On the algebraic geometry of Kac-Moody groups

by
Peter Slodowy
Mathematisches Seminar
Universität Hamburg
D-20146 Hamburg / Germany

These notes are a slightly elaborated version of a talk given at the RIMS-Symposium on "Topological Field Theory and Related Topies", Kyoto, December 1996. Their aim is to give a survey of the main results obtained by Claus Mokler in his dissertation at Hamburg University ([8], October 1996) pertaining to a natural semigroup completion of Kac-Moody groups.

1. "Abstract" Kac-Moody groups

Starting point for the construction of Kac-Moody Lie algebras and associated groups is a generalized Cartan matrix, i.e. an $l \times l$ -matrix $A = ((a_{ij})) \in M_l(\mathbb{Z})$ satisfying

$$\begin{array}{rcl} a_{ii} & = & 2 \\ a_{ij} & \leq & 0 & i \neq j \\ a_{ij} & = & 0 & \Rightarrow & a_{ji} = 0 \end{array}$$

We shall assume, in addition, that A is symmetrizable (cf. [2]). In fact, one might take A to be symmetric for simplicity. Also, the generalized Cartan matrices arising in singularity theory and providing the original motivation for our research in Kac-Moody groups (cf. [11], [13]) are symmetric, e.g. the matrix of type T_{pqr} encoded by the Coxeter-Dynkin diagram

Whereas the Kac-Moody algebra $\mathbf{g} = \mathbf{g}(A)$ is essentially generated by l copies of the Lie algebra $\mathbf{sl}_2(\mathbb{C})$,

$$\langle e_i, h_i, f_i \rangle$$
, = $i = 1, \ldots, l$,

subject to relations derived from A, the corresponding Kac-Moody group G = G(A) is essentially generated by l copies of the Lie group $SL_2(\mathbb{C})$. Here, the relations are either imposed abstractly (Tits, cf.[15], [16]) or by the "integration" of G from the integrable representations of \mathbf{g} (Moody-Teo, Marcuson, Garland, and, in the most thorough way, Kac-Peterson [10], [3], [4]).

The most important result about G as an abstract group is the existence of a "twin" BN-pair or "twin" Tits system (B^+, B^-, N, S) in G providing us, among others, with

- positive and negative Borel subgroups B⁺ and B⁻,
- a maximal torus $T = B^+ \cap B^- = N \cap B^+ = N \cap B^-$,
- a Weyl group W = N/T with generating set S,
- Bruhat decompositions

$$G = \bigcup_{w \in W} B^+ w B^+ = \bigcup_{w \in W} B^- w B^-,$$

and a Birkhoff-decomposition

$$G = \bigcup_{w \in W} B^- w B^+ .$$

Similarly, as in the case of the Lie algebra \mathbf{g} where one usually adjoins additional derivations to a "minimal" Kac-Moody algebra, the precise structure of G depends on slightly finer data than A. These data are given by an *integral realization* (H,Π,Π) of A which fixes the size of the maximal torus T and its position inside G.

Here, H is the lattice of algebraic one–parameter subgroups $\mathbb{C}^* \to T$ into T with dual $P = H^* = \operatorname{Hom}_{\mathbb{Z}}(H, \mathbb{Z})$, the lattice of algebraic characters $T \to \mathbb{C}^*$, and

$$\Pi = \{\alpha_1, \dots, \alpha_e\} \subset P, \ \Pi' = \{h_1, \dots, h_l\} \subset H$$

are free subsets of $simple \ roots$ in P, resp. of $simple \ coroots$ in H, related by

$$\alpha_i(h_j) = a_{ij}.$$

More explicitly, Π and Π are given in our context as follows:

Let $\kappa_i: SL_2(\mathbb{C}) \to G$, i = 1, ..., l denote the basic homomorphisms of $SL_2(\mathbb{C})$ into G, and let

$$h_i: \mathbb{C}^* \to G$$
$$u_i: \mathbb{C} \to G$$

be given by

$$h_i(s) := \kappa_i(\begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix}) , s \in \mathbb{C}^*,$$

$$u_i(c) := \kappa_i(\begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}) , c \in \mathbb{C},$$

Then $h_i(\mathbb{C}^*) \subset T$, i.e. $h_i \in H$, and there is a character $\alpha_i \in P$ such that

$$t u_i(c)t^{-1} = u_i(\alpha_i(t)c)$$

for all $t \in T$, $c \in \mathbb{C}$.

By its natural action on T and P, the Weyl group W = N/T is identified with the subgroup of $\operatorname{Aut}_{\mathbb{Z}}(P)$ generated by the reflections $S = \{s_1, \ldots, s_l\}$

$$s_i(\omega) = \omega - \omega(h_i)\alpha_i , \ \omega \in P.$$

Also, s_i is given by the class of

$$\kappa_i(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix})$$
 in N/T .

We can also make the groups B^+ and B^- more explicit:

Let U_i denote the subgroup $u_i(\mathbb{C})$ and, for any real root $\gamma = w(\alpha_i)$ $(w \in W)$, put $U_{\gamma} := w U_i w^{-1}$.

The set $\sum_{n=1}^{\infty} e^{n} = W(\Pi)$ of all real roots divides naturally into positive and negative roots,

$$\sum real = \sum real, + \bigcup \sum real, -$$

where $\sum_{i}^{\text{real},-} = -\sum_{i}^{\text{real},+}$, and if we put

$$U^{\pm} = \langle U_{\gamma} | \gamma \in \sum^{\text{real}, \pm} \rangle$$

 $(\langle a, b, \ldots \rangle)$ denoting the group generated by a, b, \ldots we have

$$B^+ = T \bowtie U^+$$
, $B^- = T \bowtie U^-$.

Finally, the anti-involution

$$\begin{array}{ccc} SL_2(\mathbb{C}) & \longrightarrow & SL_2(\mathbb{C}) \\ g & \longmapsto & {}^tg \end{array}$$

can be lifted to all of G, i.e. there is an anti-involution $*: G \to G$ such that

- *(t) = t, for all $t \in T$
- $*(\kappa_i(g)) = \kappa_i({}^t g)$, for all $g \in SL_2(\mathbb{C})$.

In particular, one has $*(U^+) = U^-, *(U^-) = U^+.$

2. "Algebraic" Kac-Moody groups

If A is a Cartan matrix of "finite type" (i.e. all components are of type A_n, B_n, \ldots , F_n , or G_2) then G, as described in the last section, is a reductive algebraic group over \mathbb{C} . The algebra $\mathbb{C}[G]$ of regular functions on G is then a Hopf algebra, and the group G can be completely recovered from the Hopf algebra $\mathbb{C}[G]$, in particular

$$G = \operatorname{Specmax} \mathbb{C}[G] = \operatorname{Hom}_{\mathbb{C}-\operatorname{alg}}(\mathbb{C}[G], \mathbb{C}).$$

If A is a proper generalized Cartan matrix, then the associated algebra \mathbf{g} is of infinite dimension over \mathbb{C} . Thus, also G should be infinite-dimensional. A proposal for an algebra of "strongly regular" functions on G was made by Kac and Peterson in 1983 ([3]). As in the finite-dimensional case, this algebra is

generated by the matrix coefficients of a suitable representation. Let us therefore recall some basic facts about the irreducible highest weight representations of G.

To simplify the presentation, we shall assume that G is of "simply-connected type", i.e. that the coroot lattice $Q = \mathbb{Z}.\Pi$ is a direct summand of H

$$H = Q \oplus D.$$

Then the set $P^+ = \{\omega \in P | \omega(h_i) \geq 0, i = 1, ..., l\}$ of dominant weights can be written as a direct sum

$$P^+ = P^0 \oplus \bigoplus_{i=1}^l \mathbb{N}.\Lambda_i$$

where

$$P^{0} = \{\omega \in P | \omega(h_{i}) = 0, i = 1, \dots, l\} \cong D^{*}$$

and where Λ_i , i = 1, ..., l, are fundamental dominant weights

$$\Lambda_i(h_j) = \delta_{ij} , i, j = 1, \dots, l,$$

uniquely determined modulo P^0 .

As in the finite–dimensional case there is a bijection of P^+ onto the set of isomorphism classes of irreducible highest weight representations L of G

$$\Lambda \in P^+ \longleftrightarrow L(\Lambda)$$

determined by $L(\Lambda)$ having a unique (up to scalars) highest weight vector $v_{\Lambda} \in L(\Lambda) \setminus \{0\}$ of weight Λ . (If $\Lambda \in P^0$, the module $L(\Lambda)$ will be one-dimensional.)

Any such module carries a nondegenerate contravariant form (essentially unique), i.e. a symmetric bilinear form

$$\langle , \rangle : L(\Lambda) \times L(\Lambda) \to \mathbb{C}$$

such that $\langle v, gw \rangle = \langle g^*v, w \rangle$ for all $v, w \in L(\Lambda), g \in G$, and $g^* = *(g)$ the anti-involution on G.

Let us call the function

$$c_{v,w}:G\to\mathbb{C}$$

given by $c_{v,w}(g) = \langle v, gw \rangle$ for some $v, w \in L(\Lambda)$ a matrix coefficient of G (in the respresentation $L(\Lambda)$). Kac and Peterson now define

$$\mathbb{C}[G] := \left(egin{array}{ll} \mathbb{C} ext{-algebra generated by} \\ ext{the matrix coefficients} \\ c_{v,w} ext{ for all } v,w \in L(\Lambda) \\ ext{ and all } \Lambda \in P^+ \end{array}
ight)$$

and they prove the following

"Peter-Weyl"-Theorem: The map

$$\bigoplus_{\Lambda \in P^+} L(\Lambda) \otimes L(\Lambda) \to \mathbb{C}[G]$$

induced by $v \otimes w \longmapsto c_{v,w}$ is an isomorphism of $G \times G$ -modules.

Here, the action of $G \times G$ on $\mathbb{C}[G]$ is given by $((g,h)f)(x) = f(g^*xh)$. Alternatively, one might use the usual action of $G \times G$ on functions on G and let act G on the first factor $L(\Lambda)$ by the contragredient action

$$(g,v)\longmapsto (g^*)^{-1}v.$$

It turned out that $\mathbb{C}[G]$ is not a Hopf algebra. There is neither a co-multiplication nor an antipode (basically due to the infinite-dimenionality of the $L(\Lambda)$ and the inequivalence between highest weight and lowest weight representations). Even worse, Kac and Peterson exhibited elements in Specmax $\mathbb{C}[G]$ not contained in G (which injects into Specmax $\mathbb{C}[G]$) (cf. [3] Remark 2.2). Thus they formulated the following problem (loc. cit., 4H b)):

Determine Specmax $\mathbb{C}[G]$ (possibly with respect to a topological structure on the algebra $\mathbb{C}[G]$)!

Inspired by the deformation theory of certain singularities (cf. [13]) we conjectured

$$\overline{G} := \operatorname{Specmax} \mathbb{C}[G] = G.\overline{T}.G$$

where \overline{T} is the closure of T in \overline{G} realized as the torus embedding

$$T = \operatorname{Specmax} \mathbb{C}[P] \subset \operatorname{Specmax} \mathbb{C}[P \cap I] = \overline{T}$$

for $I \subset P \otimes_{\mathbb{Z}} \mathbb{R}$, the Tits cone attached to G. This embedding, or rather a domain $T \subset \overline{T}$ of discontinuity for the action of W, had been studied before by Looijenga and the quotient \overline{T}/W had turned out to be the base space of a semiuniversal deformation for certain isolated singularities (cf. [6], [7]). Moreover, in [12], [13] we realized \overline{T}/W and \overline{T}/W as target spaces for an adjoint quotient of G.

During a stay at MSRI (1984), D. Peterson announced a proof of the above conjecture including a number of structural properties of \overline{G} ([9], \overline{G} being considered as the continuous spectrum with respect to some topology). In connection with his infinite-dimensional algebraic-geometric approach to the flag manifolds of Kac-Moody groups, M. Kashiwara also studied the abstract maximal spectrum of $\mathbb{C}[G]$ (without topology on $\mathbb{C}[G]$), cf. [5]. Finally, C. Mokler ([8]) made a quite thorough study of \overline{G} in the context of some infinite-dimensional algebraic geometry based on suitably topologized coordinate rings. In particular, he gave a detailed proof of our conjecture. This is what we want to report upon.

3. A topology on the algebra of strongly regular functions

Let V be a complex vector space. Then we may view the symmetric algebra $S(V^*)$ of its dual space V^* as the coordinate ring of the variety V. If $\dim_{\mathbb{C}} V < \infty$ we have

$$\operatorname{Hom}_{k-\operatorname{alg}}(S(V^*), \mathbb{C}) = \operatorname{Hom}(V^*, \mathbb{C}) = V^{**} = V.$$

However, if $\dim_{\mathbb{C}} V = \infty$ we have $V \subset V^{**}, V \neq V^{*,*}$, and Specmax $S(V^*)$ is strictly larger than V. To remedy this defect we put the following topology on the algebra $S(V^*)$:

A basis of neighborhoods of $0 \in S^*(V^*)$ is given by the "cofinite" ideals

$$\{J(V')|V'\subset V \text{ a finite-dimensional subspace}\},\$$

$$J(V') = \{ f \in S(V^*) | f|_{V'} \equiv 0 \} \; .$$

Now, the continuous maximal spectrum

$$\operatorname{Specm}^{\circ} S(V^*) = \operatorname{Hom}_{\operatorname{cont}-k-\operatorname{alg}}(S(V^*), \mathbb{C})$$

is easily identified with V (i.e. Hilbert's Nullstellensatz gives $V' = S(V^*)/J(V')$ for all finite-dimensional $V' \subset V$).

To put a topology on $\mathbb{C}[G]$ we embed G, and finally \overline{G} , into a larger space M constructed as follows:

We fix contravariant forms \langle , \rangle on all modules $L(\Lambda), \Lambda \in P^+$, and extend them to a form, also denoted by \langle , \rangle , on the direct sum

$$L := \bigoplus_{\Lambda \in P^+} L(\Lambda)$$

by requiring $L(\Lambda)$ and $L(\Lambda')$ to be orthogonal for $\Lambda \neq \Lambda'$. Let M denote the subalgebra of $\operatorname{End}(L)$ satisfying

- $\varphi(L(\Lambda)) \subset L(\Lambda)$ for all $\Lambda \in P^+$,
- the adjoint φ^* of φ with respect to $\langle \quad , \quad \rangle$ exists.

We let $\mathbb{C}[M]$ denote the \mathbb{C} -algebra generated by all matrix coefficients $c_{v,w}$: $M \to \mathbb{C}$, $v,w \in L$, $c_{v,w}(\varphi) = \langle v, \varphi w \rangle$, and consider the "cofinite" topology on $\mathbb{C}[M]$ given by the neighborhood basis of 0

$$\{J(M')|M'\subset M \text{ a subspace of finite dimension }\},$$

J(M') being the vanishing ideal of M'.

Then we have

- Specm° $\mathbb{C}[M] = M$
- M is a "weak" algebraic monoid (i.e. right and left multiplication on M by given elements of M are "morphisms" of M; note that there is no comultiplication on $\mathbb{C}[M]$).

By the definition of the contravariant forms on the $L(\Lambda)$ and L we have a natural embedding $G \hookrightarrow M$. Moreover, $\mathbb{C}[G]$ is the image of $\mathbb{C}[M]$ under the restriction from M to G. We now put the quotient topology with respect to $\mathbb{C}[M] \to \mathbb{C}[G]$ on $\mathbb{C}[G]$ and we obtain

- Specm° $\mathbb{C}[G] = \overline{G} = \text{Zariski-closure of } G \text{ in } M$,
- \overline{G} is a "weak" algebraic monoid (in the sense above).

4. The Tits cone and the closure of the maximal torus

Let $V = P \otimes_{\mathbb{Z}} \mathbb{R}$ be the "real" character group, $\overline{C} = \{\omega \in V | \omega(h_i) \geq 0 \text{ for all } i = 1, \ldots, l\}$ a fundamental Weyl chamber, and $I = W.\overline{C}$ the union of all W-translates of \overline{C} . Then I is a convex solid cone, called the Tits cone. The interior I° of I is a domain of discontinuity of W. (For details, cf. [2]).

Example: Let A be the "hyperbolic" matrix

$$\begin{pmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
 corresponding to $\alpha_1 \quad \alpha_2 \quad \alpha_3$

Now, the matrix A defines a symmetric bilinear form on $V \cong \mathbb{R}^3$ of signature (+,+,-), and with respect to some convention I° may be be identified with the interior of the positive light cone. The Weyl group W is isomorphic to $PGL_2(\mathbb{Z})$ acting as a group of hyperbolic motions on the unit disc $\cong \mathbb{P}(I^{\circ}) \subset \mathbb{P}(V)$.

The boundary of I is of particular interest for us. A subset $I' \subset I$ is called a (rational) boundary component of I if there is a $\gamma \in V^* = H \otimes_{\mathbb{Z}} \mathbb{R}$ (resp. a $\gamma \in H$) such that

- $\omega(\gamma) \ge 0$ for all $\omega \in I$
- $\omega(\gamma) = 0$ for $\omega \in I$ implies $\omega \in I'$.

It is possible to classify all boundary components of *I* in terms of a special subset of them:

A subset $\Theta \subset \Pi$ is called *pure* if either $\Theta = \emptyset$ or if all connected components of Θ (in an obvious sense) are of infinite type.

To any pure subset $\Theta \subset \Pi$ we may associate the following subset $I(\Theta)$ of I:

$$I(\Theta) = \{ \omega \in I | \omega(h_i) = 0 \text{ for all } i \text{ such that } \alpha_i \in \Theta \}.$$

We now have the following result, essentially due to Looijenga ([6]):

Theorem:

- i) Let $\Theta \subset \Pi$ be pure. Then $I(\Theta)$ is a rational boundary component of I.
- ii) Let $I' \subset I$ be a boundary component. Then there is a unique pure $\Theta \subset \Pi$ and a $w \in W$ such that $I' = w.I(\Theta)$. In particular, all boundary components of I are rational.

Example: We take up the previous example. There are 3 pure subsets of Π :

$$\emptyset$$
 , $\Theta = \{\alpha_1, \alpha_2\}$, $\Pi = \{\alpha_1, \alpha_2, \alpha_3\}$.

The corresponding boundary components are

all rational half-lines on
$$I$$
, the positive light cone, $\{0\}$.

To determine the closure \overline{T} of T in \overline{G} we first have to describe the restriction of $\mathbb{C}[G]$ to T. Since all weights of a module $L(\Lambda)$, $\Lambda \in P^+$, are contained in $I \cap P$, and since $\overline{C} \cap P = P^+$ we obtain

$$\mathbb{C}[G]|_{T} = \mathbb{C}[P \cap I],$$

the semigroup algebra of $P \cap I$. It is easily seen that the induced topology on $\mathbb{C}[P \cap I]$ is discrete, thus

$$\overline{T} = \operatorname{Specm}^{\circ} \mathbb{C}[P \cap I] = \operatorname{Specm} \mathbb{C}[P \cap I].$$

Through $\mathbb{C}[P \cap I]$ is not finitely generated its maximal spectrum can be determined similarly as in the usual "finite type" theory of torus embeddings (cf. e.g. [1]), i.e. one has

$$\overline{T} = \bigcup_{I'} T/\operatorname{Ann}(I') = \bigcup_{\Theta} \bigcup_{w \in W} T/w \operatorname{Ann}(I(\Theta))w^{-1},$$

where $\operatorname{Ann}(I') = \{t \in T | \omega(t) = 1 \text{ for all } \omega \in I'\}$ and where I' (resp. Θ) runs through all rational boundary components of I (resp. all pure subsets of Π).

As a subset of M, the completion \overline{T} has a quite natural representation theoretic realization:

Let $\Theta \subset \Pi$ be a pure subset. We define the pojection operator $e(\Theta) \in M$ by

$$e(\Theta)v = \left\{ \begin{array}{lll} v & \text{if} & v \in L(\Lambda)_{\mu} & \text{and} & \mu \in I(\Theta) \\ 0 & \text{if} & v \in L(\Lambda)_{\mu} & \text{and} & \mu \not \in I(\Theta). \end{array} \right.$$

Then the boundary stratum $T/\mathrm{Ann}\left(I(\Theta)\right)$ is realized as the T-orbit $T.e(\Theta)$ of $e(\Theta)$ under left multiplication by T. To realize $e(\Theta)$ as a boundary point of \overline{T} choose a one-parameter subgroup $\gamma \in H = \mathrm{Hom}\left(\mathbb{C}^*, T\right)$ such that $\omega(\gamma) \geq 0$ for all $\omega \in I$ and $\omega(\gamma) = 0$ exactly when $\omega \in I(\Theta)$. Since for all $s \in \mathbb{C}^*$, $v \in L(\Lambda)_{\omega}$, we have

$$\gamma(s)v = s^{\omega(\gamma)}v \;,$$

we clearly obtain (in M)

$$\lim_{s \to 0} \gamma(s) = e(\Theta) .$$

5. Unipotent subgroups

To study the unipotent radicals U^+, U^- of B^+, B^- as well as those of general parabolic subgroups we have to take a closer look at the action of G on $L(\Lambda), \Lambda \in P^+$. We consider $L(\Lambda)$ as a variety with the coordinate ring $\mathbb{C}[L(\Lambda)]$ generated by the functions $c_w: L(\Lambda) \to \mathbb{C}, c_w(v) = \langle v, w \rangle$, and equipped with the appropriate "cofinite" topology. Then, for any fixed $v \in L(\Lambda)$, the orbit map

$$\begin{array}{ccc} M & \longrightarrow & L(\Lambda) \\ m & \longmapsto & mv \end{array}$$

is a morphism of varieties (with continuous comorphism $\mathbb{C}[L(\Lambda)] \to \mathbb{C}[M]$). We shall make use of the following results of Kac and Peterson ([10],[3] Lemma 4.3)

- The Kostant cone $V(\Lambda) = (Gv_0) \cup \{0\}$, with $v_0 \in L(\Lambda)_{\Lambda} \setminus \{0\}$, is Zariski closed in $L(\Lambda)$.
- If Λ is a regular dominant weight, $\Lambda \in P^{++}$ (i.e. $\Lambda(h_i) > 0$ for $i = 1, \ldots, l$), then $\mathbb{C}[G]|_{U^-}$ is generated by the matrix coefficients c_{xv_0,v_0}, x running through all elements in \mathbf{g} (in fact, $x \in \mathbf{g}^- = \bigoplus_{\alpha \in \Sigma^-} \mathbf{g}_{\alpha}$, where Σ^- is the system of all negative roots, is sufficient).

Theorem ([8] Satz 5.6,1)): The groups U^+ und U^- are Zariski closed in M.

Proof: Because of the existence of the anti-involution $*: G \to G$ it is sufficient to consider U^- . Assume $v_0 \in L(\Lambda)_{\Lambda} \setminus \{0\}$ $(\Lambda \in P^{++})$ chosen such that $\langle v_0, v_0 \rangle = 1$. This implies

$$c_{v_0,v_0}(u) = 1$$
 for all $u \in U^-$, and $c_{v_0,v_0}(\varphi) = 1$ for all $\varphi \in \overline{U^-}$.

Let $\varphi \in \overline{U^-}$. Then $\langle v_0, \varphi v_0 \rangle = 1$ implies $\varphi v_0 \neq 0$. Since $M \to L(\Lambda), m \mapsto m v_0$, is continuous and $\mathcal{V}(\Lambda)$ is closed in $L(\Lambda)$ we get $\varphi v_0 \in Gv_0 \subset \mathcal{V}(\Lambda)$. Thus, using the Birkhoff decomposition of G, we find $u \in U^-, n \in N$ such that

$$\varphi v_0 = u^- n v_0 \ .$$

Because of $(u^-)^* \in U^+$ we have

$$1 = \langle v_0, \varphi v_0 \rangle = \langle (u^-)^* v_0, n v_0 \rangle = \langle v_0, n v_0 \rangle$$

and thus n = 1, or $\varphi v_0 = u^- v_0$. This implies $c_{xv_0,v_0}(\varphi) = c_{xv_0,v_0}(u^-)$ for all $x \in \mathbf{g}$, or $\varphi = u^- \in U^-$, q.e.d.

Recall that any subset $\Psi \in \Pi$ gives rise to a Weyl subgroup

$$W_{\Psi} = \langle s_{\alpha_i} | \alpha_i \in \Psi \rangle$$

and parabolic subgroups

$$P_{\Psi}^{+} = \langle B^{\pm}, W_{\Psi} \rangle$$

with unipotent radicals

$$U_{\Psi}^{\pm} = \bigcap_{w \in W_{\Psi}} w U^{\pm} w^{-1} .$$

It is obvious that U_{Ψ}^{\pm} are Zariski closed in M, as well.

6. The main result

For any $i \in \{1, ..., l\}$ we fix a highest weight vector $v_i \in L(\Lambda_i)_{\Lambda_i} \setminus \{0\}$ and define the principal open subset $D_i \subset \overline{G}$ by

$$D_i = \{ \varphi \in \overline{G} | c_{v_i,v_i}(\varphi) \neq 0 \} .$$

We can almost cover \overline{G} by these sets. Let $\Pi_{\infty} \subset \Pi$ the maximal pure subset of Π , i.e. Π is the "orthogonal" union of the set Π_{∞} and a subset $\Pi \setminus \Pi_{\infty}$ of finite type.

Proposition A ([M], Satz 5.16): We have

$$\bigcup_{i=1}^{l} \bigcup_{g,h \in G} gD_i h = \overline{G} \backslash T.e(\Pi_{\infty}) .$$

Proof: To simplify our presentation, we shall assume $\Pi = \Pi_{\infty}$ and $P^{\circ} = \{0\}$. Then $e(\Pi) = e(\Pi_{\infty}) \in M$ is characterized by the property $e(\Pi)v = 0$, for all $v \in L(\Lambda), \Lambda \in P^+ \setminus \{0\}$. Consider $\varphi \in \overline{G}$ and assume $\varphi \notin gD_ih$ for all $i \in \{1, \ldots, l\}, g, h \in G$. Then

$$\langle gv_i, \varphi hv_i \rangle = 0$$
, for all i, g, h .

Since $L(\Lambda_i)$ is spanned by all $gv_i, g \in G$, we obtain $\varphi|_{L(\Lambda_i)} = 0$. Since any $L(\Lambda), \Lambda \in P^+ \setminus \{0\}$ is made up from tensor products of the $L(\Lambda_i)$ and subsequent reduction, we get

$$\varphi|_{L(\Lambda)} = 0$$
 for all $\Lambda \in P^+ \setminus \{0\}$

or $\varphi = e(\Pi)$.

(This proof can be easily adopted to the general case.)

As a next step, we shall determine the structure of the open sets $D_i \subset \overline{G}$. For that recall the parabolic subgroups

$$P_i^{\pm} = P_{\Pi \setminus \{\alpha_i\}}^{\pm}$$

with unipotent radicals

$$U_i^{\pm} = U_{\Pi \setminus \{\alpha_i\}}^{\pm} ,$$

Levi subgroup $G_i = P_i^+ \cap P_i^-$ and Weyl group $W_i = W_{\Pi \setminus \{\alpha_i\}}$. Then G_i is the Kac-Moody group attached to the realization $(H, \Pi \setminus \{\alpha_i\}, \Pi \setminus \{h_i\})$. Let $\mathbb{C}[G_i]$ denote the algebra of strongly regular functions on G_i and let $\mathbb{C}[G]_i$ denote the algebra of restricted functions from $\mathbb{C}[G]$ to the subgroup G_i . Then the function c_{v_i,v_i} restricts to the character Λ_i on G_i , and representation theoretic arguments quickly show (cf. [8], section 5.1.2):

Lemma: The inclusion $\mathbb{C}[G]_i \subset \mathbb{C}[G_i]$ induces an isomorphism from the localization of $\mathbb{C}[G]_i$ with respect to Λ_i to $\mathbb{C}[G_i]$:

$$(\mathbb{C}[G]_i)_{\Lambda_i} \xrightarrow{\sim} \mathbb{C}[G_i]$$
.

Proposition B: For any $i \in \{1, ..., l\}$ we have an isomorphism of infinite-dimensional varieties

$$D_i = U_i^- \times \operatorname{Specm}^{\circ} \mathbb{C}[G_i] \times U_i^+$$
.

Proof: Let us first look at $D_i \cap G$. Then the Birkhoff-decomposition

$$G = \bigcup_{w \in W} U^- w T U^+$$

gives

$$D_i \cap G = \bigcup_{w \in W_i} U^- w T U^+ = U_i^- . G_i . U_i^+ \text{ (direct product)}$$
.

Recall that the U_i^{\pm} are closed in M, therefore in \overline{G} and in D_i . By the Lemma, the closure of G_i in D_i can be identified with Specm° $\mathbb{C}[G_i]$. This gives the claim.

Applying downward induction to Propositions A and B we arrive at our main result.

Theorem([8], Satz 5.18): We have

$$\overline{G} = \{ ge(\Theta) h | \Theta \subset \Pi \text{ pure } g, h \in G \} = G.\overline{T}.G \ .$$

Remarks: Proposition B for the case of the minimal parabolic B^+ may already be found in [3], Lemma 4.4. Its general version for arbitrary parabolics is due to Kashiwara ([5], Proposition 5.3.5), who has also given a form of Proposition A in a somewhat different context ([5], Proposition 6.3.1).

7. An application

In [8] one finds many more results on the structure of \overline{G} . Here, we want to conclude with an application to the adjoint quotient of G studied in [12], [13], [14] (details are forthcoming). Recall that G admits a "parabolic" partition

$$G = \bigcup_{\substack{\Theta \subset \Pi \\ \text{pure}}} G(\Theta)$$

parallel to a stratification of \overline{T}/W

$$\overline{T}/W = \bigcup_{\Theta \subset \Pi} (\overline{T}/W)(\Theta)$$

 $((\overline{T}/W)(\Theta))$ the image of $T/\mathrm{Ann}(I(\Theta))$ in \overline{T}/W .

The adjoint quotient defined in [12], [13] is a conjugation invariant map

$$\chi:G\to \overline{T}/W$$

mapping $G(\Theta)$ to $(\overline{T}/W)(\Theta)$ for any pure $\Theta \subset \Pi$. With the help of a theory of "optimal one-parameter semisubgroups" in \overline{G} the partition and the map χ can be extended to a conjugation invariant map $\overline{\chi}: \overline{G} \to \overline{T}/W$ with the following properties, basic in geometric invariant theory:

- Every fibre of $\overline{\chi}$ contains a unique closed conjugacy class,
- two elements $\varphi, \psi \in \overline{G}$ are mapped to the same point in \overline{T}/W if and only if the closures of their conjugacy classes meet,

$$\overline{(Ad(G)\varphi)}\cap\overline{(Ad(G)\psi)}\neq\emptyset\ .$$

Remarks: 1) If one considers $\chi: G \to \overline{T}/W$ these statements hold only for the "classical" part $G(\emptyset)$ mapping onto T/W.

2) The closed (= minimal = semisimple) orbits in all fibres of $\overline{\chi}$ are given as the orbits of the elements $t.e(\Theta)$, $\Theta \subset \Pi$ pure, $t \in T$.

References

- [1] W. FULTON:
 - Introduction to toric varieties; Ann. of Math. Studies 131, Princeton University Press, 1993
- [2] V.G. KAC: Infinite-dimensional Lie algebras; Cambridge University Press, 1990
- [3] V.G. KAC, D. PETERSON:
 Regular functions on certain infinite-dimensional groups; in "Arithmetic and Geometry", Progress in Math. 36, Birkhäuser, Basel-Boston, 1983, 141-166
- [4] V.G. Kac, D. Peterson:
 Defining relations on certain infinite-dimensional groups; Astérisque numero hors série, 1985, 165-208
- [5] M. KASHIWARA: The flag manifold of Kac-Moody Lie algebra; Amer. J. of Math. 111 (Supplement), 1989, 161-190
- [6] E.J. LOOIJENGA: Invariant theory for generalized root systems; Inventiones math. **61** (1980), 1-32
- [7] E.J. LOOIJENGA:
 Rational surfaces with an anti-canonical cycle; Annals of Math. 114 (1981), 267-322
- [8] C. MOKLER: Die Monoidvervollständigung einer Kac-Moody-Gruppe; Dissertation Fachbereich Mathematik, Universität Hamburg, 1996
- [9] D. PETERSON: Letter to the author, May 1984
- [10] D. Peterson, V.G. Kac: Infinite flag varieties and conjugacy theorems; Proc. Natl. Acad. Sei. USA 80 (1983), 1778-1782
- [11] P. Slodowy: Chevalley groups over $\mathbb{C}((t))$ and deformations of simply elliptic singularities;

REFERENCES

in "Algebraic Geometry", Springer Lecture Notes in Math. **961** (1982), 285-301

- [12] P. Slodowy:
 A character approach to Looijenga's invariant theory for generalized root systems; Compositio Math 55 (1985), 3-32
- [13] P. Slodowy: Singularitäten, Kac-Moody-Algebren, assoziierte Gruppen und Verallgemeinerungen; Habilitationsschrift, Universität Bonn, 1984
- [14] P. SLODOWY:
 An adjoint quotient for certain groups attached to Kac-Moody algebras; in "Infinite-dimensional groups with applications", MSRI-Publ. Vol. 4, Springer, 1985, 307-334
- [15] J. TITS: Resumé de cours; Annuaire du Collège de France, 1980-81, 1981-82, Collège de France, Paris
- [16] J. TITS: Uniqueness and presentation of Kac-Moody groups over fields; J. of Algebra 105 (1987), 542-573