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1. Introduction.
Let $D$ be a bounded domain in $\mathrm{R}^{d}$ with $C^{2}$-boundary $\partial D$ . $K$ denotes a closed subset of
$\partial D$ . The uniformly elliptic operator $L$ is defined by

$L= \frac{1}{2}\sum_{1i,,j=}^{d}ai,j(x)\frac{\partial^{2}}{\partial x_{i}\partial_{X_{j}}}+\sum_{1i=}bi(x)\frac{\partial}{\partial x_{i}}d$

where the coefficients $A=(a_{i,j}),$ $b=(b_{i})$ are all bounded continuous functions on $D$ . More
precisely, the H\"older continuity with exponent $\lambda$ is assumed, namely, $a_{i,j},$ $b_{i}\in C^{0,\lambda}(D)$ for
every $i,j$ . We assume, in addition

(A.1) $a_{i,j}\in C^{2}(D)$ , $b_{i}\in C^{1}(D)$ ; $(A.2) \sum_{i,j=1}^{d}\frac{\partial^{2}}{\partial x_{i}\partial_{X_{j}}}O_{i},j(X)\leq\sum_{i=1}^{d}\frac{\partial}{\partial x_{i}}bi(\mathcal{I})$ .

Our main concern is the problem on the removable singularity for nonlinear differential
equations. We consider the boundary value problem for nonlinear elliptic equations:

$Lu=u^{\alpha}$ in $D$ $(\alpha>1)$ , with $u|_{\partial D\backslash K}=f$ . (1)

We would like to know when the restriction $\partial D\backslash K$ of the solution $u$ is replaced by the whole
boundary $\partial D$ . Then if that is possible, $K$ is called the removable boundary singularity
(RBS). It is a not only interesting but also important problem to think about what kind
of characterization for removability of the singularity $K$ is possible. Another interesting
problem is on the explosive solution at the boundary. Consider the following problem:

$Lu=u^{\alpha}$ in $D$ with $u|_{\partial D}=\infty$ . (2)
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The second expression in the above means that $\lim_{D\ni yarrow x}u(y)=\infty$ for $\forall x\in\partial D$ . We are

interested in describing the probabilistic characterization of the solution with explosion at

the boundary. These two problems are mutually related, however, we shall treat the former

problem only and leave the latter one for our next paper. For a function space $F,$ $pbF$

indicates the subspace of $F$ whose elements are all positive bounded functions.

The Hausdorff measure of $A(\subset \mathrm{R}^{d})$ with parameter $s$ is given as follows. For $\epsilon>0$ ,
$\Delta(\epsilon)$ is a countable open covering $(N(\epsilon), \{B(x_{i}, r_{i})\}_{i})$ of $A$ such that $A \subset\bigcup_{i=1}^{N(\epsilon)}B(x_{i},r_{i})$

where $B(x_{i}, r_{i})$ is an open ball with center $x_{i}$ and radius $r_{i},$ $0<r_{i}\leq\epsilon$ . Then the Hausdorff

measure $\Lambda^{s}(A)$ of $A$ is defined by

$\Lambda^{s}(A)=\lim_{\epsilon\downarrow 0}(\inf_{\Delta i}\sum_{1=}^{N(\xi)}r_{i)}^{S}$ .

The Hausdorff dimension $\dim_{H}(A)$ of $A$ is the supremum of $s\in \mathrm{R}_{+}$ such that $\Lambda^{s}(A)>0$ .

The interpretation of the problem (1) as classical problem means that the nonnegative

solution $u$ lying in $C^{2}(D)$ satisfies

$Lu=u^{\alpha}$ in $D$ , $\lim_{D\ni xarrow y}u(x)=f(y)$ , $\forall y\in\partial D\backslash K$ , (3)

for $f\in pC(\partial D)$ . The first assertion is a result on nonremovable singularity.

Theorem 1. For some positive number $\gamma(\alpha),$ $\alpha>1$ satisfying that $\gamma$ is monotone decreas-

$ing$ in $\alpha$ and $\gamma\nearrow\infty$ as $\alpha\lambda 1$ , there exists a family of solutions $\{u\equiv u_{\alpha}\geq 0;\alpha>1\}$ of
the boundary value problem (3) such that $d>\gamma(\alpha)$ and $\Lambda^{s}(K)>0$ for some $s\in(d-\gamma(\alpha)$ ,

$d-1],$ $(\alpha>1)$ .

Let $dx$ be the Lebesgue measure on $\mathrm{R}^{d}$ , and $n$ denotes the unit exterior normal vector to

the boundary $\partial D$ . $S(dy)$ is the surface measure on $\partial D$ . We set $\mu(dx)=p(x)d_{X}$ , where

$p(x)$ is the distance function from $x$ to the boundary $\partial D$ . Under the assumptions (A.1)

and (A.2), the operator $L$ has an expression of the divergence form

$Lu= \sum_{=i,,j1}^{d}\frac{\partial}{\partial x_{j}}(a_{ij}(x)\frac{\partial}{\partial x_{i}}u)-\sum_{i=1}^{d}\frac{\partial}{\partial x_{i}}(\hat{b}i(x)u)-C(x)u$

with $\hat{b}_{i}=-b_{i}+\Sigma_{j}\partial_{j}aij,$ $c—\Sigma_{i}\partial_{i}\hat{b}_{i},$ $\partial_{i}=\partial/\partial x_{i},$ $(i=1,2, \cdots, d)$ . Then notice that
$a_{ij},\hat{b}_{i}\in C^{1}(D)$ and $c\geq 0$ . The adjoint of $L$ is given by

$L^{*}u= \sum_{i,j}\partial i(aij\partial ju)+\sum_{1}.\hat{b}_{i}\partial iu-Cu$
.

Now we shall introduce-another interpretation of (1), due to the $\mathrm{G}\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{a}-\mathrm{v}\mathrm{e}^{\text{ノ}}\mathrm{r}\mathrm{o}\mathrm{n}$ formulation

(1991). That is, the solution is a nonnegative function $u\in C^{2}(D)\cup C(\overline{D}\backslash K)$ satisfying

$\int_{D}\{-u\cdot L^{*}g+ug\}\alpha d_{X}+\int_{\partial D}f\frac{\partial g}{\partial n}S(dy)=0$ (4)
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for $\forall g\in C^{1,1}(\overline{D})\cap W_{0}^{1,\infty}(D)$ with the compact support which is contained in $\overline{D}\backslash K$ .

Theorem 2. Let $u$ be a solution of (4). If $\dim_{H}(K)<d-\gamma(\alpha)$ and

$u\in L^{\frac{1}{\gamma(\alpha)-1}+1}(dx)\cap L^{\alpha}(\mu(d\mathcal{I}))$ ,

then $K$ is the $RBS$.

N.B. The above-mentioned result is an extension of Sheu’s theorem (1994) (cf. Theorem
2, p.702, [Sh94] $)$ .

2. Probabilistic Characterization.
Next we shall discuss the equivalence problem to the RBS. Let $\xi=(\xi_{t}, \Pi_{x})$ be the L-
diffusion process. $\tau=\inf\{t>0;\xi_{t}\not\in D\}$ is the first exit time of the process $\xi$ from the
domain $D$ . A boundary element $x\in\partial D$ is called a regular point if $\Pi_{x}(\mathcal{T}=0)=1$ holds
for the first exit time $\tau$ . When we say that the domain $D$ is regular, we mean that $D$ has a
regular boundary. $M_{F}(\mathrm{R}^{d})$ denotes the totality of finite measures on $\mathrm{R}^{d}$ . $\langle\mu, f\rangle$ indicates
the integral of $f$ with respect to the measure $d\mu$ . Let $X=(\Omega,\mathcal{F}, \mathrm{P}_{m}, X_{t}, \mathcal{F}_{t})$ be a finite
measure valued branching Markov process associated with the equation $\mathcal{L}=Lu-u^{\alpha}=0$ in
the sense of Dynkin (1994). Alternatively, for each $m\in M_{F}(\mathrm{R}^{d})$ , there exists a probability
measure $\mathrm{P}_{m}$ on $(\Omega, \mathcal{F})$ such that $X_{0}=m,$ $\mathrm{P}_{m^{-\mathrm{a}}}.\mathrm{S}.$ , and for $\varphi\in \mathrm{D}\mathrm{o}\mathrm{m}(L)$

$M_{t}( \varphi):=\langle x_{t\varphi},\rangle-\langle X_{0}, \varphi\rangle-\int_{0}^{t}\langle X_{S}, L\varphi\rangle ds$ , $\forall t\geq 0$

is a continuous $(\mathcal{F}_{t})$ -martingale under $\mathrm{P}_{m}$ , and the quadratic variation is given by

$\langle M.(\varphi)\rangle_{t}=\int_{0}^{t}\langle X_{S}, \varphi^{2}\rangle ds$, $\forall t\geq 0$ , $\mathrm{P}_{m}-\mathrm{a}.\mathrm{s}$ .

The support $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}X_{t}$ of a random measure $X_{t}$ for each $t>0$ is the minimal closure of closed
sets $G\subset \mathrm{R}^{d}$ such that $X_{t}(GC)=0$ holds. The range of $X$ is defined by

$\mathcal{R}(X):=\epsilon>0\cup(_{t\geq}\overline{\bigcup_{\epsilon}\sup \mathrm{p}Xt}\mathrm{I}$

closure

Note that $\mathcal{R}(X)$ is a random set. We say that a set $F$ is $\mathcal{R}$-polar if $\mathrm{P}_{x}(\mathcal{R}(x)\cap F\neq\emptyset)=0$

holds for $\forall x\not\in F$ . Similarly we may define the concept of boundary polar set. We say that
a set $K$ is $\partial$-polar if $\mathrm{p}_{x}(\mathcal{R}(\tilde{X}D)\cap K\neq\emptyset)=0$ holds for $\forall x\not\in K$ , where $\tilde{X}_{D}$ is a part of $X$

in the domain $D$ .

Theorem 3. Let $D$ be a bounded regular domain in $\mathrm{R}^{d}$ . Then $K$ is the $RBS$ if and only
if $K$ is $\partial-$polar.

3. Sketch of Proofs.
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As to the proof of Theorem 1, assume first of all that $\Lambda^{s}(K)>0$ . Take a measure $\pi\in$

$M_{F}(K)$ such that $\pi(B)\leq r^{s}$ , for any ball $B$ in $\mathrm{R}^{d}$ with radius $r$ . For the Poisson kernel
$k_{L}(x, y)$ for the elliptic operator $L([\mathrm{D}\mathrm{K}96])$ , the function

$\hat{K}(x):=\int_{K}k_{L}(_{X}, y)\pi(dy)$

is $L$-harmonic in $D$ and vanishes on $\partial D\backslash K$ . We show that $\hat{K}\in L^{\alpha}(\mu(dx))$ . By virtue of
Maz’ya-Plamenevsky’s argument(1985), it follows from Maz’ya’s lemma(1975) that there
exists a constant $C>0$ (depending on $L$ and $D$) such that $k_{L}(x, y)<C\cdot p(x)|x-y|^{-d}$

holds for all $x\in D,$ $y\in\partial D$ . By this estimate, it is sufficient to show that

$l(x):= \int_{\partial D}(p(x)/|x-y|^{d})\pi(dy)\in L^{\alpha}(\mu(dx))$ . (5)

To show (5) can be attributed to finding a constant $C$ such that

$\int_{D}l(x)g(X)\mu(dX)\leq C$ for any $g>0$ (6)

satisfying that $\int_{D}\{g(x)\}^{\beta}\mu(dX)=1$ with $1/\alpha+1/\beta=1$ . Consider the function

$F(z)= \int_{D}\int_{K}\frac{\{g(x)\}^{\beta}(1-z)(px)}{|x-y|s/\alpha+\{d-\gamma(\alpha)\}/\beta+(d-s+1)z+1}\pi(dy)\mu(d_{X})$ .

It is easy to verify that $|F(1+ib)|<\infty$ . Thus we attain (6). On this account, the conclusion
yields from a routine work with the maximum principle and a discussion of domination of
the maximal solution by some $L \frac{-}{}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{c}$ function.

The proof of Theorem 2 is greatly due to a variant of Chabrowski’s lemma$(1991)$ . Put
$\beta=d-\gamma(\alpha)$ . $K$ is a closed set in $\partial D$ such that $\Lambda^{\beta}(K)=0$ . Consequently, for $\epsilon>0$ there
can be found a covering $\{c_{n}^{[\epsilon]} ; n=1, \cdots, N(\epsilon)\}$ of $K$ such that (i) $G_{n}^{[\epsilon]}$ is a d-dimensional
closed cube with edge of length $a_{n}=2^{-k_{n}}<\epsilon,$ $k_{n}\in \mathrm{Z}^{+}$ , and $a_{1}\geq a_{2}\geq\cdots\geq a_{N(\epsilon)}$ ;
(ii) $(c_{n}^{[\epsilon]})^{\circ}\cap(G_{m}^{[\epsilon]})^{\circ}=\emptyset$ if $n\neq m;(\mathrm{i}\mathrm{i}\mathrm{i})\Sigma_{n=}^{N(\epsilon_{1})}a_{n}^{\beta}\leq 1$. This $\{G_{n}^{[\epsilon]}\}$ is called the standard
covering of $K$ corresponding to $\epsilon$ if

$n1 \sum_{=}^{N(\in)}and-\gamma(\alpha)arrow 0$

as $\epsilon\backslash 0$ .
Lemma 4. Let $\{G_{n}^{[\epsilon]}\}$ be the standard covering of $K$ corresponding to some $\epsilon>0$ . Then
there exists a family of functions $\{g_{n}\}_{n}$ such that
(a) $g_{n}\in pC_{0}^{\infty}(\mathrm{R}^{d})$ , $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}g_{n}\subset 2G_{n}$ for $\forall n$

(b) $0\leq\Sigma_{n=1gn}^{N(\epsilon}()X)\leq 1$ for $\forall x\in \mathrm{R}^{d}$

(c) $\Sigma_{n}g_{n}(x)=1$ for $\forall x\in\bigcup_{n1}^{N(\xi)}=(3/2)G[\epsilon]n$ ’

(d) there $exist\mathit{8}$ a constsnt $c=c(d)>0$ such that for $x\in \mathrm{R}^{d},$ $n=1,$ $\cdots$ , $N(\epsilon)$

$|^{\frac{\partial}{\partial x_{i}}\sum_{j1}^{n}}=g_{j}(x)| \leq\frac{c}{a_{n}}$ $| \frac{\partial^{2}}{\partial x_{i}\partial x_{k}}\sum_{j=1}gj(x)n|\leq\frac{c}{a_{n}^{2}}$ $(i, k=1, \cdots, d)$ .
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For an arbitrary $\epsilon>0$ , choose $\{g_{n}\}_{n}$ as in Lemma 4. Put $k_{p}(x)= \sum_{j=1}^{p}g_{j(x})$ , and $h_{p}(x)$

$=1-k_{p}(x)$ for any $x\in \mathrm{R}^{d},$ $(0\leq p\leq N\equiv N(\epsilon))$ . Take $g\in C^{1,1}(\overline{D})\cap W_{0}^{1,\infty}(D)$ with
compact support in $\overline{D}$ . Since $g\cdot h_{N}\in C^{1,1}(\overline{D})\cap W_{0}^{1,\infty}(D)$ with $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(g\cdot h_{N})$ (which is
contained in $\overline{D}\backslash K$ ), by (4) we obtain

$\int_{D}\{-u\cdot L^{*}(gh_{N})\}dX+\int_{D}u^{\alpha}\cdot gh_{N}d_{X}=-\int_{\partial D}f\cdot\frac{\partial(gh_{N})}{\partial n}s(dy)$ . (7)

Clearly it follows that

(8) $\lim_{\epsilonarrow 0}\int_{D}u^{\alpha}\cdot gh_{N}d_{X}=\int_{D}u^{\alpha}\cdot gdx$ , (9) $\lim_{\epsilonarrow 0}\int_{\partial D}f\frac{\partial(gh_{N})}{\partial n}dS=\int_{\partial D}f\frac{\partial g}{\partial n}dS$.

Since $L^{*}(ghN)= \sum i,ji\partial(aij\partial j(ghN))+\Sigma_{i}\hat{b}_{i}\partial_{i}(gh_{N})-c(ghN)$ with $\hat{b}_{i}=-b_{i}+\sum_{j}\partial_{j}aij$ and
$c=- \sum_{i}\partial_{i}\hat{b}_{i}$ , we have

$I_{1}$ : $=$
$\int_{D}u\cdot\sum_{i,j}\partial_{i}(\mathit{0}_{ij}\cdot\partial_{j}[gh_{N}])dX$

$=$
$\int_{D}u\sum(\partial_{i^{O_{ij}}})(\partial i,jj[ghN])dX+\int_{D}u\sum_{i,j}a_{i}j(\partial_{i}^{2}[jgh_{N}])dX\equiv I11+I_{12}$ .

As to $I_{11}$ it suffices to estimate the integral of the summation of those terms like $(\partial_{i^{O_{ij}}})$

$(\partial_{jg})h_{N},$ $(\partial_{i}a_{ij})g\cdot(\partial_{j}h_{N})$ . Likewise, as to $I_{12}$ we need to consider the sum of the terms
$\partial_{ij}^{2}g\cdot h_{N},$ $\partial_{j}g\cdot\partial_{iNig\cdot N}h,$$\partial\partial jh$ , and $g\cdot\partial_{ij}^{2}h_{N}$ . Set

$I_{2}:= \int_{D}u\cdot\sum_{i}\hat{b}_{i}(\partial i[ghN])dx=-\int_{D}u\sum b_{i}\cdot\partial i[ghN]d_{X}+\int_{D}u\sum(\partial ajij)ii,j$ . $\partial i[ghN]d\mathcal{I}$ .

As for $I_{2}$ , we have to take care of the terms $\partial_{i}g\cdot h_{N}+g\cdot\partial_{i}h_{N}$ multiplied by $b_{i}$ or by $\partial_{j}a_{ij}$ .
Moreover, we put

$I_{3}:= \int_{D}c[ghN]dx=\int D\int_{D}\sum\partial ib_{i}\cdot[ghN]dx-\sum(\partial_{ij}^{2}o_{i}ii,jj)\cdot[gh_{N}]dX$.

Because it is rather longsome to discuss all of the above integral terms, we shall mention
below only two of them. Those calculations explain almost everything important and
essential involved with the others. For instance, let us consider the integral $I_{12*}= \int u\cdot\sum_{i,j}$

$a_{ij}\partial_{i}g\cdot\partial_{j}h_{N}dx$ . Since

$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(_{j}N\sum_{=1}^{\xi}gj(x)())\subset\bigcup_{j=1}^{N(\epsilon)}2G_{j}^{[\xi}]$

from the condition (a) of Lemma 4, we have $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(h_{N}(X))\subset\bigcup_{j=1}^{N}2G_{j}^{[]}\mathcal{E}$ . By the assumptions
on the coefficients $A=(a_{ij})$ , we can find some constant $C>0$ and $I_{12*}$ is able to be
estimated majorantly by

$C \int D\cap(\bigcup_{j=j}^{N\iota\epsilon}2G\mathrm{l})1u\cdot\sum_{i=1}^{d}|\frac{\partial h_{N}}{\partial x_{i}}|dx$ (10)
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because $g\in C^{1,1}(\overline{D})$ . For simplicity, set $D(G_{*}, N, \epsilon):=D\cap(\bigcup_{j=1}^{N}2G_{j}^{[\epsilon]}\rangle$ , and

$A:= \int_{D(\mathcal{E})}G_{*},N,u^{1+\frac{1}{\gamma(\alpha)-1}}dx$ , $B:= \int_{D()}c_{*}N,\epsilon)(_{i}\sum_{=1}^{d}|\frac{\partial h_{N}}{\partial x_{i}}|)^{\gamma()}dX\alpha$ .

An application of the H\"older inequality to (10) reads $\mathrm{E}\mathrm{q}.(10)\leq C\cdot A^{1-1/\gamma}(\alpha)$ . $B1/\gamma(\alpha)$ . Note

that $Aarrow \mathrm{O}$ as $\epsilonarrow 0$ since $u\in L^{1+1/\{\gamma(\alpha}$ ) $-1$ } $(dx)$ and the Lebesgue measure of $\bigcup_{i}2G_{i}[\mathcal{E}]$

vanishes as $\epsilonarrow..0$ . So that, if $B$ is bounded, then we know that $I_{12*}$ becomes null as $\epsilon$ goes
to zero. The boundedness of $B$ yields from the following estimate. Put

$U_{N}$

.

$:=2c_{N}^{[\mathcal{E}]}.$

’ and $U_{\mathrm{P}}$.
$:=2G[p \mathcal{E}]-=N()\bigcup_{i\mathrm{p}+1}^{\mathcal{E}}2G_{i}^{[_{\mathcal{E}}]}$, $(1\leq p\leq N-1)$ .

Notice that $h_{N}=h_{p}$ on $U_{\mathrm{p}}$ $(p=1,2, \cdots , N)$ . On this account, we can deduce that

$- B$
$=$

$\int_{D\cap(\bigcup_{\mathrm{p}=}U)}N1\mathrm{p}(_{i}\sum_{=1}^{d}|\frac{\partial h_{N}}{\partial x_{i}}|)^{\gamma(}dx\leq c(\gamma)\sum_{=1}^{\epsilon)}\sum\alpha)N(pi=1d\int D\mathrm{n}U_{\mathrm{p}}|\frac{\partial h_{N}}{\partial x_{i}}|^{\gamma(\alpha})dx$

$\leq$ $C’( \gamma, d)p=1\sum^{N(}\xi)a_{p}-(\alpha)\leq Cd\gamma J(\gamma, d)$ ,

by employing (d) of Lemma 4 and the condition (iii) of the covering $\{G_{n}^{[\epsilon]}\}$ of $K$ . Next

let us consider the integral $I_{120}= \int u\cdot g\sum_{i,j}a_{ij}(\partial_{ij}^{2}h_{N})dx$. Since $g\in C^{1,1}(\overline{D})$ , we can
estimate similarly

$I_{12\circ} \leq c||g/p||\infty\int_{D}u\sum_{i,j}\partial^{2}h_{Np}(_{X})dX\leq c_{1}||ij||L\alpha u(d\mu)$
. $( \int_{D}|\sum_{i,j}\partial^{2}hNij|^{\rho}\mu(dx))1/\beta$ (11)

by making use of H\"older’s inequality with $1/\alpha+1/\beta=1$ . The same discussion in estmating

(10) is valid, too, for (11). $\int_{D\cap(\cup}n2G_{n}$ )
$u^{\alpha}d\mu$ vanishes as $\epsilon$ tends to zero, because the covering

$\{G_{n}^{[\epsilon]}\}$ is standard. Thus we attain that $I_{120}arrow 0$ as $\epsilonarrow 0$ . The computation goes almost

similarly for the rest of other terms. Consequently we obtain

$I_{1} arrow\int_{D}u\sum_{i,j}(\partial_{i}aij)\partial_{jgd_{X}}+\int Du\sum_{i,j}oij\partial^{2}jigdX$, $I_{2} arrow\int_{D}u\cdot\sum_{i}\hat{b}_{i}(\partial ig)dX$ ,

and $I_{3} arrow\int_{D}c\cdot gdX$ as $\epsilonarrow 0$ . This concludes the assertion (cf. $[\mathrm{D}\mathrm{k}98\mathrm{b}]$ ).

Let $1<\alpha\leq 2$ because of the restriction on the corresponding process in $\mathrm{t}\check{\mathrm{h}}\mathrm{e}$ probability

theory which we are relying on. From the argument in Theorem 1, the existence of sin-

gularity is allowed if $d>\gamma(\alpha)$ for $\alpha>1$ . It is well known that the sets $A(\subset \mathrm{R}^{d})$ with
$\dim_{H}(A)>d-\gamma(\alpha)$ cannot be $\mathrm{S}$-polar. Corollary in Dynkin(1991) suggests that $\ \mathrm{p}_{0}1\mathrm{a}\Gamma$

$K$ is the RBS together with Theorem 2, because the $\mathrm{S}$-polarity $\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{c}\dot{\mathrm{e}}\mathrm{s}$ the $\mathcal{R}$-polarity and

then $\dim_{H}(K)<d-\gamma(\alpha)$ . We call $\beta=d-\gamma(\alpha)$ the critical dimension for R-polarity.
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We write $\mathrm{C}\mathrm{a}\mathrm{p}x\partial D$ for the capacity on the boundary $\partial D$ associated with the range $\mathcal{R}(\tilde{X}_{D})$

under the measure $\mathrm{P}_{x}$ . As a matter of fact, by Choquet’s capacity theory, $\Gamma$ is &polar iff
$\mathrm{c}_{\mathrm{a}_{\mathrm{P}_{x}^{\partial D}}}(\Gamma)=0$ for all $x\in D$ . While, for the Bessel capacity $\mathrm{C}\mathrm{a}_{\mathrm{P}r,p}$ , the class of $\mathcal{R}$-polar
sets for any $(L, \alpha)$-superdiffusion $X$ is identical to the class of null sets of the capacity
$\mathrm{C}\mathrm{a}_{\mathrm{P}_{2},\{\frac{\alpha}{\alpha-1}\}}$ . Based upon this result, it can be deduced that the class of $\partial$-polar sets is the
same as the class of null sets for the Poisson capacity $\mathrm{C}\mathrm{a}\mathrm{p}_{\alpha}^{L}/(\alpha-1)$

’ where

$\mathrm{C}\mathrm{a}\mathrm{p}_{\mathrm{P}}^{L}(F):=\sup\{\nu(F);\int Dm(d_{X})[\int_{F}k_{L}(x, y)\mathcal{U}(dy)]\mathrm{p}\mp\leq 1\}$

for a compact set $F$ with $\nu\in M_{F}(K)$ and an admissible measure $m(dx)$ on $D$ (cf. Theorem
1. $2\mathrm{a}$ , [DK96] $)$ . Moreover, the above-mentioned class also coincides with the class of null sets
for the Riesz capacity $\mathrm{C}\mathrm{a}\mathrm{p}_{2/}^{\partial}\alpha,\{\alpha/(\alpha-1)\}$ . According to the Dynkin-Kuznetsov general theory
for the removability of singularity, we can show that $\Gamma$ is a weak RBS if $\mathrm{C}\mathrm{a}_{\mathrm{P}_{2/}^{\partial})\}}\{\alpha/(\alpha-1(\alpha,\Gamma)=$

$0$ . Since every weak RBS is &polar, the assertion of Theorem 3 is established via the
argument on the explicit $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ of solution $u(x)=-\log^{\mathrm{p}_{\delta_{x}}}\exp(-\langle\overline{x}\tau’ f\rangle)$ to the
problem (1), where $\overline{X}_{\tau}(B):=X_{\tau}(\mathrm{R}_{+}\cross B),$ $\forall B\in \mathcal{B}(\mathrm{R}^{d})$ with the first exit time $\tau$ from $D$

(cf. Dynkin $(1991),$ $[\mathrm{D}\mathrm{k}98\mathrm{c}]$).
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