The asymptotic stability of $x_{n+1} - x_n + Ax_{n-k} = 0$

大阪府立大学工学部 松永 秀章 (Hideaki Matsunaga)

1. Introduction and main results

The asymptotic stability of delay difference equations has been investigated by many authers. In scalar case, many results can be found in several books and papers [1-5]. Levin *et.al* [5] and Kuruklis [4] have shown the nice result as follows:

The delay difference equation

$$x_{n+1} - x_n + qx_{n-k} = 0, \quad n = 0, 1, \cdots,$$

where q is a real number and k is a nonnegative integer, is asymptotically stable if and only if

$$0 < q < 2\cos\frac{k\pi}{2k+1}.$$

In this paper we give some new necessary and sufficient conditions for the asymptotic stability of a 2-dimensional linear delay difference system

$$x_{n+1} - x_n + Ax_{n-k} = 0, \quad n = 0, 1, \cdots,$$
 (1)

where k is a nonnegative integer and A is a 2×2 constant matrix.

By the transformation $x_n = Py_n$ with an appropriate regular matrix P, we can rewrite (1) as

$$y_{n+1} - y_n + P^{-1}APy_{n-k} = 0, \quad n = 0, 1, \cdots.$$

Thus, we only have to consider (1) where the matrix A is either of the folloing two matrices:

(I)
$$A = qR(\theta) \equiv q \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
, (II) $A = \begin{pmatrix} q_1 & b \\ 0 & q_2 \end{pmatrix}$,

where q, q_1, q_2, b and $\theta(|\theta| \leq \frac{\pi}{2})$ are real numbers.

For the case (I), we have

Theorem 1. The system (1) is asymptotically stable if and only if

$$0 < q < 2\cos\frac{k\pi + |\theta|}{2k+1}.\tag{2}$$

For the case (II), we have

Theorem 2. The system (1) is asymptotically stable if and only if

$$0 < q_1 < 2\cos\frac{k\pi}{2k+1}$$
 and $0 < q_2 < 2\cos\frac{k\pi}{2k+1}$. (3)

In this paper we only give the proof of the Theorem 1 since both theorems are proved in very similar way.

2. Proof of Theorem 1

Theorem 1 is proved by using the fact that the system (1) is asymptotically stable if and only if all the roots of its characteristic equation

$$F(\lambda) \equiv \det(\lambda^{k+1}I - \lambda^kI + qR(\theta)) = 0 \tag{4}$$

are inside the unit disk. Hence, we investigate the characteristic roots of (4) to prove Theorem 1.

Let

$$f^{+}(\lambda) \equiv \lambda^{k+1} - \lambda^{k} + qe^{i\theta}, \quad f^{-}(\lambda) \equiv \lambda^{k+1} - \lambda^{k} + qe^{-i\theta}.$$

Then we have

$$F(\lambda) = \det \begin{pmatrix} \lambda^{k+1} - \lambda^k + q\cos\theta & -q\sin\theta \\ q\sin\theta & \lambda^{k+1} - \lambda^k + q\cos\theta \end{pmatrix}$$
$$= (\lambda^{k+1} - \lambda^k + q\cos\theta)^2 + q^2\sin^2\theta$$
$$= (\lambda^{k+1} - \lambda^k + q\cos\theta + iq\sin\theta)(\lambda^{k+1} - \lambda^k + q\cos\theta - iq\sin\theta)$$
$$= f^+(\lambda)f^-(\lambda).$$

Note that $f^-(\lambda) = 0$ implies $f^+(\bar{\lambda}) = 0$, where $\bar{\lambda}$ is the complex conjugate of any complex λ . Also, when $-\frac{\pi}{2} \leq \theta \leq 0$, substituting $\tilde{\theta} = -\theta$ in $f^+(\lambda) = 0$ and $f^-(\lambda) = 0$ implies $0 \leq \tilde{\theta} \leq \frac{\pi}{2}$. Therefore, we only have to consider the case $f^+(\lambda) = 0$ under the condition $0 \leq \theta \leq \frac{\pi}{2}$ to investigate the characteristic roots of (4). We also notice that (4) has no real roots if $q \neq 0$ and $\theta \neq 0$.

When k = 0, it follows from (4) that $\lambda = 1 - q \cos \theta \pm iq \sin \theta$. Then

$$|\lambda|^2 = (1 - q\cos\theta)^2 + (q\sin\theta)^2 = q^2 - 2q\cos\theta + 1.$$

It is easy to see that $|\lambda| < 1$ if and only if $0 < q < 2\cos\theta$, and so, Theorem 1 stands if k = 0. Hereafter, let k be a positive integer.

As a beginning, we shall examine the existence region of the arguments of complex roots of $f^+(\lambda) = 0$.

Lemma 1. Assume that q > 0 and $0 \le \theta \le \frac{\pi}{2}$. Let $re^{i\omega}$, with r > 0 and $0 < |\omega| < \pi$, be a complex root of $f^+(\lambda) = 0$. Then

$$\frac{\theta+2p\pi}{k}<\omega<\frac{\theta+(2p+1)\pi}{k+1},\ \ p=0,1,\cdots,\left[\frac{k-1}{2}\right],\ \textit{if}\ \omega>0;$$

$$\frac{\theta - \pi}{k + 1} < \omega < 0, \ \frac{\theta - (2p + 1)\pi}{k + 1} < \omega < \frac{\theta - 2p\pi}{k}, \ p = 1, 2, \cdots, \left[\frac{k}{2}\right], \ \textit{if} \ \omega < 0,$$

where [a] represents the integer part of a.

Proof. From $f^+(re^{i\omega}) = 0$, we have $r^{k+1}e^{i((k+1)\omega-\theta)} - r^ke^{i(k\omega-\theta)} + q = 0$, namely

$$r^{k}\{\cos(k\omega - \theta) - r\cos((k+1)\omega - \theta)\} = q,$$
(5)

and

$$r^{k}\{\sin(k\omega - \theta) - r\sin((k+1)\omega - \theta)\} = 0.$$
 (6)

It is obvious that $\sin((k+1)\omega - \theta) \neq 0$, so (6) implies

$$r = \frac{\sin(k\omega - \theta)}{\sin((k+1)\omega - \theta)}. (7)$$

(5) and (7) yield

$$q = r^k \frac{\sin((k+1)\omega - \theta)\cos(k\omega - \theta) - \sin(k\omega - \theta)\cos((k+1)\omega - \theta)}{\sin((k+1)\omega - \theta)}$$

$$=r^k \frac{\sin\omega}{\sin((k+1)\omega-\theta)}. (8)$$

We consider the case $0 < \omega < \pi$. (In case $-\pi < \omega < 0$, the proof is similar.) From (7) and (8), we must have $\sin(k\omega - \theta) > 0$ and $\sin((k+1)\omega - \theta) > 0$ because of q > 0, r > 0 and $\sin \omega > 0$. Hence,

$$\frac{\theta+2m\pi}{k}<\omega<\frac{\theta+(2m+1)\pi}{k},\quad m=0,1,\cdots,\left\lceil rac{k-1}{2}
ight
ceil,$$

and

$$\frac{\theta+2n\pi}{k+1}<\omega<\frac{\theta+(2n+1)\pi}{k+1},\quad n=0,1,\cdots,\left\lceil\frac{k}{2}\right\rceil,$$

which imply

$$\frac{\theta+2p\pi}{k}<\omega<\frac{\theta+(2p+1)\pi}{k+1}, \quad p=0,1,\cdots,\left[\frac{k-1}{2}\right].$$

The proof is complete.

When q < 0, we have the following analogous result.

Lemma 2. Assume that q < 0 and $0 \le \theta \le \frac{\pi}{2}$. Let $re^{i\omega}$, with r > 0 and $0 < |\omega| < \pi$, be a complex root of $f^+(\lambda) = 0$. Then

$$0 < \omega < \frac{\theta}{k+1}, \quad \frac{\theta + (2p-1)\pi}{k} < \omega < \frac{\theta + 2p\pi}{k+1}, \quad p = 1, 2, \dots, \left[\frac{k}{2}\right], \quad \text{if } \omega > 0;$$

$$\frac{\theta - (2p+2)\pi}{k+1} < \omega < \frac{\theta - (2p+1)\pi}{k}, \quad p = 0, 1, \dots, \left[\frac{k-1}{2}\right], \quad \text{if } \omega < 0.$$

The next lemma determines the value of q and the root's argument ω on the unit circle.

Lemma 3. Assume that q > 0 and $0 \le \theta \le \frac{\pi}{2}$. Then the arguments of complex roots of $f^+(\lambda) = 0$ on the unit circle are given by ω_p^+ or ω_p^- , where

$$\omega_p^+ \equiv \frac{2\theta + (4p+1)\pi}{2k+1} > 0, \qquad p = 0, 1, \cdots, \left[\frac{k-1}{2}\right],$$

$$\omega_p^- \equiv \frac{2\theta - (4p+1)\pi}{2k+1} < 0, \qquad p = 0, 1, \cdots, \left[\frac{k}{2}\right].$$

Moreover, the following relation stands:

$$q = \sqrt{2 - 2\cos\omega}.\tag{9}$$

Proof. Substituting r = 1 into (5) and (6), we get

$$\cos(k\omega - \theta) - \cos((k+1)\omega - \theta) = q,\tag{10}$$

and

$$\sin(k\omega - \theta) - \sin((k+1)\omega - \theta) = 0. \tag{11}$$

(11) implies that $2\cos\frac{(2k+1)\omega-2\theta}{2}\sin\frac{\omega}{2}=0$. Since $\sin\frac{\omega}{2}\neq 0$, we have

$$\cos\frac{(2k+1)\omega - 2\theta}{2} = 0. \tag{12}$$

We consider the case $0 < \omega < \pi$. (In case $-\pi < \omega < 0$, the proof is similar.) Then (12) yields

$$\omega = \frac{2\theta + (2n+1)\pi}{2k+1}, \quad n = 0, 1, \dots, k-1.$$
 (13)

By Lemma 1, (13) is suitable when n is only even, and therefore, we obtain

$$\omega=\omega_{p}^{+}\equivrac{2 heta+(4p+1)\pi}{2k+1},\quad p=0,1,\cdots,\Big[rac{k-1}{2}\Big].$$

Next, by squaring both sides of (10) and (11), and adding them together, we have

$$q^{2} = \{\cos(k\omega - \theta) - \cos((k+1)\omega - \theta)\}^{2} + \{\sin(k\omega - \theta) - \sin((k+1)\omega - \theta)\}^{2}$$

$$= 2 - 2\{\cos((k+1)\omega - \theta)\cos(k\omega - \theta) + \sin((k+1)\omega - \theta)\sin(k\omega - \theta)\}$$

$$= 2 - 2\cos\omega.$$

Hence, (9) stands. The proof is complete.

Remark 1. In view of the definitions of ω_p^+ and ω_p^- , the value of $q(\omega)$ given by (9) is minimum when $\omega = \omega_0^-$. Taking account of $\sqrt{2 - 2\cos\omega} = 2|\sin\frac{\omega}{2}|$, we obtain that

$$q(\omega_0^-) = 2 \sin \left| rac{2 heta - \pi}{2(2k+1)}
ight| = 2 \sin \left(rac{\pi}{2} - rac{k \pi + heta}{2k+1}
ight) = 2 \cos rac{k \pi + heta}{2k+1}.$$

When q < 0, we have the following result which is analogous to Lemma 3.

Lemma 4. Assume that q < 0 and $0 \le \theta \le \frac{\pi}{2}$. Then the arguments of complex roots of $f^+(\lambda) = 0$ on the unit circle are given by α_p^+ or α_p^- , where

$$lpha_{p}^{+} \equiv rac{2\theta + (4p - 1)\pi}{2k + 1} > 0, \qquad p = 1, 2, \cdots, \left[rac{k}{2}
ight],$$
 $lpha_{p}^{-} \equiv rac{2\theta - (4p + 3)\pi}{2k + 1} < 0, \qquad p = 0, 1, \cdots, \left[rac{k - 1}{2}
ight].$

Furthermore, we shall observe the crossing of the unit circle by the roots of $f^+(\lambda) = 0$ when the value of q varies.

Lemma 5. Assume that $0 \le \theta < \frac{\pi}{2}$. Then the simple root $\lambda = 1$ of $f^+(\lambda) = 0$ with q = 0 moves inside the unit disk (resp. outside the unit disk) as q increases from 0 (resp. decreases from 0).

Proof. It suffices to show that $\left(\frac{dr}{dq}\right)\Big|_{\substack{r=1\\q=0}} < 0$. If $\theta = 0$, let $\lambda = r$ be a positive root of $f^+(\lambda) = 0$, then

$$r^{k+1} - r^k + q = 0. (14)$$

Note that r=1 implies q=0. Taking the derivative of r with q on (14), we have

$$(k+1)r^k\frac{dr}{dq} - kr^{k-1}\frac{dr}{dq} + 1 = 0,$$

or

$$\frac{dr}{dq} = \frac{1}{kr^{k-1} - (k+1)r^k}.$$

Hence, we arrive at

$$\frac{dr}{dq}\Big|_{r=1} = \frac{1}{k - (k+1)} = -1 < 0.$$

If $0 < \theta < \frac{\pi}{2}$, it follows from (8) that

$$\frac{dr}{dq} = \frac{dr}{d\omega} \left(\frac{dq}{d\omega} \right)^{-1}$$

$$= \frac{dr}{d\omega} \left(kr^{k-1} \frac{dr}{d\omega} \frac{\sin \omega}{\sin((k+1)\omega - \theta)} + r^k \frac{d}{d\omega} \left(\frac{\sin \omega}{\sin((k+1)\omega - \theta)} \right) \right)^{-1}$$

$$= \frac{dr}{d\omega} \left(\frac{qk}{r} \frac{dr}{d\omega} + r^k \frac{d}{d\omega} \left(\frac{\sin \omega}{\sin((k+1)\omega - \theta)} \right) \right)^{-1}.$$
(15)

Also, by (7), we have

$$\frac{dr}{d\omega} = \frac{k\cos(k\omega - \theta)\sin((k+1)\omega - \theta) - (k+1)\sin(k\omega - \theta)\cos((k+1)\omega - \theta)}{\sin^2((k+1)\omega - \theta)}$$
$$= \frac{k\sin\omega - \sin(k\omega - \theta)\cos((k+1)\omega - \theta)}{\sin^2((k+1)\omega - \theta)},$$

and

$$\frac{d}{d\omega} \left(\frac{\sin \omega}{\sin((k+1)\omega - \theta)} \right)$$

$$= \frac{\cos \omega \sin((k+1)\omega - \theta) - (k+1)\sin \omega \cos((k+1)\omega - \theta)}{\sin^2((k+1)\omega - \theta)}$$

$$= \frac{\sin(k\omega - \theta) - k\sin \omega \cos((k+1)\omega - \theta)}{\sin^2((k+1)\omega - \theta)}.$$

Denote

$$G(\omega) \equiv k \sin \omega - \sin(k\omega - \theta) \cos((k+1)\omega - \theta), \tag{16}$$

and

$$H(\omega) \equiv \sin(k\omega - \theta) - k\sin\omega\cos((k+1)\omega - \theta) \tag{17}$$

then (15) yields

$$\frac{dr}{da} = \frac{G(\omega)}{(ak/r)G(\omega) + r^k H(\omega)}.$$
(18)

Noticing that q=0 is equivalent to $\omega=0$, we obtain that

$$\frac{dr}{dq}\bigg|_{\substack{r=1\\ q=0}} = \frac{G(0)}{H(0)} = \frac{-\sin(-\theta)\cos(-\theta)}{\sin(-\theta)} = -\cos\theta < 0.$$

The proof is complete.

Lemma 6. Assume that q > 0 and $0 \le \theta \le \frac{\pi}{2}$. Then all the roots of $f^+(\lambda) = 0$ on the unit circle move outside as q increases.

Proof. By Lemma 3, it suffices to show that

$$\frac{dr}{dq}\Big|_{\substack{r=1\\q=q(\omega_p^+)}} > 0, \qquad p = 0, 1, \cdots, \left[\frac{k-1}{2}\right], \tag{19}$$

and

$$\frac{dr}{dq}\Big|_{\substack{r=1\\q=q(\omega_p^-)}} > 0, \qquad p = 0, 1, \cdots, \left[\frac{k}{2}\right].$$
(20)

From (18), we have

$$\left. rac{dr}{dq} \right|_{\substack{r=1\ q=q(\omega_p^+)}} = rac{G(\omega_p^+)}{qkG(\omega_p^+) + H(\omega_p^+)},$$

where $G(\omega)$ and $H(\omega)$ are defined by (16) and (17) respectively. Note that $\sin \omega_p^+ > 0$ and $\sin(k\omega_p^+ - \theta) > 0$ because of Lemma 1. Also, since

$$\frac{2\theta + (4p+1)\pi}{2(k+1)} < \omega_p^+ < \frac{\theta + (2p+1)\pi}{k+1},$$

it is easy to see that $\cos((k+1)\omega_p^+ - \theta) < 0$. Thus, we obtain that $G(\omega_p^+) > 0$ and $H(\omega_p^+) > 0$, and so (19) holds. Similarly, we can show (20). The proof is complete.

When q < 0, using Lemmas 2 and 4 instead of Lemmas 1 and 3, we have the following result which is analogous to Lemma 6.

Lemma 7. Assume that q < 0 and $0 \le \theta \le \frac{\pi}{2}$. Then all the roots of $f^+(\lambda) = 0$ on the unit circle move outside as |q| increases.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let λ be a characteristic root of (4). Here, recalling the argument above, we only have to consider the value of λ satisfying $f^+(\lambda) = 0$ with $0 \le \theta \le \frac{\pi}{2}$.

(Sufficiency) From (2), we must have $0 \le \theta < \frac{\pi}{2}$. Thus, by virtue of Lemma 5 and continuity of λ with respect to q, we notice that, if q > 0 is sufficient small, then $|\lambda| < 1$ holds for any λ and the system (1) is asymptotically stable.

If the increasing of q leads the system (1) to instability, there exists a root λ^* of $f^+(\lambda) = 0$ such that $|\lambda^*| = 1$. By Remark 1, we find that $2\cos\frac{k\pi+\theta}{2k+1}$ is the minimum value of q when $|\lambda^*| = 1$. This fact indicates that, if (2) is true, then $|\lambda| < 1$ holds for any λ and the system (1) is asymptotically stable.

(Necessity) Suppose that the system (1) is asymptotically stable, that is, for any λ ,

$$|\lambda| < 1. \tag{21}$$

For the sake of contradiction, (2) is false. Then we consider two cases.

Case 1: $q \ge 2\cos\frac{k\pi+\theta}{2k+1}$. By Lemma 6, there exists a root λ^* of $f^+(\lambda) = 0$ such that $|\lambda^*| \ge 1$ as q increases from $2\cos\frac{k\pi+\theta}{2k+1}$, which contradicts (21).

Case 2: $q \leq 0$. By Lemma 5, the simple root $\lambda = 1$ with q = 0 moves outside the unit disk as |q| increases from 0. Hence, in view of the fact above and Lemma 7, there exists a root λ^* of $f^+(\lambda) = 0$ such that $|\lambda^*| \geq 1$, which also contradicts (21).

References

- [1] F. Brauer, Continuous and discrete delayed-recruitment population models, *Dynam. Contin. Discrete Impuls. Systems*, **3** (1997), 245–252.
- [2] S. N. Elaydi, "An Introduction to Difference Equations", Springer-Verlag, New York, 1996.
- [3] V. L. Kocic and G. Ladas, "Global Behavior of Nonlinear Difference Equations of Higher Order with Applications", Kluwer Academic Publishers, Dordrecht, 1993.
- [4] S. A. Kuruklis, The asymptotic stability of $x_{n+1} ax_n + bx_{n-k} = 0$, J. Math. Anal. Appl., 188 (1994), 719–731.
- [5] S. A. Levin and R. M. May, A note on difference-delay equations, Theor. Popol. Biol., 9 (1976), 178–187.