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Examples of convolution equations in tube
domains

Ryuichi Ishimura (Chiba University) (43 FE—)
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In the present paper, we study convolution equations of type p* u = f,
where the kernel y is a hyperfunciton with compact support, the given data
f and the unknown function u are holomorhpic functions in the tube domain
U € C* with the form U = R” x v/—1Q by an open convex subset  C R".
First we recall the notions of the condition (S) due to T. Kawai [3] and the
characteristics Char(ux) (see [2]), which are deeply related to the existence
and the continuation of holomorphic solutions. After that we give some
examples in non-local operator case. '

1 The condition (S) and the characteristics

Let p be a hyperfunction with compact support on R", and be a convex
open set in R®. We consider a convolution equation:

prxu=f  feOR xv/-1Q).
We denote by i(¢) the Fourier-Borel transform of x defined by

Q) = () = [ nla)ertaa.
{i is an entire function of exponential type, precisely fi satisfies

Ve > 0,3C, >0, ()] < Ceexp(Hi(¢) +¢|(]),

where K = supp p and
Hg(¢) :=sup Rez(

zeK
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1s the supporting function of K. |
For the convolution operator u*, we introduce the condition (S) due to
Prof. Kawai and the notion of characteristics of /.

Definition 1.1. fi satisfies the condition (S) if and only if for any € > 0, there
exists N = N, > 0, such that for any n € R" with || > N, we can find
¢ € C" satisfying:

i IC_\/'—_]-UI <5|77|7
o (O] > —¢lnl.

Definition 1.2. We define the characteristics Char(u*) C /=157~ by: the
vector v/—1p € \/=15""" with (|p| = 1), belongs to Char(u*) if and only if
there exists a sequence {(,}, C C" satisfying:

e /i(Cv) =0 for any v,
o |(,| = 00 as v — oo,

o (/1G] = VTpas v co.

Moreover we define the polar enveloping of Q and U = R™ x +/—10Q. We
put

(), := the interior of ﬂ {y e R*;yn < sup y'n}
n€Char(ux) y'eq

and
(U), :=R"x V=1(Q),.

Under these notations, we recall our result about existence and continua-
tion problem (see [2]), which tell us the importance of the condition (S) and
the notion of characteristics.

Theorem 1.3. If ji satisfies (S), then for any open convex subset Q C R™,
px 2 O(R™ x /=1Q) — O(R" x /—1Q) is surjective. Conversely, assume
that px : O(R™ X /=102) = O(R™ x /=19) is surjective for a bounded open
conver subset Q@ C R™ with C*-boundary. Then ii satisfies (S).
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Theorem 1.4. Assume that i satisfies (S). We put

Sol*(U) := {u € O(U); pu* u = 0}
for U = R” x V—=1Q. Then the restriction map Sol“'((U)u) — Sol*(U) is
surjective. :

Remark that a kind of the converse statement of this theorem is also true

(see [6]).

2 The case of differential-difference equations
Let us consider the case that supp p consists of finite points. We set

supp 4 = {A1,..., A}
with A; € R™, and A; # A; for ¢ # j.

By the standard structure theorem of hyperfunctions, we can find a family
{P;(¢)}j=1,... of entire functions of infra-exponential type such that

where P;(D)’s are the differential operators of infinite order with constant
coefficients defined by P;’s. Thus we have:

N
pru=Y P(Dyu(z - \y)

and the convolution equation is differential-difference equation of infinite
order. |
In this case, we give

Theorem 2.1. Let i be a hyperfunction whose support consists of finite
points. Then fi satisfies (S). Moreover if # supppu > 2, then Char(ux) =

v—15""1,

Corollary 2.2. Differential-difference equations in tube domains are always
solvable. Moreover all pure imaginary vectors are characteristic except the
case the equations coincides with a differenctial equation under a suitable
translation;
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This theorem can be proved by the theory of entire functions of completely
regular growth and the asymptotic estimate of zeros of entire functions of
this form due to Ronkin [7].

3 An example of elliptic operator

In this section, we give an example of non-local elliptic operator in the case
n = 1.

For positive constant a and b with (a < b), we will construct a hyperfunc-
tion p with the following properties: |

1. the convex full of supp p coincides with the segment [a, B],
2. [ satisfies (S),
3. Char(ux) = 0.

Moreover we give a remark that 7 is not of éompletely regular growth for
any direction (, € C\ /—1R.

Take a sequence {a,},=12,. in R with

o {|a,|}, is strictly increasing,

e n/|a,| — 0asn — oo,

o > 1/]a,| diverges, |

o limsupy_ o, 2 oy 1/ = b, and liminfy_o Y.,y 1/an = a.

For example, a, = ¢, - nlogn with ¢, = 41 satisfies the conditions for any a
and b, if we choose the signs ¢, suitably according to a and b.

Put
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then we can show that f is a Fourier-Borel transform of a hyperfunction
satisfying the condition 1 and 3. We can also show the -condition 2, by the
estimate

|f(\/:1_77)| >1 for any vV—19 € vV—1R.

For this i, we have

e the convolution equation u * u = f is always solvable in any tube
domain,

e any solution u of x* u = 0 can be continued analytically to C.
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