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These notes are a slightly elaborated version of a talk given at the RIMS-
Symposium on ” Topological Field Theory and Related Topies”, Kyoto, December
1996. Their aim is to give a survey of the main results obtained by Claus Mok-
ler in his dissertation at Hamburg University ([8], October 1996) pertaining to a
natural semigroup completion of Kac-Moody groups.

1. " Abstract” Kac-Moody groups

Starting point for the construction of Kac-Moody Lie algebras and associated
groups is a generalized Cartan matrix, i.e. an [ X [-matrix A = ((a;;)) € Mi(Z)
satisfying

ai = 2
a;; = 0 = a4 = 0

We shall assume, in addition, that A is symmetrizable (cf. [2]). In fact, one might
take A to be symmetric for simplicity. Also, the generalized Cartan matrices
arising in singularity theory and providing the original motivation for our research
in Kac-Moody groups (cf. [11], [13]) are symmetric, e.g. the matrix of type Toqr
encoded by the Coxeter-Dynkin diagram
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Whereas the Kac-Moody algebra g = g(A) is essentially generated by [ copies of
the Lie algebra sl,(C),

<6i,hi,fi> ,=i=1,...,l,

subject to relations derived from A, the corresponding Kac-Moody group G =
G(A) is essentially generated by I copies of the Lie group SLy(C). Here, the
relations are either imposed abstractly (Tits, cf.[15], [16]) or by the "integration”
of G from the integrable representations of g (Moody-Teo, Marcuson, Garland,
and, in the most thorough way, Kac-Peterson [10], [3], [4]).

The most important result about G as an abstract group is the existence of a
"twin” BN-pair or "twin” Tits system (B*, B~, N, S) in G providing us, among
others, with

e positive and negative Borel subgroups B* and B~,

® a mazimal torusT = BtN B~ =NNBt=NnNB",

a Weyl group W = N/T with generating set S,

Bruhat decompositions

G = U BtwB* = U B wB™,

weW weW

and a Birkhoff-decomposition

G = U B~wB*.
weWw

Similarly, as in the case of the Lie algebra g where one usually adjoins addi-
tional derivations to a "minimal” Kac-Moody algebra, the precise structure of
G depends on slightly finer data than A. These data are given by an integral
realization (H,II,II") of A which fixes the size of the maximal torus T and its
position inside G.

Here, H is the lattice of algebraic one-parameter subgroups C* — T into T with
dual P = H* = Homg(H, Z), the lattice of algebraic characters T — C*, and

H:{al,...,ae}CP, HV:{hl,...,h[}CH
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are free subsets of simple roots in P, resp. of simple coroots in H, related by
ai(hj) = aij.

More explicitly, II and II” are given in our context as follows:

Let &; : SLy(C) — G, = 1,...,1 denote the basic homomorphisms of SLy(C)
into GG, and let

hiZC* - G

w,:C — (G

be given by v
s 0 N
h,(S) = KZ(( 0 8—1 )) , S - (C N

1 ¢
weo) = w5 §)) e
Then h(C*) C T, i.e. h; € H, and there is a character o; € P such that
tug(c)t™! = ui(au(t)c)

forallte T, ce C.

By its natural action on T and P, the Weyl group W = N/T is identified with
the subgroup of Autz(P) generated by the reflections S = {s1,...,s:}

si(w) =w —whi)ey , w € P.
Also, s; is given by the class of
' 01 .
ni(( 10 )) in N/T.
We can also make the groups BT and B~ more explicit:
Let U; denote the subgroup u;(C) and, for any real root ¥ = w(e;) (w € W), put
U, :=wUw™".

The set > real _ W(II) of all real roots divides naturally into positive and
negative roots,
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5 real _ 5 real + Uy real,-

where 3 real- _ _ ) real,+, and if we put

Ut = (U, ]y € ¥ reals)

({a,b,...) denoting the group generated by a,b,...) we have
Bt =T<U*", B- =T U".
Finally, the anti-involution

SLy(C) —s SLy(C)

g +— Y

can be lifted to all of GG, i.e. there is an anti-involution * : G — G such that

o x(t)=1t, forallteT

o x(k;(g9)) = ki(g) , forall g € SL,(C).

In particular, one has *(UT) = U, x(U~) = U".
2. 7 Algebraic” Kac—Moody groups

If Ais a Cartan matrix of "finite type” (i.e. all components are of type A,,, B, ...,
F,, or G3) then G, as described in the last section, is a reductive algebraic group
over C. The algebra C[G] of regular functions on G is then a Hopf algebra,
and the group G can be completely recovered from the Hopf algebra C[G], in
particular

G = Specmax C[G] = Homc_.,(C[G], C).

If A is a proper generalized Cartan matrix, then the associated algebra g is
of infinite dimension over C. Thus, also G should be infinite-dimensional. A
proposal for an algebra of "strongly regular” functions on G was made by Kac
and Peterson in 1983 ([3]). As in the finite-dimensional case, this algebra is
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generated by the matrix coefficients of a suitable representation. Let us therefore
recall some basic facts about the irreducible highest weight representations of G.

To simplify the presentation, we shall assume that G is of ”simply—connected
type”, i.e. that the coroot lattice @ = Z.II" is a direct summand of H

H=Q®D.

Then the set P* = {w € Plw(h;) > 0,i =1,...,1} of dominant weights can be
written as a direct sum

l
Pt =P’ PNA

=1
where
P°={weé€ Plw(h;))=0,i=1,...,1} = D"

and where A;,i = 1,...,1, are fundamental dominant weights
Ai(h;) = 6ij 41,5 =1,...,1,

uniquely determined modulo P°.

As in the finite—dimensional case there is a bijection of Pt onto the set of iso-
morphism classes of irreducible highest weight representations L of G

A€ Pt —— L(A)

determined by L(A) having a unique (up to scalars) highest weight vector vy €
L(A\{0} of weight A. (If A € P°, the module L(A) will be one-dimensional.)

Any such module carries a nondegenerate contravariant form (essentially unique),
i.e. a symmetric bilinear form

( , Y:L(A)xL(A)—=C

such that (v,gw) = (g*v,w> for all v,w € L(A),g € G, and g* = *(g) the
anti-involution on G.

Let us call the function
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given by ¢, (g) = (v, gw) for some v,w € L(A) a matriz coefficient of G (in the
respresentation L(A)). Kac and Peterson now define

C-algebra generated by
the matrix coefficients

Clel = Cow for allv,w € L(A)
and allA € Pt

and they prove the following

”Peter—Weyl”—Theorem: The map

D Lt ® L(A) - C[G]

AeP+

induced by v ® w — ¢, ,, is an isomorphism of G x G-modules.

Here, the action of G x G on C[G] is given by ((g,k)f)(z) = f(g*zh). Alterna-
tively, one might use the usual action of G x G on functions on G and let act G
on the first factor L(A) by the contragredient action
(9,0) — (9.

It turned out that C[G] is not a Hopf algebra. There is neither a co-multiplication
nor an antipode (basically due to the infinite-dimenionality of the L(A) and the
inequivalence between highest weight and lowest weight representations). Even
worse, Kac and Peterson exhibited elements in Specmax C[G] not contained in

G (which injects into Specmax C[G]) (cf. [3] Remark 2.2). Thus they formulated
the following problem (loc. cit., 4H b)): ‘

Determine Specmax C[G] (possibly with respect to a topological structure on the

algebra C[G])!

Inspired by the deformation theory of certain singularities (cf. [13]) we conjec-
tured

G := Specmax C[G] = G.T.G

where T is the closure of T in G realized as the torus embedding

T' = Specmax C[P] C SpecmaxC[PNI] =T
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for I ¢ PR, the Tits cone attached to G. This embedding, or rather a domain
T C T of discontinuity for the action of W, had been studied before by Looijenga
and the quotient 7 /W had turned out to be the base space of a semiuniversal
deformation for certain isolated singularities (cf. [6], [7]). Moreover, in [12], [13]
we realized 7 /W and T/W as target spaces for an adjoint quotient of G.

During a stay at MSRI (1984), D. Peterson announced a proof of the above con-
jecture including a number of structural properties of G ([9], G being considered
as the continuous spectrum with respect to some topology). In connection with
his infinite-dimensional algebraic-geometric approach to the flag manifolds of
Kac—Moody groups, M. Kashiwara also studied the abstract maximal spectrum
of C[G] (without topology on C[G]), cf. [5]. Finally, C. Mokler ([8]) made a
quite thorough study of G in the context of some infinite-dimensional algebraic
geometry based on suitably topologized coordinate rings. In particular, he gave
a detailed proof of our conjecture. This is what we want to report upon.

- 3. A topology on the algebra of strongly regular functions

Let V be a complex vector space. Then we may view the symmetric algebra S(V*)
of its dual space V* as the coordinate ring of the variety V. If dimc V < oo we
have

Homy_ag(S(V*),C) = Hom (V*,C) = V™* = V.

However, if dim¢V = oo we have V C V**,V # V**, and Specmax S(V*) 1s
strictly larger than V. To remedy this defect we put the following topology on
the algebra S(V*):

A basis of neighborhoods of 0 € 5*(V*) is given by the " cofinite” ideals
{J(V")|V' CV a finite-dimensional subspace},
JV)={feSWV)Ifly =0}

Now, the continuous maximal spectrum

Specrn®S(V*) = Hormeon—k—a(S(V"), ©)

is easily identified with V (i.e. Hilbert’s Nullstellensatz gives V' = S(V=)/J(V")
for all finite-dimensional V' C V).
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To put a topology on C[G] we embed G, and finally G, into a larger space M
constructed as follows:

We fix contravariant forms ( , ) on all modules L(A),A € P*, and extend
them to a form, also denoted by ( , ), on the direct sum
L:= P L(A)
AepPt

by requiring L(A) and L(A’) to be orthogonal for A # A’. Let M denote the
subalgebra of End (L) satisfying _

o o(L(A)) C L(A) for all A € P*,

e the adjoint ¢ of ¢ with respect to { , ) exists.

We let C[M] denote the C-algebra generated by all matrix coefficients c,,, :
M — C,v,w € L, ¢,,(¢) = (v,pw), and consider the ”cofinite” topology on
C[M] given by the neighborhood basis of 0

{J(M")|M' C M a subspace of finite dimension },

J(M') being the vanishing ideal of M’.

Then we have

o Speecm’C[M| =M

e M is a "weak” algebraic monoid (i.e. right and left multiplication on M by
given elements of M are "morphisms” of M; note that there is no comulti-
plication on C[M]).

By the definition of the contravariant forms on the L(A) and L we have a natural
embedding G — M. Moreover, C[G] is the image of C[M] under the restriction
from M to G. We now put the quotient topology with respect to C[M] — C[G]
on C[G] and we obtain
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e Specm’°C[G] =G = Zariski—closure of G in M,

o (G is a "weak” algebraic monoid (in the sense above).

4. The Tits cone and the closure of the maximal torus

Let V = P ®z R be the "real” character group, C = {w € V]w(h;) > 0 for all
i =1,...,1} a fundamental Weyl chamber, and I = W.C the union of all W-
translates of C. Then I is a convex solid cone, called the Tits cone. The interior
I° of I is a domain of discontinuity of W. (For details, cf. [2]).

Example: Let A be the ”hyperbolic” matrix

2 =2 0 ~
-2 2 -1 corresponding t0 g=——me— o
0 -1 2

o1 a2 a3

Now, the matrix A defines a symmetric bilinear form on V' = R3 of signature
(+,+,—), and with respect to some convention I° may be be identified with the
interior of the positive light cone. The Weyl group W is isomorphic to PGL,(Z)
acting as a group of hyperbolic motions on the unit disc = P(I°) C P(V).

The boundary of I is of particular interest for us. A subset I' C I'is called a
(rational) boundary component of I if thereisay € V* = H®zR (resp. ay € H)
such that -

o wiy)>0forallwel

o w(y) =0forwe I impliesw € I'.

It is possible to classify all boundary components of I in terms of a special subset
of them:

A subset © C II is called pure if either © = § or if all connected components of
O (in an obvious sense) are of infinite type.

To any pure subset @ C II we may associate the following subset 1 (©) of I
1(©) = {w € Ilw(h;) =0 for all 7 such that a; € O}.
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We now have the following result, essentially due to Looijenga ([6]):

Theorem:

1) Let © C II be pure. Then I(0) is a rational boundary component of I.

ii) Let I’ C I be a boundary component. Then there is a unique pure © C II
and a w € W such that I' = w.I(0). In particular, all boundary compo-
nents of [ are rational.

Example: We take up the previous example. There are 3 pure subsets of II:

@ 5 @ = {al?ag} 5 H = {O(],az,ag}.

The corresponding boundary components are

all rational half-lines on
I , the positive light cone , {0}

To determine the closure T of T in G we first have to describe the restriction of
C[G] to T. Since all weights of a module L(A), A € P*, are contained in I N P,
and since C N P = Pt we obtain

ClGlly = ClPn ],

the semigroup algebra of P N I. It is easily seen that the induced topology on
C[P N I] is discrete, thus

T = Specm®C[P N I] = Specm C[P N I].

Through C[P N I] is not finitely generated its maximal spectrum can be deter-
mined similarly as in the usual "finite type” theory of torus embeddings (cf. e.g.
[1]), i.e. one has '

T = U T/Ann(I') :Lg UW T/wAnn(I1(©))w™",

where Ann(I') = {t € T|w(t) = 1 for all w € I'} and where I’ (resp. ©O) runs
through all rational boundary components of I (resp. all pure subsets of II).
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As a subset of M, the completion T has a quite natural representation theoretic
realization:

Let ® C II be a pure subset. We define the pojection operator e(©) € M by

e(@)v_{v if velL(A), and pe€lI(0)
~10 if velL(A), and p¢&lI(O).

Then the boundary stratum T'/Ann (I(©)) is realized as the T-orbit T.e(©) of
e(®) under left multiplication by T'. To realize e(©) as a boundary point of T
choose a one-parameter subgroup v € H = Hom (C*,T') such that w(vy) > 0 for
all w € I and w(q) = 0 exactly when w € I(©). Since for all s € C*, v € L(A).,
we have

v(s)v = s*My |

we clearly obtain (in M)
lim v(s) = e(0) .

s—0

5. Unipotent | subgroups

To study the unipotent radicals UT,U~ of B*, B~ as well as those of general
parabolic subgroups we have to take a closer look at the action of G on L(A),A €
P*. We consider L(A) as a variety with the coordinate ring C[L(A)] generated by
the functions ¢, : L(A) — C,c,(v) = (v,w), and equipped with the appropriate
”cofinite” topology. Then, for any fixed v € L(A), the orbit map

M — L(A)

m — mv

is a morphism of varieties (with continuous comorphism C[L(A)] — C[M]). We
shall make use of the following results of Kac and Peterson ([10],[3] Lemma 4.3)

e The Kostant cone V(A) = (Guo) U {0}, with vg € L(A)a\{0}, is Zariski
closed in L(A).

o If A is a regular dominant weight, A € P** (ie. A(h;) > 0 for 1 =

1,...,0), then C[GHU_ is generated by the matrix coefficients czy,,4,, & TuD-
ning through all elements in g (in fact,z € g~ = @ ga, where 37 is the
a€y

system of all negative roots, is sufficient).
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Theorem ([8] Satz 5.6,1)): The groups Ut und U~ are Zariski closed in M.

Proof: Because of the existence of the anti-involution * : G — G it is sufficient
to consider U~. Assume vo € L(A)5\{0} (A € P**) chosen such that (v, vo) = 1.
This implies

Cuopo(t) =1 forall w e U, and
Cooo(p) =1 forall oeU-.

Let ¢ € U~. Then (v, pv) = 1 implies wvo # 0. Since M — L(A),m — muy,
is continuous and V(A) is closed in L(A) we get vy € Gvy C V(A). Thus, using
the Birkhoff decomposition of Z, we find u € U~,n € N such that

Py = U nvg .
Because of (u™)* € UT we have

1 = (vo, pvo) = ((u™)*vg, nvo) = (vo, nVg)

and thus n =1, or pvg = u~vy. This implies Caug,0 (P) = Covge(u™) for all z € g,
orp=u- €U, q.e.d.

Recall that any subset W € II gives rise to a Weyl subgroup
Wy = (so,c; € 0)
and parabolic subgroups
P\; = <Bi7 Wq;)

with unipotent radicals
U = N wU*w™.
weWy

It is obvious that U are Zariski closed in M, as well.
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6. The main result

For any i € {1,...,1} we fix a highest weight vector v; € L(A;)x,\{0} and define
the principal open subset D; C G by

D; = {9‘9 € _G’.lcvi,vi(‘to) 7é 0} .

We can almost cover G by these sets. Let Il,, C II the maximal pure subset of
IT, i.e. I is the “orthogonal” union of the set I, and a subset II\Il, of finite

type.

Proposition A ([M], Satz 5.16): We have

{

U U gDih=G\T.e(Il) -

=1 g,h€G

Proof: To simplify our presentation, we shall assume II = Il,, and P° = {0}.
Then e(Il) = e(Il,,) € M is characterized by the property e(Il)v = 0, for all
v € L(A),A € P*\{0}. Consider ¢ € G and assume ¢ ¢ gD;h for all © €
{1,...,1},9,h € G. Then '

(gu;, phv;) =0, for all 7,9,k .

Since L(A;) is spanned by all gv;,g € G, we obtain 50|L(A~) = (. Since any

L(A), A € PT\{0} is made up from tensor products of the L(A;) and subsequent
reduction, we get ’

‘P|L(A) =0 flor'all A € PT\{0}

or ¢ = e(Il).
(This proof can be easily adopted to the general case.)

As a next step, we shall determine the structure of the open sets D; C G. For
that recall the parabolic subgroups

Pii = Pﬁt\{ai}

with unipotent radicals _
+ _ 7t
UF = Un\gaiy -
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Levi subgroup G; = P N P~ and Weyl group W; = Win\{a;3- Then G; is the
Kac-Moody group attached to the realization (H,II\{e;},II\{A;}). Let C[G,]
denote the algebra of strongly regular functions on G; and let C[G]; denote the
algebra of restricted functions from C[G] to the subgroup G;. Then the function
Cy; v, Testricts to the character A; on GG;, and representation theoretic arguments
quickly show (cf. [8], section 5.1.2):

Lemma: The inclusion C[G]; C C[G;] induces an isomorphism from the local-
ization of C[G]; with respect to A; to C[G,]: ‘

(C[Gl:)a, = CIGY] -

Proposition B: For any ¢ € {l,...,l} we have an isomorphism of infinite-
dimensional varieties

D; = U7 x Specm®C|[G] x UF .
Proof: Let us first look at D; N G. Then the Birkhoff-decomposition
G= ) UwIU?
weW

gives
D;NnG= |J U wlU* =U;.G.Ut (direct product) .
weW;
Recall that the U¥ are closed in M, therefore in G and in D;. By the Lemma,
the closure of G; in D; can be identified with Specm® C[G;]. This gives the claim.

Applying downward induction to Propositions A and B we arrive at our main
result.

Theorem([8], Satz 5.18): We have
G = {ge(O)r|® CII pure g,h€ G} =GT.G.

Remarks: Proposition B for the case of the minimal parabolic B may already
be found in [3], Lemma 4.4. Its general version for arbitrary parabolics is due to
Kashiwara ([5], Proposition 5.3.5), who has also given a form of Proposition A in
a somewhat different context ([5], Proposition 6.3.1).
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7. An application

In [8] one finds many more results on the structure of G. Here, we want to
conclude with an application to the adjoint quotient of G studied in [12], [13],
[14] (details are forthcoming). Recall that G' admits a ”parabolic” partition

G=J G(©)

pure

parallel to a stratification of T/W

T/W= | (T/W)(©)

ocIl
((T/W)(©) the image of T/Ann (I(©)) in T/W).
The adjoint quotient defined in [12], [13] is a conjugation invariant map
x:G—=T/W

mapping G(0) to (T/W)(O) for any pure © C II. With the help of a theory of
"optimal one-parameter semisubgroups” in G the partition and the map x can
be extended to a conjugation invariant map ¥ : G — T/W with the following
properties, basic in geometric invariant theory:

e Every fibre of ¥ contains a unique closed conjugacy class,

e two elements ¢, 1) € G are mapped to the same point in T/W if and only
if the closures of their conjugacy classes meet,

(Ad(G)g) N (Ad(G)) # 0.

Remarks: 1) If one considers x : G — T /W these statements hold only for the
”classical” part G(() mapping onto T'/W.

2) The closed (= minimal = semisimple) orbits in all fibres of X are given as the
orbits of the elements t.e(©), © C Il pure, t € T'.
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