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The asymptotic stability of =, — 2, + Az, =0

KEFIKFTIFMR Mk FE  (Hideaki Matsunaga)

1. Introduction and main results

The asymptotic stability of delay difference equations has been investigated by many
authers. In scalar case, many results can be found in several books and papers [1-5].
Levin et.al [5] and Kuruklis [4] have shown the nice result as follows:

The delay difference equation

Tptl — Tn+qTpn-k =0, n=0,1,---,
where g is a real number and k is a nonnegative integer, is asymptotically stable if and
only if ’ '

km
2k+1°

In this paper we give some new necessary and sufficient conditions for the asymptotic

0<g<2cos

stability of a 2-dimensional linear delay difference system
 Tai1 —ZTp+ ATy =0, n=01,---, (1)

where k is a nonnegative integer and A is a 2 X 2 constant matrix.
By the transformation z, = Py, with an appropriate regular matrix P, we can

rewrite (1) as
Ynil — Yn+ P 'APy, =0, n=0,1,--

Thus, we only have to consider (1) where the matrix A is either of the folloing two

madtrices :

W a=oro=a(y SRT) ana= (% 0).

sind cosf. 0 ¢

where g, g1, g2, b and 6 (|| < 7) are real numbers.

For the case (I), we have
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Theorem 1. The system (1) is asymptotically stable if and only if

km + 0]

0<q<2cos TR | (2)

For the case (II), we have

Theorem 2. The system (1) is asymptotically stable if and only if

0<q <2cos and 0< ¢ <2cos

s ™
2k+1 2k+1° )

In this paper we only give the proof of the Theorem 1 since both theorems are proved
in very similar way.

2. Proof of Theorem 1

Theorem 1 is proved by using the fact that the system (1) is asymptotically stable

if and only if all the roots of its characteristic equation

F()\) = det(\F1T — M T+ qR()) = 0 (4)
are inside the unit disk. Hence, we investigate the characteristic roots of (4) to prove
Theorem 1. '

Let

FTO) = A 0k L ge® f= () = AL )k 4 ge ¥,
Then we have '

F) = det (/\k+1 — X+ gcos b —qsind )

gsin @ A1 _ XNk 4 gcosd

= (MM _XF 1 gcos6)? + ¢ sin? 0

= (A" —XF 4 gcos@ + igsin 6) (M1 — A\* 4 gcos 6 — igsinb)

= TN, |
Note that f~()\) = 0 implies f*(\) = 0, where X is the complex conjugate of any
complex A. Also, when —% < 8 <0, substituting §=—0in f+(A) =0and f~(X) =0
implies 0 < 6 < 5. Therefore, we only have to consider the case f*()\) = 0 under the
condition 0 < 6 < 7 to investigate the characteristic roots of (4). We also notice that

(4) has no real roots if ¢ # 0 and 6 # 0.
When k = 0, it follows from (4) that A = 1 — gcos £igsinf. Then

A2 = (1 - gcos8)® + (gsin#)? = ¢* — 2qcosf + 1.
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It is easy to see that || < 1 if and only if 0 < ¢ < 2cos 6, and so, Theorem 1 stands if
k = 0. Hereafter, let k£ be a positive integer.
As a beginning, we shall examine the existence region of the arguments of complex
roots of f+(A) =0. |
Lemma 1. Assume that ¢ >0 and 0 < 0 < 7. Let re®, withr >0 and 0 < |w| < 7,
be a complex root of f+(A\) =0. Then
6+ 2pm 6+ (2p+ 1)m
< ——
P kr1 0 F
0—m 66— (2p+ 1)m 6 — 2pm
< 0, ————<w<
PR kE+1 “ k
where [a] represents the integer part of a.

kE—1
=0,1,---,[T],ifw>0;

k
9 p:1727"-' ?[E]aifw<ov

Proof. From f*(re®) =0, we have rFtigik+Dw—0) _ rkei(’;”“g) + ¢ = 0, namely
r¥{cos(kw — ) —rcos((k+ L)w —0)} = q, ' (5)
and
r*{sin(kw — ) — rsin((k + 1)w — 6)} = 0. (6)

It is obvious that sin((k + 1)w — 6) # 0, so (6) implies

_ sin(kw —0)
" s+ Dw—0) ()

(5) and (7) yield
g=rt sin((k + 1)w — 6) cos(kw — 0) — sin(kw — 0) cos((k + L)w — )
sin((k + 1w — 6) ’

k sinw
— ) 8

" Sn((k+ Dw — 0) ®)
We consider the case 0 < w < m. (In case —m < w < 0, the proof is similar.) From (7)
and (8), we must have sin(kw —6) > 0 and sin((k+ 1)w —6) > 0 because of ¢ > 0,7 >0

and sinw > 0. Hence, -

0+2m7r<w<9+(2m+1)7r 01 [k—l]
k k ) m= b ] Y 2 b
and
6+ 2nm 6+ (2n+ 1)m _ k
k+1 <w<——k—+—1—, n,—O,l,---,[g],
which imply '
0+2 0+ (2p+1 ‘ k-1
+ m< <_ﬂ.p_+__)zr_ 2071,...7[._2_].

A k+1
The proof is complete. ’
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When ¢ < 0, we have the following analogous result.

Lemma 2. Assume that ¢ <0 and 0 <0 < Z. Let re*, withr >0 and 0 < |w] <,
be a complex root of f*(\) = 0. Then |

0 6+ (2p—1)m 0 + 2pm k] .
0 —, p=12,--- |- 05
<w<k+1’ = <w< k+1,p ,2, ,[2],sz>0,
—(2p+2)m 6—Q2p+1)m k—171 .
P <w< - , p—O,l,---,[, 5 },sz<0.

The next lemma determines the value of g and the root’s argument w on the unit

circle.

Lemma 3. Assume that ¢ > 0 and 0 < 6 < 7. Then the arguments of complex roots

of f¥(A) = 0 on the unit circle are given by wf or w,, where

p
vy = 29“2564?: 1)m <0, p=01.... [g]
Moreover, the following relation stands :
g=+v2—2cosw. | (9)

Proof. Substituting r = 1 into (5) and (6), we get

cos(kw — 0) — cos((k + 1)w — 0) = g, (10)
and

sin(kw — 0) —sin((k + 1)w — §) = 0. - (1)

-(11) implies that 2 cos w sin § = 0. Since sin § # 0, we have

2k + 1w — 26
0s =
2
We consider the case 0 < w < 7. (In case —m < w < 0, the proof is similar.) Then

(12) yields

C

0. (12)

204 (2n+ 7
- 2%k+1

By Lemma 1, (13) is suitable when n is only even, and therefore,‘ we obtain

n=0,1,--,k—1. (13)

+_20+p+m
»

- k—l]
wew 2%k+1

.—_0,1,---,[—2—.
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Next, by squaring both sides of (10) and (11), and adding them together, we have

= {c»os(k:w — 0) — cos((k+ 1w — 0)}+ {sin(kw — 0) —sin((k + L)w — 6)}°
=2 — 2{cos((k + 1)w — 0) cos(kw — 0) + sin((k + 1)w — 6) sin(kw — 6)}

=2 —2cosw.

Hence, (9) stands. The proof is complete.

Remark 1. In view of the definitions of wy and w,, the value of ¢(w) given by (9)
is minimum when w = wy . Taking account of v/2 — 2 cosw = 2|sin ¥|, we obtain that

g(wy) = 2sin

20— lﬁzsmG”mjLe)—%OSk#H
202k + 1) 2 2k+1/ 2k +1

When ¢ < 0, we have the following result which is analogous to Lemma 3.

Lemma 4. Assume that ¢ < 0 and 0 < 8 < L. Then the arguments of complex roots

of f+(X) = 0 on the unit circle are given by aF or oy, where

+_20+(4p—Dm

k
> 0, P:1,27"',[—],‘

% =Tkt 1 2
20— (dp+ 3 B kE—1
% =i <0, p—O,l,---,[ . ]

Furthermore, we shall observe the crossing of the unit circle by the roots of f*(X) =0

when the value of g varies.

Lemma 5. Assume that 0 < 0 < Z. Then the simple root A = 1 of fr(A) = 0 with
q = 0 moves inside the unit disk (resp. outside the unit disk) as q increases from 0
(resp. decreases from 0).

=1<0.If 8 =0, let A\ =r be a positive root

Proof. It suffices to show that (dr/dq)
. q=0

of f¥(\) =0, then

ek g=0 (14)

Note that r = 1 implies g = 0. Taking the derivative of r with g on (14), we have

dr L dr '
E+D)rf— —kr* 1 —4+1=0
(k+ )r 7 T dq+ =0,
or ‘
dr 1

dg ~ krF T = (k+ Dk’
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Hence, we arrive at

dr 1

il R B— )
dq r=1 k— (k + 1)
If 0 < 8 < Z, it follows from (8) that
dr  dr (dg\7!
dq T dw (dw)

_ t_i_r_ P k—1_C_l£ sinw Lok d sinw -1
B dw( " dw sin((k + 1)w — 6) r dw(sin((k+ 1)w—9)>>

_dr/qkdr @, d sinw -1
-z(FzEwrnese) 1o
Also, by (7), we have
dr  kcos(kw — ) sin((k + 1)w — 0) — (k+ 1) sin(kw — 0) cos((k + )w — 0)

dw sin®((k + 1)w — 6)

_ ksinw —sin(kw — 0) cos((k + 1)w — 0)
N sin®((k + 1w — 6) ’

and
d sinw
@(sm((m Dw — 9)) |
coswsin((k+ 1)w — 0) — (k+ 1) sinw cos((k + 1)w — 0)
- sin®((k + L)w — 6)
_ sin(kw — ) — ksinwcos((k + 1)w — 0)
B sin®((k + 1)w — 6) '
Denote
- G(w) = ksinw — sin(k‘w —0) cos((k.'+ 1w — 9)’, | (16)
and
H(w) = sin(kw — 0) — ksinw cos((k + 1)w — 6) (17)
then (15) yields
dr _ G(w) (18)

dg  (gk/r)G(w) +r*H(w)’
Noticing that ¢ = 0 is equivalent to w = 0, we obtain that
dr|  G(0) —sin(—0)cos(—0)

dq =1~ HO) sin(—0) = —cosf <0.
q:

The proof is complete.



Lemma 6. Assume that ¢ >0 and 0 < 0 < Z. Then all the roots of f*(\) = 0 on the

unit circle move outside as q increases.

Proof. By Lemma 3, it suffices to show that

dr k—1
-C-l-af:l >0? p—0)17"'7|:'—2_—]7 (19)
q=q(wy)
and
dr k
= — p_o,l,---,H. (20)
q=q(wp)
From (18), we have
dr B G(wy)
dglr=1 qkG(wF) + H(w?)’
ar=l Ly ICW) + Hwy)

where G(w) and H (w) are defined by (16) and (17) respectively. Note that sinw, >0

and sin(kw, — 0) > 0 because of Lemma 1. Also, since

20+ (4p+ D ot < 0+ (2p+ )
2(k+1) P E+1 °
it is easy to see that cos((k + Dwi — ) < 0. Thus, we obtain that G(wg) > 0 and
H(wf) >0, and so (19) holds. Similarly, we can show (20). The proof is complete.

When g < 0, using Lemmas 2 and 4 instead of Lemmas 1 and 3, we have the following

result which is analogous to Lemma 6.

Lemma 7. Assume that ¢ <0 and 0 < 6 < Z. Then all the roots of f*(X) = 0 on the

unit circle move outside as |q| increases.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let A be a characteristic root of (4). Here, recalling the
argument above, we only have to consider the value of A satisfying f+(X\) = 0 with
0<6< 7.

(Sufficiency) From (2), we must have 0 < 6 < 7. Thus, by virtue of Lemma 5
and continuity of A with respect to g, we notice that, if ¢ > 0 is sufficient small, then
|A| < 1 holds for any A and the system (1) is asymptotically stable.

If the increasing of q leads the system (1) to instability, there exists a root A\* of
ft(A) = 0 such that |A\*| = 1. By Remark 1, we find that 2 cos gﬁf is the minimum
value of ¢ when |\*| = 1. This fact indicates that, if (2) is true, then |A| < 1 holds for

any X and the system (1) is asymptotically stable.

111
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(Necessity) Suppose that the system (1) is asymptotically stable, that is, for any A,

Al < 1. (21)
For the sake of contradiction, (2) is false. Then we consider two cases.
Case 1: ¢ > 2cos gZ—j:f. By Lemma 6, there exists a root A* of f*(\) = 0 such that
|A*| > 1 as g increases from 2 cos 5742, which contradicts (21).

Case 2: ¢ < 0. By Lemma 5, the simple root A = 1 with ¢ = 0 moves outside the
unit disk as |q| increases from 0. Hence, in view of the fact above and Lemma 7, there
exists a root A* of fT()\) = 0 such that |A\*| > 1, which also contradicts (21).
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