19—%—*/—5,‘ D :=4P% + Q2.

‘D’ is a discriminant of the characteristic equation of (1.2) (and (2.1)) since roots of (1.2
(and (2.1)) coincide at zeros of D, and these zeros are the turning points of (1.1) (see Def. 1).

2.2. The discriminant D is expressed by a polynomial of z as follows:

D :=4{p(s) - ;o) + {@m(@) - 3p(@)m(@) + po(@)}
= —3pa(z)? p1(z)? + 4p1(x)® + 4p2(2)? po(2) — Bp2(z) p1(2) po(x) + po()?
= (—3b%d? 4 4d® + 4% f — 6bdf + f?)
+ (—6b%cd — 6abd? + 12cd? + 4b%e — 6bde + 12ab% f — 6bcf — 6adf + 2ef) z
+ (—3b%c® — 12abed + 12¢2d — 3a2d? + 12ab%e — 6bce — 6ade + €2 + 12a%bf — 6acf) 22
+ (—6abc® + 4¢3 — 6a%cd + 12a%be — 6ace + 4a3 f) 23
+ az.(~3c2 + 4ae) .

Since D is of degree 4, there are at most four roots. By defining constants a,b,---, f appro-
priately, we get the following typical examples of the characteristic equations.

[type | 1ple | 2ble [ 3ple | characteristic equation | discriminant D) | turning points |
I || oo P —3\_22=0 - 1) 11
Ib || coo A —dzA—-2=0 4{1 — (4z/3)°} 34, 3w/d, 3uw/A
It || ooo M —3zA*+4=0 16(1 — z°) 1,w,w?
Ic | 0ooo W4+3az)2—3ad+3=0 | 403(z'—1),a:= 1423 | —1,1, i,
Ila o X —z=0 z? 0,0
| o | o PYJEY gy g —L2(z — 1)%/27 01,1
Ilc 0o ) N +3z2%2 -4z =0 16z%(1 — z2) -1,1,0,0
11d 00 N—_zd-A+z=0 —4(z? - 1)%/27 -1,-1,11
IIla o X —zA=0 —4z3° /27 0,0,0
b | o o TR+ o T F1=0] —(z—33(+1)/27 =1,3,3,3

REMARK: The mark ‘o’ represents a number of n-ple zeros. There exists no case where D
has only one simple zero, and there exists also no case where D has a 4-ple zero.

§3. The equation Ib.
3.1. From now on we are mainly considering the third order linear ordinary differential
equation of type Ib on the table in §2.2:

(3.1) e3y™ — dexy’ — 2y =0.

- The equation (3.1) has three simple turning points at = = 3/4, 3w/4, 3w?/4 (WVP=Lw#l)
as shown on the table (see Def. 1), and the point at infinity is an irregular singular point.
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When € = 1 the solutions of (3.1) are Ai(z)?, Ai(z)-Bi(z) and Bi(z)?, where Ai(z) and
Bi(x) are the Airy functions. The Airy functions are linearly independent solutions of the Airy
equation

(3.2) Y" - zY =0.

The equation Ib’ has same property as the equation Ib, but we prefer the equation Ib because
it relates directly to the Airy equation.

The characteristic roots A := A;(z) (j =1, 2,3) for (3.1) are given by
' Mz) i=al/? + 4?:0 cam V3,

4x 4x\3
2 1/3 o —1/3 a1 —1
(3.3) ! e(z) i=wa’" + 3 wa (a. 1+vD, D:=1 ( 3 ) )

A3(z) i=wal/? + Az cwlam 13

\
The formal WKB solutions of (3.1) are got from (1.4)

(B4 dilz,e) =20V LETE, g(a,e) =57V, g(n,6) = oI Aeem S,

3.2. In the case of second order linear differential equations there are only two characteristic
values. Then, there is only one difference of them if we take no account of signature. Turning
points and Stokes curves are determined by this difference (see Def. 1, 2).

However, in the case of higher order differential equations there are many differences of char-
acteristic roots, and Stokes curves are determined by these differences. Therefore, Stokes curves
may cross each other. Indeed, the crossing of Stokes curves happens for the equation (3.1) (see
Fig. 1). In this sense the equation (3.1) is a typical example with general property which the
general higher order differential equations possess, nevertheless the equation (3.1) looks very
simple.

"Third order equations are studied by, for instance, Aoki et. al. [2], Berk et. al. [3] and Nakano
et. al. [15]. Berk et. al. studied the equation of type Ia introducing a new Stokes curve and
showing that a Stokes phenomenon happens on the new Stokes curve, and computed a Stokes
multiplier. However we need no new Stokes curves and we can get canonical regions without
new Stokes curves. We use ‘old’ Stokes curves only (see Theorem 4).

§4. Turning points and local Stokes curves.

4.1. We can see that every characteristic root \;(z) is obtained by other characteristic roots
by changing arguments and we get the following relations which we call the rotation rules.

Theorem 1. Between characteristic roots the following equations are valid:

(4.1) Maw) =wihi(z), Ie(zw) =wh(z), I3(zw) = w?lo(z);

(4.2) A2(z) = whgg(zw), Aeg(z) =wAzi(aw), I31(z) = whie(aw),
where w := e™¥/3 k() == Aj(x) — Me(z). | .

PROOF. These rotation rules are easily derived from the definition of A;(z) and by inserting
zw into (3.3). QE.D.

From the rotation rules we get the relations:

(4.3) Aj(@e®™) = Xi(2),  Aw(ze®™) = Njg(z) (5 # ks Gk =1,2,3).
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Therefore A;(x) and \jx(x) are single-valued.

As stated already, turning points of (3.1) are z = 3/4,3w/4 and 3w?/4. But, in order to
construct precisely canonical regions, we must know which turning point is derived from which
two characteristic roots.

Theorem 2. The turning points are determined as follows.

The turning point x = 3e*™i/3 (: %w“’) is induced by the equation A\ () = Io(z).

The turning point T = 3 is induced by the equation Ao(x) = M3(x).
e2m/3 (:: %w) i induced by the equation A3(x) = A\ (x)

W OO 00

The turning point x =

PROOF. We show how to get the tufn'mg point z = %w"’ induced by two characteristic roots
A1(z) and Ag(z).

From (3.3) we get A2(z) := M\ (z) — Xo(z) = (1 —w) - (e”i/3a1/3 + %@a‘l/3> .

3
Since zeros of the discriminant D :=1— (%” are r = %-1, %-w, %-wz, all turning points can
be represented in the form of z = 3 - €2¥™/3 (k =integer).

Thus, by inserting = = 3e2¥™/3 into \jo(z), we get
g 4 g

AL (Ze%m‘/a) = (1= w) (/3 4 2mi3) = g

from which we obtain e@k-1)m/3 — 1 then k=---,-1,2,5,---. Thus we get
3 9 S 4ami/3 O ;
z =, Ze—2wz/3’ 1647"/3, ZelO‘rrz/-B, .
L

We can show others similarly. Q.E.D.

We notice that all the three characteristic roots do not coincide at one point. Only any two
of them can coincide at only one point.

4.2. At the turning point z = ?‘i the equality Ao(z) = A3(z) or Ao3(z) = 0 is valid, and near
T = % we get a=1+2it/24+... (zr:=t+3/4). Then

A3(z) = Ag(z) — M3(x)

4 ;4 /2 .
= —t*/* + (higher order terms),
73 (hig )

523(%,18) = /;4)\23(:0)013:

4.
V3

§t3/ 2 1 (higher order terms).

Therefore we can get the relation
30
R o3 =0 <= cos - =0 (6:=argt).

T hué, we get angles § = £3, 7 near the turning point z = %, and we can see that there exist
three Stokes curves emerging from the turning point z = % defined by Ag3(z) =0 .
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4.3. The point at infinity is an irregular singular point of the equation (3.1), and so we can
say that Stokes curves have to emerge from (or enter to) the point at infinity due to the local
theory about the point at infinity (Wasow [18]).

When |z| > 1 we get

N 1/2 32
a:=1+(1——<4§) ) o~ (%) e"/?2 23?2 (2 — o).

Ma3(z) ~ —i V3 ("6 — e ™/0) g2 V322 (z - ),

Then

and we have
fo3 = | A3(z)dz

Therefore, from the equality R&23 = 0 we can get arguments of = near the point at infinity:
argr = +m /3, 7.

§5. Global Stokes curves.

5.1. Since we got local behavior of Stokes curves near the particular points, we are getting
global Stokes curves on the whole plane.

Firstly, we determine the global Stokes curves derived from two characteristic values Ao(z)
and A3(z). From (3.3) we have

A3(x) = de(7) — A3(x)
= (w? - w) (a1/3 — %3305_1/3) ,

where o := 1+ {1 — (42/3)*}1/2.
Now, we see w® —w = —/34 and 1 —4z/3 > 0 (z < 3/4), ‘then a > 0, and so we get

M3(z) = —v/3i-C (C > 0). Thus, we can see a part of the real axis, i.e., the semi-infinite
interval x <3/4 is a Stokes curve [y (Fig.l), because

Z .
ERf A3(z)dr =0 for z< §
3/4 4

By the same way, we can see a part of the real axis £ >3/4 is an anti-Stokes curve Lg. Other
two Stokes curves (/1 and lp) emerging from the turning point z = 3/4 are shown in Fig.1.

The curve l; tends to the point at infinity of a direction with argz = —7/3 (|| > 1). Indeed,
[y can not cross lp, because two Stokes curves can not cross except for turning points and the
point at infinity.

Also, 4 does not cross Lg. Because the Stokes curve l; and the anti-Stokes curve Ly emerge
from the same turning point z = 3/4 and so they cannot cross each other at other points by the
general theory (Kelly [12]).

Similarly we get a Stokes curve lo as shown in Fig.1.

5.2. Stokes and anti-Stokes curves defined by A;(z) and A3(z) emerging from the turning
points x = 3w/4 are shown in Fig.1, too.

The Stokes curve lo is a straight line passing through the origin. Indeed, we can get [j as

follows: For z € [, ie., for = satisfying —co-w < = < 3w/4 we have by the rotation rule
(Theorem 1)

= / Ag1(z)dx
/4

:/:E /\23(:1:) dx =: {23
3/4
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Thus we get
Ré& =0 (—oo-w<zs—34£) = Rém=0 (_°°<£<i)

Therefore, the line ljj defined by §R§31I = 0 is a Stokes line rotated [y by an angle 27 /3 around
the origin.

In Fig.1, the line [ emerging from z = %— does not cross the negative real axis, which is a
part of Stokes curve ly emerging from the turning point z = 3/4. Indeed, when we choose three
integral paths: a diameter from z = 3£ to the origin, an interval on the negative real axis from

the origin to z = 3re™ and a curve from z = 22 to z = 3re™ (r > 0), we get the equation
& 1 1 1 8 eq

3w 3 w3
&31 (—4—,0) +&31 (0, Z"‘em> =&31 < 11 ")

by the Cauchy s integral theorem, because there are no singularities of the mtegrand in the
interior region bounded by three integral paths. Since the point on the diameter is z = 47 w(0<L
r <), we get @« = 14+ V1 —1r3 on the diameter, and so « is real. Then we get &3 (3 2,0) =
33 f1(a1/3 — po~=1/3)dr, which is purely imaginary.

Since the point on the negative real axisis z = %re’” (r > 0), a takes values a = 14+/1+73 (>
2). Then we get

531(0, §,,,eri> _______/0 {\/'(al/:} ra=13) _ i(a /3 — ra 1/3)}
4 -3r/4

whose real part is negative. Thus we see R (3¢ 1 47'9"‘) <0.
If the Stokes curve I crosses the negative real axis, the following property must be true:

%E(%— Zr ):0 for some 7 (> 0).

Therefore the Stokes curve l; cannot cross the Stokes curve lj.

Similarly, we can get the Stokes curves derived from the characteristic values A 1(:1:) and Ag(z).
Summing up above results, we get the Stokes curve configuration as shown in Fig.1.

/

Qr

"
[l
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Theorem 3. The Stokes curve configuration is shown in Fig.1. The real lines show the Stokes
curves and the broken lines show the anti-Stokes curves. :

All Stokes curves do not cross each other except for the origin, where three Stokes curves lg, A
and Il only cross.

The origin is neither a turning point nor a irregular singular point of (1.1).

Here we notice that three Stokes curves cross at the origin which is an ordinary point. In the
case of second order differential equations any two Stokes curves do not cross at a point except
for the turning points and irregular singularities.

§6. Canonical regions.

6.1. A )\j-admissible region D; (j = 1,2, 3) is the maximal region in which a formal WKB
solution #;(z,e) has the double asymptotic property (1.5) and (1.6). To determine the Aj-
admissible regions, we need the following

Lemma 2. In the )\j-admissible region D; the inequality

61 RGen<0, &)= [ (M@ -Ma)lds, (=j+1j+2)

must be valid along any integral path in the region D; from the turning point a to z.
The proof is given in Nakano et. al. [15] and so we omit it here.

To find points r satisfying (6.1), it suffices to draw level curves on the z-plane defined by
R &j(a, ) = const. and ¥ §;(a,z) = const. Since the )j-admissible region is maximal in the
z-plane, the image of D; in the {-plane under the conformal mapping & = &(z) (= &;(a,z))
must be also maximal in the £-plane.

Since the \j-admissible region is maximal, Stokes phenomenon must occur if we continue the
solution y;(z, €) analytically beyond any boundary of the )\j-admissible region.

In the intersection D() of three )j-admissible regions, three formal WKB solutions 75(x,€)

are asymptotic solutions of (1.1). This intersection D() is the maximal region in which three
independent solutions y;(x, €)’s exist, and this is called a canonical region of (1.1) (Def. 4).

If we try to continue analytically the solution y;(z, &) (whose asymptotic property is repre-
sented by a linear combination of some formal WKB solutions §,(z,€)’s) beyond the boundary
of the canonical region, the solution y;(z, €) must have another asymptotic representation, that
is to say, the Stokes phenomenon must occur.

Sz

Rz

-l

Fig.4
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Thus we get
Theorem 4. There erist three canonical regions DY), D(2) and D® of the equation (1.1) as

shown in Fig.2~/. They are situated symmetrically around the origin, especially D(? = D(1) .=
{z: ze DD} ,

6.2. Berk et. al. [3] study the equation Ia with two simple turning points and they assert
that the Stokes phenomenon occurs on the new Stokes curve, which emerges from the intersection
point (which is called a new turning point by Aoki et. al. (2]) of the ‘old’ Stokes curves, in
order to continue solutions by using Furry’s rule which was obtained for second order equatlons
with simple turning points.

But the equat1on Ib with three simple turning points needs no new Stokes curves to construct
canonical regions (Theorem 4).

By the way, Berk et. al. state that there exist six directions of Stokes curves to oo emerging
from two simple turning points, although the local theory at an irregular singular point asserts
that there exist eight Stokes curves emerging from co (Wasow [17]).

The equatlon Ib has nine Stokes curves emerging from three simple turning points and they
tend to oo in three different directions, and the local theory at an irregular singular point asserts
that three Stokes curves emerge from 00 (cf. §4.3).

Now, we propese

Conjecture. Let N; be a number of directions of Stokes curves tending to co emerging from
all the turning points and let N, be a number of directions of Stokes curves emerging from co.
If N; = N, then there exist no new Stokes curves.

§7. Laplace transforms.

7.1. As known well, a solution of a linear ordinary differential equation with linear coeffi-
cients, which is called a Laplace equation, can be represented by the Laplace transform or the
Laplace integral. The Laplace transform of (3.1) is

(z,€) —-/—1— —1— a:s——3-+los/ ds

(7.1)

if we suppose that the integral converges.

When we put S(s,z) := zs — 33/12 + logs'/2, then 3S/0s = z — s2/4 + 1/2s = —(s —4dzs —
2)/(4s)-

Zeros of 0S/ds are called saddle points of the integral (7.1). The numerator s3 — 4zs — 2 of

0S/0s coincides with the characteristic polynomial of the equatlon (3.1), and its zeros are the
characteristic values of (3.1). Thus we get

LEMMA 3. The characteristic values of the equation (3.1) are saddle points of (7.1).

When s is sufficiently large, the integral (7.1) must converge. The convergence regions in the
s-plane are derived from Re(—s3/12) < 0. The origin of the s-plane is a singular point of the

integrand, but the integral converges at the origin, . because the exponent 1 — 1/2¢ (e > 0) is
smaller than 1. .

7.2. If we choose the integral path 7 such that it passes through the saddle point and
comes from and goes to co or from 0 to co in the convergence regions, we can get asymptotic
representations of the Laplace integral by the saddle point method or the method of the steepest
descent as follows:

1/2¢
(7.2) (.6~ Cle) et (20,500 for amy N
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1/4e ) o
(7.3)  ;(@, &) ~v —eme(~DUPV2 242

j = 1) 3)> y?(x) E) N T (E — 0> z —)Qo)
JA3+1 VA +1

J

Right hand sides of (7.3) are same as WKB solutions (1.4) if we calculate a root of (1.4) much
more. After a short calculation we get more precise form from (7.3):

(7.4) y1(z,€) ~ .'1:(1‘36)/4%%%“’3/2, yo(z,€) ~ x‘l/%, y3(z, &) ~ g1=3e)/4e =2 32%/2

Thus we get
LEMMA 4. The Laplace transform has the formal WKB solutions as asymptotic ezpansions.
§8.  The Airy functions.

8.1. From now on, we assume € = 1. Then the equation (3.1) becomes

(8.1) y" —dxy —2y=0.
The Airy functions Ai(x) and Bi(z) are linearly independent solutions of the Airy equation
(3.2) Y" - z¥ =0.

If we put y :=Y?, then y satisfies (8.1), i.e., Y2 is a solution of (8.1). More precisely speaking,
Ai%, Ai-Bi and Bi? are linearly independent solutions of (8.1). The wronskian of Ai?, Ai-Bi and
Bi? is 2773,

Asymptotic properties of the Airy functions are: for x — co

™

. 1 ~1/4 _223/2 -
(8.2) Bi(z) ~ ﬁz e3 (I arg r| < 3

: 1 4 2
), A1(x)~2——ﬁ:1: 1/4g-32/ (l arg z| <7r),

then by making simply products we get

( 1 4.3/2 T
(V2 A, —p—1/2, 323 .. T

Bi(z) —z Tes (1: — 00, |argz| < 3),

(8.3) ! Ai(z)-Bi(z) ~ —2 Y2 (5 — oo, Jargz| < ),
2m ‘ 3

{ Ai(x)? ~ al;x‘l/2e_§°’3/2 (1: — 00, |argz| < 7r).

Right hand sides of (8.3) are formal WKB solutions of (8.1) corresponding to the characteristic

values A\1(z), A2(z) and A3(z) in order. Thus, (8.3) coincides with (7.4) when & = 1 if we take
no account of constants.

8.2. Between two Airy functions Ai(z) and Bi(z) there is a linear relation (Abranowitz-
Stegun [1]) '

(8.4) 2Ai(zet?™/3) = AL Ai(z) F i Bi(z)}.
By squaring this we get the relation
(8.5) 4Ai(zet?m/3)2 = 2B Ai(2)? T 2iAi(2)Bi(z) — Bi(z)?).

This equation contains four functions which are solutions of (8.1). Therefore, (8.5) represents a
linear relation between four solutions of (8.1) and it is a connection formula. The asymptotic
property (8.2) and the relation (8.4) are gained from the Laplace integral for the Airy equation:

(8.6) Y = L / et~ /3gy.
2w Jy
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The Laplace integral for (8.1) is got from (7.1) by putting € = 1 and it is
1 3
(8.7) y= / e 12,
| v Vs ,
We must notice that (8.5) is not got from (8.7) but simply got by making a product of (8.4).

§9. Products of the Airy functions.

9.1. By formal calculation, we see that a product of (8.6) becomes (8.7):

2
. tz—t3/3 — / 1 z5—5° /12
(9.1) ( / e dt) const. ———ﬁe ds.

The Airy functions Ai(x) and Bi(z) are composed of three parts, I1(z), I2(z) and I3(z), as.
follows (Jeffreys-Jeffreys [11]):

92 Ai(z) = Iy(z) — I3(z), Bi(z) =i{2Ni(z) - I2(z) - L(z)},
where I;(z)’s are defined by the Laplace integral of the Airy equation:

4 1 +00 ta:—-t3/3
I) = — dt
Liz):= 35 ./o ¢ ’
i 1 tr—13/3
(9.3) ! I(z) = —-2m_/0 e dt,
1 ? te—t3/3

T) = — ’ t.

L I3(x) 7 /0 e d

Here we must notice that I(z) — I3(z) and 2I1(z) — I2(z) — I3(x) are solutions of the Airy
equation (3.2), but each of [;(z)’s is not a solution of the Airy equation (8.6).
Then, by squaring (9.2) or making a product of them, we get

Ai2 =12 - 215 + I,
(9.4) Ai-Bi =i(2111y — I3 — 21113 + I3),
Bi%2 = 41} — 12 — IZ + 4111 — 2Do15.
From (9.1) and (9.3), we want to expect the following relations

too 1 3 oow ] 3 oow? ] 3
9.5 I2 =/ Ealp ol /12 ds, I2 =/ Ealip ol /12 ds, 12 =/ Bl Lol /12 ds.
( ) 1 0 S 2 0 \/g 3 0 \/3

However, the relations (9.5) are not valid.

9.2. The right hand sides of (9.4) are too complicated to define solutions of (8.1). Ai(z),
Ai(wz), Ai(w?z), Bi(z), Bi(wz) and Bi(w?z) are solutions of the Airy equation, and Ai(z)?,
Ai(wz)?, Ai(w?z)? and other products of them are solutions of (8.1), but we adopt more simply
the right hand sides of (9.5) as the standard solutions of (8.1) and denote them by

( i too 1 z9—5°/12
Ap(z) .—/0 \/Ee ds,
[::' L zss3/12
(9.6) { Bp(z):= A 7—;6‘“3 s/ ds,
ooxw? 1
— _t xs—s3/12
| Cp(z) -—/0 \/Ee ds.
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From (9.6), we see that

(9.7) Ap(ze®™) = Ap(z), Bp(ze’™)=Bp(z), Cp(ze™™)=Cp(a)

are valid. Therefore Ap(z), Bp(z) and Cp(z) are single-valued and entire functions.

Three functions Ap, Bp and Cp are defined by independent integral paths, then they are
linearly independent solutions of (8.1) and all other solutions of (8.1) can be represented by a
linear combination of Ap, Bp and Cp.

Summing up we get

Thorem 6. Three functions Ap(z), Bp(z) and Cp(z) defined by (9.6) are not created from
parts [;(z)’s of the Airy functions (see (9.2)). They are linearly independent solutions of (8.1)
and smgle valued entire functions. The right hand sides of (7.4) becomes the formal WKB solu-
tions of (8.1) by puttinge = 1.

In Zwillinger [21] the equation (8.1) is cited but it has no name, and so we propose here
to name the equation (8.1) the Pairy equation and three functions Ap, Bp and Cp Pairy
functions. The name ‘Pairy’ is originated from Pairy=(Products+Airy)/2.
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