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1 Introduction

The concepts of elliptic root system, elliptic Dynkin diagram and elliptic Weyl group were
introduced by K. Saito to describe the Milnor lattices and the flat structures of semi-universal
deformations for simply elliptic singularities [10][11]{12][13].

Furthermore, in[15], K.Saito and T.Takebayashi studied generators and relations of elliptic
Weyl groups in terms of elliptic Dynkin diagrams (This presentation of elliptic Weyl group is
a generalization of Coxeter system. See Theorem 2.1). In the paper, they also proposed the
following problems: find generators and relations of “elliptic Lie algebras”, “elliptic Hecke alge-
bras” and elliptic Artin groups (the fundamental groups of the complements of the discriminant
for simply elliptic singularities ) in terms of the elliptic Dynkin diagrams.

In [14], applying Borcherd’s cnstruction of vertex algebras(2][[3], K.Saito and D.Yoshii con-
structed the elliptic Lie algebras ( which are isomorphic to the toroidal algebras [8]) and de-
scribed generators and relations of them for homogeous elliptic Dynkin diagrams (This pre-
sentation is a generalization of Serre relations attached to the elliptic Dynkin diagrams. cf.
[1,[17]). |

In [18], H. van der Lek has given a presentation of the elliptic Artin groups (which he calls the
extended Artin groups ) using affine Dynkin diagrams. The aim of this note is to give another
presentation of elliptic Artin groups in terms of elliptic Dynkin diagrams. In our presentations,
the numbers of generators and relations are less than his ones. Moreover, as a by-product, we
shall define elliptic Hecke algebras (which are subalgebras of Cherednik’s double affine Hecke
algebras [4],[5],[6]) and construct finite dimensional irreducible representations of them.

Here,we briefly explain H. van der Lek’s description of the elliptic Artin groups. Let C =
(¢ij)o<i,j<t be an affine Cartan matrix and M = (mi j)o<i,j<t be the Coxeter matrix determined
by c¢; ; as follows: '

mij=2,3,4,6,00 if cjc;i=0,1,2,3,>4, respectively.

Theorem 1.1 (H. van der Lek[18]) Let R, be an affine root system and C(R,) the affine
Cartan Matriz of R,. The elliptic Artin group A(R,) associated with R, is generated by
{s0,81, 81, %0, t1, - - - , 1} which satisfy the following relations:

(A.1) 8i8jSi - = 5;8i8j " each side m;; factors if i # j

(A.Z) tit; = tjt;
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(A.3) sit;tT = t;tls; 2r = —cj;
(A.4) sitjtls; = tjt:-H 2r+1=—cj;
In this note, for simplicity, we shall only treat with elliptic Dynkin diagrams obtained by

adding one vertex to affine Dynkin diagrams (see the appendix) and, for brevity, call them
elliptic Dynkin diagrams hereafter.

2 Elliptic root systems and elliptic Weyl groups

We briefly explain elliptic root systems and elliptic Weyl groups following [12]. Let F be a
vector space over R with symmetric bilinear form (-,-) of signature (I4,l,!_), where I+ (resp.
[_) is the dimension of a maximal positive (resp. negative) definite subspace of F and [; is the
dimension of the radical of (-,-) . For & € F such that (o, ) # 0, we define

2
A
* T @ma)®

wa(u) =u— (y,a")a for any u€F.

Definition 2.1 A subset R C F is called an elliptic root system, if the following conditions
are satisfied: '

(R.1) (I, 1o, 1-) = (1,2,0). _

(R.2) Let Q(R) be the Z-submodule of F generated by R. Then, Q(R)®zR = F.

(R.3) For any a € R, (a,a) # 0.

(R.4) we(R) = R.

(R.5) (a,8Y) € Z for any o, € R.

(R.6) If R=R|URy, then Ry =¢ or Ry=¢.

We call the Weyl group W (R) aséociated with R elliptic Weyl group of R. Also K. Saito defined
an elliptic Dynkin diagram for an elliptic root system as follows: Let G be a 1-dimensional
subspace of rad(-,-) which is defined over Q. Then, the quotient of R by G is an affine root

system R,. We fix a generator a of the lattice GN Rad((,)). Note that the generator a is unique
up to a choice of sign. We call (R, G) the marked elliptic root system. For any o € R,, put

k(o) =inf{k € Nla+k-a € R}

and
a* =a+k(a)-a.

k(a) is called the counting of o. Then we have the following proposition:
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Proposition 2.1 (K.Saito [12]) Let (R,G) be a marked elliptic root system.Then we have

R={a+m-k(a) ala € R,, m € Z}.

Let T'q = {ap, 1, -, 4} be a basis of R, such that
{ai1,---,}: simple roots of finite root system
Qg = b —'2£=1niai
b: imaginary root of R,. The set of exponents of (R, G) is defined by the union
of 0 and

Mo = - Tlg, for a €Ty,

where (-,-)g is a constant multiple of (-, -) normalized such that inf{(a, a)r|a € R} is equal to
2. Set

Comaz = {@ €T|mq = qu{mgw eT'}}
and
Fz,maz = {a*|a € Fa,maz}-

Remark 2.1 In this note, we assume that the number of the verteces of I'q maz is equal to 1.

Definition 2.2 The elliptic Dynkin diagram I'(R, G) of the marked elliptic root system (R, G)
is a finite graph generated by the set of verteces (R, G) = ['qUI'; 1,4, and bonded by the following
conditions: for a, f € I'(R, G),

(1) (,8Y) =0 a0 Of
2 (@p)=("p=-1 a0—O0f
(3) (0, 8Y) = =t,(a,BY) = -1 fort=2,3,4 a0——08
4 (p8)=(a"B) =2 aO==0 B

Let us define the equality

_ maz{m,la € T'(R,G)}
m(R, G) = ged{mq|a € Ty}

This number m(R, G) plays the role of the Coxter nummber for the elliptic root system [11],[12],{13],[15].
Using elliptic Dynkin diagrams, K. Saito and T. Takebayashi [15] gave presentations of elliptic
Weyl groups as follows: '

Theorem 2.1 (K. Saito and T. Takebayashi [15]) Let (R,G) be a marked elliptic root
system and W(R, G) the group defined by the following generators and relations:

generators : Ta a €(R,G)



relations:

(W.0)

(W.1.0)
(W.1.1)
(W.1.2)

(W.1.3)

(W.2.1)

(W.2.2)

(W.2.3)

(W.2.3)

(W.3)

rel=1
(Ta"'ﬁ)2 =1
(7‘(,1‘5)3 =1
(rar5)4 =1
(Ta"'ﬂ)G =1

(ra'r,@'ram'rﬂ)s =1
(rarpra-rg)? =1
(rargrar 7‘5)3 =1 and (rarﬂra*rgrarg)z =1

(r(,‘r(,,*rﬂ)2 = (ra~r5ra)2 = (rgr(,ﬂ‘au)2

(Tarﬂrarﬂ*r'Yrﬂ'):z =1 and (’I‘QTETaTﬁ'r'yrﬂ)2 =1
for t=1,2,3

where the two relations are equivalent in the case of t = 1.

Define

¢(R,G) = H Tai - H rajr;j.

i€{0,1,1\J jed

Then,the power &(R, G)™R:G) is a center of W(R,G) and one has

W(R,Q)/ < &R,G)™EC) > =  W(R).

@0

apg obB
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Here the relations (W.1.0) ~ (W.1.3) are well known as Coxeter relations, and the relations
(W.2.1) ~ (W.3.t) are newly introduced relations due to the double bonds in the diagram. Let
us call them elliptic Cozeter relations and the group W (R, G) hyperbolic elliptic Weyl group
of W(R) (see [12,[15]).

Remark 2.2 In this note, we have assumed that the number of the vertces of I'q maz is equal

to 1. In [15],K.Saito and T.Takebayashi treated more general elliptic root systems.
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3 Twisted Picard-Lefschetz formula

The Coxeter relations of elliptic Weyl groups were obtained by studying the monodromy
representations of simply elliptic singularities. To find generators and their relations of elliptic
Artin groups attached to elliptic Dynkin diagrams, we want to construct a certain kind of de-
formation of the monodromy representations of simply elliptic singularities. Fortunately, A.B.
Givental[7] has already studied g-deformation of monodromy representations of isolated hyper-
surface singularities using the so called twisted Picard-Lefschetz formula (see also F. Pham([9]
and I.Shimada[16]). .

First we begin with explaining the classical Picard-Lefschetz formula.

Let f : (C3,0) — (C,0) be a polymonial mapping such that f~1(0) has a simply elliptic
singularity. Namely, |

EM: fzy2) = 2+ ¥+ 2
EM: fayz) = 2t + oyt 4 2
EM: fmy,z) = 8 + P o+ A

Since a simply elliptic singilarity has a semi-universal deformation, there exists the following

commutative diagram which is called a Hamiltonian system in[10]:
F
X=CxCrleCxCFlixC=2
T

Pr, X | P

T=Ctl«—C''xC=S§

T
where
r, T, pry, pro : natural projections, .
F1(Il7, Y, 2,1, atu—l) = (xay, Z,t1,0 0 atu—-la Fl(xa Y, 2,1, 7tll—1))7
5 -1
Fl(may’ Zyty,- - 7tu—1) = f(x,yv Z) + 27—_—1 tj¢j
and

¢ =prioF;: semi-universal deformation of f.

Here p =1 +2 and {¢j};-‘=1 is a C-basis of the Jacobi ring C[z, y, z]/(%g, %5, %5) of f such that
deg(¢j+1) < deg(j).

Let Cj be the critical set of ¢ and Dy the discriminant of ¢. The discriminant Dy is a reduced
irreducible hypersurface in S. Let t' € T = C#~! be a point which is not contained in the image
of the ramification locus of 7|p » Set

Ly={}xCccC+'xC=S6.

By choice of ¢, there are exactly p intersection points of Ly with the discriminant Dg. We
denote these points p;,---,pu. A fibre X, = ¢~ 1(p;) has a singularity which is the ordinary
double point. Let pg € Ly\{p1,--,pu}. Then the fibre X;, = ¢~ (po) is a 2-dimensional
manifold and homotopically isomorphic to a bouquet of i copies of sphere 52 . Hence, the only
non-trivial homology group of X, is the group Ha(Xjp,, Z) which is a free Z-module of rank pu.
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The intersection numbers of cycles define a symmetric bilinear form ( , ) on this module with
signature (I, 2, 0) (u = 1+2).

Next, we shall explain a relation between elliptic Dynkin diagram and vanishing cycles.
Choose a simple arc I; in Ly from pp to p; not passing through other p;. Then

Xpo C o7 ML) — Xp; :  contraction

induces the mapping
C;: Hg(Xpo, Z) — Hz(Xpi, Z)
The kernel of this mapping is a Z-submodule of Hy(X,,,Z) of rank 1. Denote a generator of
Kernel(c;) by e, i.e.
Kernel(¢;) = Ze;.
It can be shown that if I;,---,l, are chosen in such a way that I; and l; intersect only at py for
i # j, then {e1,---,e,} is a free Z-basis of Hy(Xp,, Z) and Hz(X,,,Z) = Q(R). Furthermore

the intersection matrix with respect to this basis determines the elliptic Dynkin diagram (see
[10],[11]).

Now, we explain the classical Picard-Lefschetz formula. To each path I;, we associate an ele-
ment y; € 71 (Ly, po) by going along I; from pg to a point near p;, then turning counterclockwise
in a small circle around p; and then returning to py along ;. Then {y1,---,7v,} is a set of
generators of m(S\Dgy,po). The mapping

¢: ¢~ (S\Dy) — S\Dy
is the projection of a fibre bundle. Hence one gets a monodromy 'representation
p: m1(S\Dg, po) —* Aut(Hz(Xp,, Z)).

Finally, we can state the classical Picard-Lefschetz formula:
Classical Picard-Lefschetz formula (see [9])

p(r)(a) =a—(a,e)e;  for any o € Ha(Xp,, Z)
Now, according to A. B. Givental [7], we explain the twisted Picard-Lefschetz formula. Define
F:Z 5 Chy

A A~

F(x7yazat1,"'?tu) :F1($ay,Z,t1,"'»tu—1)+t;4

and
Z = Z\F~}0).

Since 7r1(Z ) = Z, for a complex number g € C*, we can define a representation
m1(Z) = Aut(C) : 1—gq.

This representation induces a local system L, on Z. Define Z" = prit(S\Dy) N Z and then
pri : Zr > S \ Dy is a fibre bundle whose fibre is 3-dimensional complex manifold. For simplicity,
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we also denote by L, the restriction of £, to the fibre Z"(po) = prit(po). Then we get a

monodromy representation

pq : M1 (S\Dg) — Autgjg-11(H3(Z" (po), £q))-

This monodromy representation can be regarded as a g-deformation of the classical one.

Denote the restriction of the mapping F to Z"(pg) by

Fpo 1 Z" (po) — C*.

By choice of py, Fpo has exactly p critical values. We denote these points by pf,- -, p;, Choose

a simple arc 7} in C* going from p; to a point near the origin, then turning counterclockwise

in a small circle around it, and finally returning to p along the same way, and define a cycle

8; € H3(Z"(po), L) by carrying the vanishing cycle e; along .. Then we obtain the following:

Theorem 3.1 (A.B. Givental [7]) (1) H3(Z"(po),Lq) = ®f-1Z(g, q 15

(2) Let V be an upper triangular matriz with diagonal elements 1 and (e, e;) for ¢ < j and

define a p x p-matriz Iy = qV +t V. Then one has
pq(1i)(85) = 85 — Ig; j6i.
() (pg(7i) +@)(pg() —1) = 0.
Applying this theorem to our problem, we obtain the following proposition:

Proposition 3.1 Set
gi=pglm) (i=1--,p=1+2)
Then g1,---,g,, satisfy the following relations: -

(1) (9i+9)(9; —1)=0 : @i o
(2) 9i9; = 9;9; GO 0%

- 9i939; = 9;9:9;

(3) Let t; = g3g5", then gitigit; = tjg;t;g;

-1
(4) Let t; = gitigiti™ ", then git; = t39k

1

4 Elliptic Artin group and elliptic Hecke algebri

Motivated by Proposition 3.2, we define the following group:
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Definition 4.1 Let (R,G) be a marked elliptic root system and I'(R,G) be its elliptic Dynkin
diagram. Define a group A(R,G) by the following generators and their relations:

generators:

relations:
(E.1.0)

(E.1.1)
(E-1.2)

(E.1.3)

(E.2.1)

(E.2.2)

(E.2.3)

(E.2.4)

(E.3)

Ja

9298 = 989«
9a0989a = 98998
909890298 = 9892959

909690989098 = 98909890939

Lett, = goga~, then ggtagsta = tagstags

9ptagpgda = ga9ptags

gstagpta = tagstagp and ggtagpga = 9598tadp

gptagpta = tagptags = 9595ta9p9a

Goty = tyga and gty = togy
where t, = g7t5g7t[;1 and to, = gatﬁgolt[;1
for t=1,2.8

a €T'(R,Q)
ao of
@ o—0pB
ao——g——oﬂ
ao——g—oﬁ
a*~

B
o &
a*_

B
a B2

Here the relations (E.1.0) ~ (E.1.3) are the same with (A.1) in Theorem 1.1 and the relations
(E.3) ~ (E.5) are newly introduced ones due to the double bonds in the diagram I'(R, G).

Now we consider the relation of fi(R, G) and the elliptic Artin group A(R,). To this purpose,
we introduce t, € A(R, G) as follows: For ag € {a|a € Tqmaz}, tao is already defined by

ta0 = 9a09a0*-
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If ay, -, € T'(Ry)\{c|a € Tamaz} are arranged the following position
ok

——e—0
ay 3 Qg

Qo

then we define
taj+1 = gaj+1tajgaj+1t;j1-
inductively. Then we obtain the following lemma:

Lemma 4.1 Let N(R,G) be a subgroup of A(R,G) generated by {ts|c € T(R,G)}. Then one
has

(1)  N(R,G) is a free abelian subgroup.

(2) 9atp = t89a | ag 0B
gatpge = talp ao—o B
gstats = tatpgp o OTO 8
gptalpgp = tat% «Q OTO B
gptats = tathgp o 00 B
- (3) Sgt ¢(R,G) = H " Ga H gagar, then the power ¢(R, G)™EC) is g center

) ael(R,G)\{o;ljeJ}  a€{ajljel}
of A(R,G) and belongs to N(R,G). Especially, c(R,G)™®G) is expressed by

o(R,G™EO = T oo
a€l(Ra)

where ng, are the coefficients of the imaginary root of the affine root system R,.
Here (R, G) is called the Cogeter element of A(R,G)

By Theorem1.1 and this Lemma 4.1, we obtain the following theorem:

Theorem 4.1 Let (R,G) be a marked elliptic root system and R, the corresponding affine root
system. Then the group A(R,G) is isomorphic to the elliptic Artin group A(R,).

Therefore, we obtain generators and their relations of an elliptic Artin group associated with
an elliptic Dynkin diagram.

In [4],[5],[6], I.Cherednik defined the concept of double affine Hecke algebra and proved Mac-
donald’s inner product conjecture. We shall define the elliptic Hecke algebra which can be
proved to be a subalgebra of his algebra.
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Definition 4.2 Let (R,G) be a marked elliptic root system. For q € C*, the elliptic Hecke
algebra Hy(R,G) associated with (R,G) is the quotient of the group algebra C(q)[A(R, G)] by
the relations

(E.0) (9o +9)(ga—1) =0 for a € T'(R,G).

where C(q) is the quotient field of Clq,q7!].

Remark 4.1 (1) When q = 1, the relations (E.1.0) ~ (E.3) are equivalent to the elliptic
Cozeter relations (W.1.0) ~ (W.3).

(2) Cherednik’s double affine Hecke algebra contains two parameters. In the elliptic Hecke

algebra, two parameters appear from the local system L, and the power of the Cozeter
element, c(R, G)™®%),

Let C(R, G) be the Cartan matrix corresponding to an elliptic Dynkin diagram ['(R, G) and
T be the upper triangular matrix with diagonal elements 1 such that

C(R,G)=T+'T.

Difine g X p-matrix
Cy(R,G)=¢q-T+'T,

L

whrere p = the number of vertces of I'(R, G).

Note that we have assume that the number of vertces of I'g ynq4 is equal to 1.
On the vector space V (R, G) = @qcr(r,c)C(q)a, for any o € I'(R, G), define the element A
of Aut(V(R,G)) as follows : for any 3 € I'(R, G),

Ao(B) = B — Cy(R, G)ap-e,
where Cy(R, G)q,p is (o, B)-component of C¢(R,G). Then we obtain the following proposition: |

Proposition 4.1 Let (R,G) be a marked elliptic root system such that the number of vertces
0f T'a.maz s equal to 1. Then one has

8 ~
pq: A(R,G) — Aut(V(R,G))

Pq(ga) = Aa

is a fine dimensional irreducible representation of A(R,G) over C(q).
(2) The above representation induces the follwing commutative diagram:

pe : C(Q)[A(R, G)] — Aut(V(R,G))

\ 7

Hy(R,G).

Especially, one obtains a finite dimensional irreducible representation of I:['(R, G).
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