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INTERMEDVIATE PROCESS:ES BETWEEN BRANCHING PROCESSES
~AND FLEMING-VIOT PROCESSES

SELJI HIRABA (F% #R)  OSAKA CITY UNIVERSITY

ABSTRACT. Perkins [6} showed that the normalized binary branching process is a time
inhomogeneous Fleming-Viot process. In the present paper we extend this result for
Jump-type branching processes. We show that the normalized jump-type branching pro-
cess is a probability measure-valued process which will be called a “jump-type Fleming-
Viot process”. We also consider the intermediate processes between jump-type branching
processes and Fleming-Viot processes, which are called “jump-type branching Fleming-
Viot(-like) processes”. In order to show the uniqueness we use the Perkins-type relations
between these processes and jump-type Fleming-Viot processes.

1. INTRODUCTION

The measure-valued branching processes are of a typical example of population mod-
els, which are obtained as the limits of some suitable scaled branching particle systems
(cf. Ethier and Kurtz [3] or Dawson [1]). Note that in the branching particle systems
each particle moves and branches independently. In particular, in the binary branching
case, each particle moves independently and dies at random time, and produces 0 or two
offsprings with probability 1/2.

On the other hand, the Fleming-Viot process is well-known as a typical model in the
theory of population genetics introduced by Fleming and Viot [5] and investigated by
many authors, e.g., Ethier and Kurtz [3], [4], Dawson [1], Donnelly and Kurtz [2] and so on.
This is a probability measure-valued diffusion which is obtained as an infinite population
limit of normalized empirical measure of a discrete genetic model with mutations (the
simplest model is the Moran particle system, in which at each random time a pair of
particles is selected and one particle jumps to the location of another particle.

These processes have evidently different properties. The branching process has no
interaction, in particular, the binary branching process suffers extinction. On the other
hand, the Fleming-Viot process has interaction and the total mass process is constant
in time. However, there is a relationship between the binary branching process and
the Fleming-Viot process. Perkins [6] established that the conditional law of the binary
branching process given the total mass process is a time inhomogeneous Fleming-Viot
process (see the last of this section with § = 1). However for the general measure-valued
branching processes, such relations are not yet obtained.

Our aim of this paper is to obtain the Perkins-type relations for jump-type branching
processes. In order to do it, we introduce a probability measure-valued process which will
be called the jump-type Fleming-Viot process and give the Perkins-type relation between
the jump-type branching process and the jump-type Fleming-Viot process. This result
suggest that jump-type Fleming-Viot processes are very useful to built a larger class of
measure-valued jump-type processes. We give two examples of such processes, which are
the intermediate processes between branching processes and Fleming-Viot processes.
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The paper is organized as follows.

In §2 we show the well-posedness of the martingale problem for the time inhomogeneous
jump-type Fleming-Viot process. We also show that this process can be obtained as a
scaling limit of a generalized Moran particle system.

In §3 we consider a simple model of branching particle systems with interaction. That
is, at each random time one particle dies and produces j particles with probability ¢; (j =
0,1,2,...) at the location of another particle. This model is called the sampling branching
particle system or, simply, the SB particle system. We show that the same scaling limit
exists, as in the branching case, and it is unique in the sense of the martingale problem.
We call the limit process as the jump-type branching Fleming-Viot process. We also show
that another scaling limit exists uniquely and the total mass process is an absorbing Lévy
process. This limit process is called the jump-type branching Fleming-Viot-like process.
Under the assumption that these limit processes are unique, the existence and the weak
convergence can be shown by using the general theory described in [3]. However, for the
uniqueness, it seems to be difficult to show by using the known methods. So we use the
above Perkins-type result, that is, the normalized jump-type branching Fleming-Viot(-
like) process is the time inhomogeneous jump-type Fleming-Viot process. The uniqueness
of the jump-type branching Fleming-Viot process follows from the uniqueness of its total
mass process and from the time inhomogeneous jump-type Fleming-Viot process.

Let S be a compact metric space, and set D = D(][0,00) — S) be a path space
of right continuous functions with left-hand limit. Let (w(t), P;)i>00es be a S-valued
time homogeneous Borel strong Markov process starting from z with sample paths in
D. We denote the transition semi-group by (P;) and the generator by A with a domain
D(A) C (C(S),]|-]]), where C(S) is a family of continuous functions on S and ||-|| = || ||«
denotes the supremum norm. We suppose that this semi-group is a conservative Feller
semi-group, i.e., a strongly continuous contraction conservative semi-group on C (S).

Let Mr = Mp(S) be a family of finite Radon measures on S with the weak topology,
that is, un, = g in My <= (tn, f) — (u, f) for every f € C(S), where (u, f) = [ fdu.
Then, Mp is a Polish space, i.e., complete separable metrizable space. The family of
probability measures on S, M; = M;(S) C M, is a compact metric space (cf. Chap. 3
of [3]). For p € Mp \ {0}, we always denote &t = p/(p,1).

It is well-known that if (Z;, P,) is a binary branching process starting from p € Mp \
{0}, then it is an M p-valued dlffusmn satisfying that Z, = Zsrr, (70 = inf{s; Z, = 0} < o0
a.s.), and (Zy, f) (f € D(A)) has the following semi-martingale representation:

(11) (2 ) = (Zo, ) + [ (20, AT) + M(£),
where {M(f):} is a continuous martingale with quadratic variation
(M()e=7 [(2, 5 (3> 0)

If (Y;,P(A) is a Fleming- Viot process (u € My,v > 0), then it is an M,-valued diffusion
and (Y3, f) has the same type semi-martingale representation as in (1.1) with

t”‘7/ Ysaf2 Ys,f>)
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If we state our results in the continuous case (i.e., the binary branching case), then
they are as follows. Consider two kinds of scaled sampling binary branching particle
systems {Z,;}. Then each converges weakly to an M p-valued processes {Z;} such that
Zi = Zinry, which has the same semi-martingale representation as in (1.1). One is the
binary branching Fleming-Viot process and, with a branching probability 8 € [0, 1] at the
same location, the quadratic variation part is given as,

(M) =7 /0 (8= 20)(Z4, %) — 21 - 0)(Z0, F)(Zs, ) I(s < mo)ds,

where 7y = inf{s; Z, = 0}. Another one is the binary branching Fleming-Viot-like process
with

(M= [ 32007, £2) = 20— 0075, £7] (s < ro)ds

(in this case the total mass process is an absorbing Brownian motion in (0, 00)). Moreover
let Q, =P,o0((Z,1)) withy = (g,1) >0 (g € Mg\ {0}) and set g € C, <=
g :[0,00) = [0,00); g is continuous and there exists 7, € (0, 0] such that g > 0 on [0, 7,),
g =0on [r,,00). Then, with a = v(3 — 20),

P,(Z e B|(Z,1)=g) =P{/) (Y. € B), for Qa2 g€Cy,

where (Y3, P(EA‘Q )) is a time inhomogeneous Fleming-Viot process such that Y; = Y, for
t > 7, and that the martingale part {M7(f)} has quadratic variation

()= [ als)™ (Vi £2) = (Vi £7) Ils < 7).

We extend these results for the jump-type branching Fleming-Viot(-like) processes in
Theorem 3.1 and Theorem 3.2.

2. JUMP-TYPE FLEMING-VIOT PROCESSES AND GENERALIZED MORAN PARTICLE
SYSTEMS

The following give the definition of time inhomogeneous jump-type Fleming-Viot pro-
cesses (Y;, P(A99)). Let

D, = {g : [0,00) = [0,00); g is right-continuous and has left-hand limit, and
there is 7, € (0, 00] such that g > 0 on [0,7,), g = 0 on [7,, 00) }

THEOREM 2.1. Let p € My, g € Dy. Forw € D = D([0,00) = My), set Yi(w) =
w(t). Let v(du) be a measure on (0,00) satisfying that

(2.1) /Ooo (u A u2) v(du) < oo.

Fiz a > 0. Then there is a unique distribution Pff"gva"’) on D satisfying the followng:
() Yo=p, Yi=Y,,_ (¢ > 1,), Plse)qs,
(ii) For f € D(A),

ML(f) = (Yo f) = (Yo, ) = [ (Yo, AR)I(s < 7,)ds
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is decomposed as My(f) = M(f)+ M2(f), where {M{(f)} is a continuous L*-martingale
with quadratic variation ‘ :

(M= [ o)™ [(Ye £7) = (Yo, 1] Do < )ds

and {Mtd(f)} is a pure discontinuous martingale such that

s=) ,_ —
//MF 1+ ,'7’ _)(n_y;—7f>l(8<Tg)N(dS,dT]),

where N(ds, dn) is the martingale measure with compensator

N(ds, dn) = ds [ Yi(da) [~ v(du)dus, (d).

REMARK 2.1. If v(du) = v?(du) = ou™*Pdu (a > 0, 0 < 8 < 1), then the pure
discontinuous martingale part. is given as ’

— Yo, I No(ds,d
//MFH?% P(s < 75)No(ds, du),
where Nz(ds,dn) is the martingale measure with compensator

(ds dn) = dsg(s) /Y (dz) / v(du)bys, (dn).

Before proceeding to the proof of Theorem 2.1 we investigate this process.
Let D™ be the algebra generated by {fi(z1)--- fu(2.); fi € D(A),i =1,...,n}. For
h(z) = h(zy,...,2,) € C(S™), let ‘
Plh(z) = H Pt )h(xl, ,Tr), Where Pt(i) = P, acts on ;.
For h(z) = h(z1,...,2 n) € D™, let
(“)h ZA h(zy,...,2,), where A; = A acts on z;.

For p € My, h € C(S”), set F(u;h) = (u", k). We also denote as Fi(u) = Fu(h) =

F(p; h).
In the following we assume y € M; and n > 2. For g € Dy, a > 0, let

LiF(p) = (w7 A(“)h>+——2{<#“ 1, 0uh) — (", h)}

2g( I#k
+ Z Bm,n(g(t)) Z {(#n_m+17 6_7'1;1'2 ,,,,, jmh> - (/‘n7h>}’
m=2 (51.{d21-15m})
where ©;,.;, . h is the operator changing variables (zj,,...,2;,) of h to zj. The
above Y3, (5. im }) denotes the summation about j; in {1,...,n} and about (m — 1)-

combinations {7;,...,jm} choosing from {1,. n} \ {71} Moreover
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u?7Pdu (e > 0,0 < B < 1), then noting that

In particular, if v(du) = v%(du) = au
=2,...,n), we have

m—-1-8,n—-m+8+1>0(m
' a
with the beta function

B(p.g)= [ w(1=widu (p.q>0).

7 is the generator of the -time inhomogeneous jump-type Fleming-Viot process

(Y, P A9.2%)) " In fact, for simplicity of the notations, we only consider the case of v = VP
and let g(t) = g > 0 be a constant and a = 0. Then for ¢ < 74, (¥;, P{#:0%¥)) satisfies that

() = iyt + [ Sl v, W), Y=

where N9(ds, dn) is the martingale measure with compensator

No(dt,dn) = dsg™ [ Yi(da) [~ v(du)s.e, (dn).

Thus by using Ito’s formula the generator £9 is expressed as (note that p is a probability
measure) ‘

LR = (AR +g7 [~ v(du)
[/”(dm)<<1iu“+ T Jf)n’m - <”n’h>]
=, AR) 497 [ (du)[z (1iu>n_m (1_’iu)m

) /"(dxx”n—mv@w,{jl,...,jm}h) - (M",h)],

{jlv--'vjm}

where (u""1(6; — p);,h) denotes the integration of A in the variable z; by &, — u and
in the other variables by u™~*. 3¢ . + denotes the summation about m-combinations
{J1s+++,Jm} choosing from {1,...,n} and O, ..}k is the operator changing variables
(zj,,...,2j,) of h to z. Moreover the summation about m = 0,1 of the last second term
is expressed as ‘

> (=) (3 ) I VR L LSRR

{.711 1.7771}

N S
__zn:( ) 1+u nm<1iu>m<"n’h>'
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Therefore

LIFy(p) = ( A(“)h)+ag52B(m——1—ﬂ,n—m+ﬁ+l)

=2

Y| #dm) i Oups) = (71|

{.711 v.?m}

= (u A‘")h>+agf’ZB(m—l—ﬁ,n—m+ﬁ+ 1)
1 " |
juy > [(#n T OB — <:un7h>} :

m (.71 7{j2v"'1jM})

In order to show the uniqueness of the solution (Y3, PLA’Q “#)) to the martingale problem,
we use a function-valued dual process: for g € Dy, fix 0 < T < 7j.and foreach 0 < s < T,
let GIF,(h) = LT_ ,Fy(u). Moreover set

’Yg,n(f") = ﬁ + B n(9(T — 8)),721’n(s) = Bpn(9(T — s))(m=3,...,n)

and Y, .(s) =m n{ Yo n(8). We consider the following function-valued dual process

(Hs, Q) = (H, ,Qf) 0<s<T(Hy=he C(S") Qias.), with generator GIF,(h).
(i) If H, jumps at s = t, then the process jumps form h € C(S") to ©j,j, .inh €
C(S™~™*1) at rate vy, ,,(t) independently for m = 2,...,n
(i) Between jumps H is deterministic and evolves according to the semi-group (F})
with generator A(™).
(iii) After jumping to the space C(S), the process is deterministic and evolves according

to (Pt)
.
For 0 <r <t<T,set ymn(r,t) = / Ymm(8)ds and z = (z1,...,2,). Then V, ;h(z) =
Vi h(z) = QF[H, | H, = h(z)] (h € C(S™),f € C(SV), N > n) satisfies the following:

Viih(z) = exp [— En: V(T t)] P h(z) + Xn: exp [— > %,n(nt)]

m=2 m=2 k#m;2<k<n

/ ds72, . (5) exp [=Ymn(r, )] P2, (©jisn... ,Jm(Vsth))( z).

(.71){.72» 1.7"1})

REMARK 2.2. This (V, ) is the transition semi-group of the time inhomogeneous gen-
eralized Moran particle system. Recall that the Moran particle system is a model such
that a pair of particles is selected at random time and one particle jumps to the location
of another particle. However this generalized Moran particle system is a model such that
particles more than one are selected at random time and they jump at the same time to
the location of one of them. '

Proof of Theorem 2.1. We first mention independent particle system. Let p = p™ =
Y 8, on S. Let (X?,PY%) be an independent Markov particle system starting from 4

d
associated with the motion process (w(t), P,), i.e., for independent motions (wx(t), Pz,) = @
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(w(t), Pr). n
Xy =2 du, and ® Py, .
For any nonnegative bounded fuknzcltion f on S such that 1 exp[ fle D( ), the generator
L° of this particle system is given by the following:
Lo% 0N (u) = —(u, F AL — €77 ))em 1),
Let n > 1. We consider the n-scaled pafticle system Z, = X?’(”)/n. If p, = pi =

p™/n — u € My, then Zn, = Z) = pP;: the deterministic process as n — oo by a
dynamical law of large numbers. The generator of Z? is given as

L&D () = ~(, Afye ).
In fact the generator of Z , is given as
L2 N pn) = L0 (np,)
= —(ltm, nef/"A(l _ e—f/n)>e—(nn,f)_
For f € D(A) such that f >0, ||f|| <1and n=1,2,..., if we set f, = —nlog(1 — f/n),

e £
0< fn— f< f/ngn_”f”—m (n = 00).
(note that z < —log(l — z) < :c/(l —z) for 0 < z < 1). Moreover
Inln A(1 — e=Inimy = Af
el A1 = ehin) = () = AL
Hence we have as n — oo, exp[—(pn, fn)] = exp[—(y, f)] and
29 —(-fa) _ Af ~(tn, f)
Ln € (:u"n) - (:u’m 1— f/n>e

— _<M,Af>e_(/"'7f)
Fix any 0 < T < 7,. We first prove the existence and uniqueness in D7 = D([0,7] —
My). ~
For the uniqueness, we consider the above function-valued dual process (HX,Q7) (0 <

s < T) corresponding to any solution (Y3, P‘(LA*H’“’”)) to the martingale problem described
in Theorem 2.1. Forall 0 <r <t <T, p € My, f € D" (n € N), it holds that

Po[F(Yy;h) | Y] = QLIF(n; HiZ,)]ln=y,
This result can be easily checked by Th. 5.5.2 in [1] (we take r as ¢, ¢ as t; + ¢t and set
o =t;+t, 3 =0 in the theorem). Hence the uniqueness of the solution (Y;, P{*:¢*")) in
D follows. From this we can also see that the transition semi-group (T,;) of the time
inhomogeneous jump-type Fleming-Viot process (Y3, PLA’Q*“"’)) is given by

TouFh(u) = Fygp a(0) = [ (VeI h) (@) (de) i he C(S™),

The existence of the jump-type Fleming-Viot process can be shown by the same way
as in case of the Fleming-Viot processes (refer to §5, §2 in [1]). In fact, for each integer n,

let M(n) M(n)(S) be a family of counting measures on S of the form n, = Y_;_; d,, /n.
We always assume that u, € M&n) — p € M; and let L], be the generator of scaled
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generalized Moran particle system (Y4, Pn,,,). Moreover let f, = —nlog(l — f/n) for
f € D(A) such that ||f|| <1 and inf f >0, It is possible to show that for each T' < 7,

(2.2) lim sup sup Ithte_("f")(n) — L ()| = 0.
v n—»00 t<T nEMgn)

In fact, for simplicity, we consider the case of A =0, a = 0and v =1°. Let g(t) =g >0

be a constant and we omit the notation “t”. Note that for n =3; &s;/n € MY‘),

L5e™ () | .

S LT SR (Y B o /RN B S
m=2 31,{G2eendm} =2

n

- S k(7)) £ S5 FEve- o] o

m=2 m—1 1yeenrdm k=2

(the first moment (k =1) is zero) and
9.~y = aP [ n(d ~ d
oetN(n) = g [n(de) [~ v(du)

{exp ["1 j_ u<5z -1, f)] -1+ T{—J(c&-- n,f)} ef(”*f)

Thus by the definition of

1 e/ 1 \TT u ™
o _ ___ . [ d
Tmm mg® Jo (1 -+ u) (1 + u) v(du),

it is enough to show that for each k > 2,

n 1 n—1 1 n—m u \™
ng__:kmnk"'m‘l(m—l) (1+u> (1+u) Z

55 a0 - f(wj,-))r

= (1) [ nde)se = n. 1)

uniformly in n = ¥, 65, /n € Mﬁ"’ as n — co. Note that the main term of the expansion

of ==Y, ST, (flag) = flai)] s
& — k!
se(MY) S ek )
) ko ’ m .

=0 N S ky., kaO;E ki=k

< mim=1)--m =k + D)) )

as n — 0o. Moreover by using the relation

L("‘l)m(m_n:.--(m—kﬂ) = (n—1)(n'—‘2)~--(n—k+1)(:ﬁbiz)

m\m-—1
o1 n—=k
I

Q
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we can get the above result. Hence if we denote the transition semi-group. of the empirical
process of the generalized Moran particle system as Tﬁf;) , then by (2.2) we have

lim sup sup ITST;)e_("f”)(n) — T, 0 () =0
"0 0 r<t<T nem(™)

and by the Markov property of {Yx,:}i<T the convergence of the finite-dimensional distri-
butions follows. Moreover since for f € D(A), : '

t
Yot ) = (Yoo, £) = [ (Vs Afyds
isa Pn,un-martingzﬂe and

Sup P, [esssup,cr (Y, AS)]] < 1A,

(Yo, )} is tight by Th. 9.4 in Chap. 3 (p 145) in [3]. Therefore by Th. 3.7.1 in [1]
(Yos, P, .. )i<T converges weakly to (Y;,PL)icr in Dr (we denote P,= PLA’Q'“*”)).
Thus (Y3, P,):<r exists uniquely in Dy for all 7' < Ty ’
< "

In order to extend T — oo, we consider the stopped process Yn(,t = Yo in(r,—1/k) for

each fixed k. By the above argument for any T' > 7, (Yn(ﬁ), P, .. )< converges weakly
to (Yt(k),PM)tST: as n — oo and Y;(k) =Y, as. for t < 7, — 1/k. The martingale part
(MO} of (¥, 1)} is given as

MP() = (60, 1) = (6P, 1) = [V, Af)I(s < 7, = 1/k)ds
and satisfies that
sup [MP(f)] < 2/l + T|| Al

1<T k>1
By Doob’s maximal inequality

P, |sup [M(f) - Mt“)(f)P} < 4P, (M2 () - MP(£)P)
t<T!

Since {Mq(!f)( f)} is a bounded martingale in k, the right-hand side converges to 0 as
Jk — oo. Hence there is a suitable subsequence {k;} such that lim;_,, M.(kj)(f) =
M(®)(f) exists in D([0,7'] -+ R) a.s. for all 7" > 74, and by the uniqueness it holds that
Mt(m)(f) = M;(f) for t < 7,. Therefore M,,_(f) exists and it is possible to extend as
M;(f) = M,,_(f) for t > 7,. This implies Y; = Yinr, for all ¢.

Finally the semi-martingale representation can be shown as in case of measure-valued

branching processes (see the proof of Th. 6.1.3 in [1]). We complete the proof of Theorem
2.1. : . O

3. JUMP-TYPE BRANCHING FLEMING-VIOT(-LIKE) PROCESSES

Fix N > 1. Let u™ = N 18z, We first define sampling branching Markov particle
systems (X;,Q,). As in the proof of Theorem 2.1, we denote the independent particle
system by (X7, P(V)) associated with the motion process (w(t), P;) starting from X =
p®™). For each fixed M = 0,1,2,..., let A = A(M) be a nonnegative number, and if
M > 1, then for m = 1,..., M, {P%k)}lgkgM be a probability. Also let {g;}52, be a
probability.
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We consider the following Markov particle system (X;, Q) starting from p M) first
N-particles move independently. After the independent A(/N)-exponential random time
71, one.particle, for example, m-th particle is selected with probability 1/N. At the same
time another k-th particle is selected with probability p( ) (we admit the same particle
can be selected). Then the m-th particle dies and produces j particles at the location of
the k-th particle with probability ¢; (j = 0,1,2,...). Note that the number of particles
N changes to (X,,,1) = N — 1+ j. The resulting particles move independently. Again
after the independent A((X,,,1))-exponential random time 7,, m'-th particle is selected
with probability 1/(X,,,1) and at the same time 7; + 7, k’-th particle is selected with
probability pf,i‘,xﬁ ) Then the m'-th particle dies and produces j’ particles at the location
of the k’-th partlcle with probability g;; and the resulting particles move independently.
These operations are continued. Of course if all particles die, then these operations will
be stopped.

This particle system (X¢, Q) ) is called the sampling branching Markov particle system
starting from p®) associated with the motion process (w(t), P;), sampling rate function
A = MM), sampling probability {P%k)}lsksM form =1,....M (M = 1,2,...) and
branching probability {q;};>o-

Let Ly(p™) = Q,um[exp —(Xy, f)] and LY(u™) = POy [exp —(X7, f)]. Note that
N = (u™M 1) = (XJ,1), P m-as.. L;(u™) is the unique solution to the following
equation:

’ t
L(p™) = ePML2(u™) 1+ PY, [A(N) / dse‘*(N”{f{N:ow

N N )
[{N>1}N Z_: 2—: ZquLt s ( - J’Wm(s) +j5une(s)> }:l :

Note that L:(0) = 1. If we denote the generating function of {g;} as G(2) = ;>0 2q;,
then the generator L is given as

eIy = —(+f) ’u(N) + X0) I in=0

L I = L% {N=0}

AN z —f(= —(u,
)Z_ Z_ (N)(f(m G(e f(k))_l)e(/-‘ .

+ N>y

We set the domain of £ by .
Do(L) = lin span {e_(“’f);f =—log(l—9),0<g<1l,g€ D(A)}.

Then it is easy to see that (X, Q) is a Markov process with sample paths in D =
D([0,00) — Mp(S)) and the unique solution to the martingale problem for (£, Do(L))
on D.

Next we consider the scaled SB particle system (Z,:,Pn,) and show that the two
kinds of scaling limit exist.

Forn,N=1,2,...,set p™ =¥V 5, and p™ = ™ /n. Suppose that V) 5 p(#
0) € MF as n — 0o. . Thus N depends on n and N/n — (p,1) € (0,00) as n — co. We
consider the following.
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Branching mechanism;
U(v) = §v2 + /oo [e"“" -1+ vu] v(du) (> 0),
o ‘

where ¢ > 0 is a constant and v(du) is a measure on (0, 00) satisfying the condition (2.1).
Then - B

lim (n) =
(in particular, we mainly consider the case, with some constants o > 0,0 < 8 < 1,

du c al'(1 -
R 2" ﬂ((l n ﬂﬁ))”w’
where I' denotes the gamma function). Moreover set a, = ¥/(n) > 0 and let
Gun(z) = ¥(n(l = 2))/(na,) + z. ‘

It is easy to check that this is a generating function and thus the branching probability
{q§n)} is defined by G,(z) = ¥; qg-")zj

Sampling rate functions; \,(0) =0 and with v > 0 for M =1,2,...,

(i) \(M) = yMa,, (i) A (M) = ynay,.

Sampling probability {pank)}, foreach M =1,2,...,let rps be given in [0, 1], but r; = 1.

Set pﬁ =1, and if M > 2, then foreach m =1,--- | M,

o) _ { M (k = m),

v(du) = vP(du) = le., ¥Y(v)=

Pk = sar = (1= ran)/(M = 1) (k#m).

Moreover let 7a; = 3 — spr. For convenience, we further set s; = 0 and 7, = 1. In order

to take the limit, we further assume that there exist constants 8 € [0,1] and My > 1 such

that
(3.1) ™ = % +46 (1 — —j\12[—) for all integers M > M.

In this case we have Tpy = 0 (M > M,).

Let (X:,Q,m ) be the sampling branching Markov particle system with the sampling

rate function A\, and branching probability {qj(n)} such that Xo = p®.
We define the scaled particle system Z, = {Z,}:>0 by Z,; = X;/n and denote its
probability law by P er The generator LZ of (Z,4, P M(N)) is given as

cz- (un ) = £Z° R
™ ( SEmin G (eI @/m) 1) e )

m=1 k=1

We define an operator £Z as follows. Recall that @ = u/{x,1) for p € Mg \ {0}.
(i) If \p,(M) = yMa,, then

L2 (u) = [=(u, AF) + 7 {( U + 1 = 0) ({1, £2) = (s ))(E 1)) }] =47,
(ii) If \,(M) = yna,, then o
L2 0D () = [~ AF) + 7 {(B () + et = 0) (7, £) = (7, £)?) | 0.
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‘We also define the domain
Dy = Do(£L7) = lin span {e~*7); f € D(A), ||| < 1,inf f > 0}
We have the following result. ‘
THEOREM 3.1. Suppose that ™) — p(# 0) € Mp asn — oo (N = N(n)) and the |

condition (3.1) for rys is satisfied with some 6. € [0,1], Mo > 1. Then, corresponding to
A(M) = yMay,yna,, the scaled sampling branching process (Z,:, P #(N)) with branching

probability {qj(n)} defined by U(v) converges to an Mp-valued process (Z;,P,) weakly

in D([0,00), MFp). The limit process is the unique solution to the martingale problem
for (LZ, Dy, u) satisfying that Z; = Zinr, (1o = inf{t;(Z:,1) = 0}). Moreover (Z,, f)
(f € D(A)) has the following semi-martingale representation:

(Zo 1) = (Zo, ) + [ (2o Afs + ME() + MES),

where {M¢Z(f)} is a continuous L?-martingale with quadratic variation (M°(f)): such
that
(i) if \(M) = yMa,, then

(M= e [ [(Zo ) 420 =) (Zo ) (26 N )] (2 <70)
(ii) if A\p(M) = ynan,, then , ‘

(M= e [ (7o £) +201 - 0) ((Zoo ) = (Ze £)] ds (2 <o)
Moreover

Mtd(f):/Of]Mme)N(ds,dn) (t < 7o),

where N(ds, dn) is a martingale measure with compensator

vds [ Zu(dz) [ v(dw)dus,(dn) (M) = 7Mas),

—

N(ds,dn) — | N
~ds /S VACT) /0 V(du)bus, (dn) (Ma(M) = yma).

REMARK 3.1. In the binary branching case we have

U(v) = %1)2 (c=1), an=n, Gu(z)= —;—(1 + 2%).

If \,(M) =~Mn and 6 = 1, then

L7660 (w) = [~ Af) + T4, 1] 0.

The corresponding Markov process is the measure-valued binary branching process.

We call the limit process (Z;,P,) as the jump-type branching Fleming-Viot process in
case of \,(M) = YMa,,, and as the jump-type branching Fleming- Viot-like process in case
of \,(M) = vyna,. ' ’

The following is the extension of the Perkins’s result in [6]. It is also used to prove the
uniqueness of the solution (Z;,P,) to the above martingale problem. '
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THEOREM 3.2. Letu € Mp\{0} and sety = (u,1). For a given 6 € [0,1], let (Z,, P,
be a solution to the martingale problem for (L%, Dy, u) on D([0, ), MFr) described in
Theorem 3.1. Set x, = (Z;,1) and 7o = inf{t;z, = 0}. Then z, has a decomposition
z; =y + z{ + =, where {z} is a continuous martingale starting from 0 with quadratic
variation, fort < 7o,

ve [Czids (M) = yMn)
ey | 7
: ‘ yet (An(M) = vn?).

{2} is a pure discontinuous martingale such that

d t poo
T =/ / un(ds,du) (¢t < 7o),
0o Jo
where 7i(ds,du) is a martingale measure with compensator

vds(Zy, 1)v(du)  (A(M) = yMa,),

n(ds,du) = {
ydsv(du) (An(M) = yna,).

Moreover if Qy =P, 0z.7!, then with a = v¢(3 — 260)
P,(Z €B|(2,1)=g) =P{**™(Y.€ B), Q,-a.a. g€ Dy,

where (Y;,P%A’g'm")) is a time inhomogeneous jump-type Fleming-Viot process described
in Theorem 2.1.

Proof. In case of binary branching this result was shown by Perkins in [6]. In our
sampling branching case the proof goes the same way. In the following we describe the
different part of the computation formally in case of A\,(M) = yMa,. For simplicity, we
denote Z,(f) = (Z, f), |Z:| = (Z;,1). Recall that

AZ(f) = ZA(Af)dt + dME(S) + dMAS), Zolf) = (uy ),

where {M;(f)} is a continuous L?-martingale with quadratic variation
d(MC(f))e = |2.] (aZa(£2) - bZi(£)?) dt
(a=7¢(3—26) > b=2vyc(1 —0) >0 with 8 € [0,1]) and
AMI(f) = [ (n. f)N(dt,dn),
Mp
where N (ds, dn) is the martingale measure with compensator

N{(ds, dn) = 7ds/SZs(dx) /Ooo v(du)dys, (dn).

Thus
A2 = dEME(D)e = (a — )| Z4Jdt = yeaedt,
Moreover for any Borel functions @ on (0, 00) such that ®(u) < C(u A u?), we have

[, @DVt dn) = at| 2] [ @u)u(au)
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Hence z{ is given as in the theorem. Furthermore by using Ito’s formula we have

AUNZD) = “dZINZE+ M1
b= i
;+~/[!Zt—|+lnl |Zt_|] N(th,dn)‘

1 1l ] =
+ - _— — + ——| N(dt,dn),
/ [|Ztl + |77! |Zt| |Zt|2 ' ( 77)

and noting that
d{Me(f), M (1)) = (a — ) Z,(f)dt = (a — b)|Z,| Z:(f)dt
d(Z°(f), (1/1Z1)*Ne = —d{M°(f), M (1))+/1Z]* = —(a = b) Z:(f)/|Z:dt,

we also have

izi) = Zana+ { S0 2Dy}

o o Ml/Z-] |
+/<77 - Zt—>f>vWN(dt, dn)..

If we set
dU.(f) = dM{(f)/|Z:] - [Z(f)/| 21 aME (1), No(f) =0,

then {U:(f)} is a continuous L?-martingale with quadratic variation

AU = alZ(*) = Z:(£)*1| 2| dt.

Hence

IZ$) = TAAD) + AU + [ (1= B, b o W, o), 7o =

(more exactly we should use stopping times 7, = iﬁf{t |Z:| < 1/n}). Therefore roughly
speakmg, under the condition |Z;| = g(t) we can get the desired distribution. It is the
same in case of A\,(M) = yna,. O

REMARK 3.2. For y € My \ {0}, it is possible to construct the solution (Z;,P,) to

the martingale problem (,CZ,DO,/L) directly. In fact, for g € Dy, let (Yt,P(Agw)) be
the Fleming-Viot process described in Theorem 2.1 with a = y¢(3 — 26) and Q1) be
a probability measure on D, such that under @, 1), the canonical process {g(t)} is the

same as {z;} in Theorem 3.2. Then under P, = /Q(u 1)(dg)P(Ag o) , Zy = g(t)Y; is the
desired jump-type branchmg Fleming-Viot(-like) process.

In order to prove Theorem 3.1 we apply the following result (it is a modified result of

Cor. 8.16 in Chap. 4 (p236) in [3] to our case). For each mteger n, let M = M(n)(S)
be a family of counting measures on S of the form nM = M 6, /n for M = 1,2,.
Set

Dy = DP(LY) | -
lin span {e=0; f, = —nlog(1 — f/n), f € D(A),|If]| < 1,inf f > 0}.
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LEMMA 3.1. Let p™ — pu(# 0) € Mp (n — o). Suppose that the martingale
problem for (L%, Dy, ) in D([0,00), MF) has at most one solution (Z,,P,). Suppose that

for each n, {(Z,;, P _ L) )} is a solution to the martingale problem for (LZ, D , V)

and that {(Z.:, P _ u(N))} satisfies the compact containment condition, that is, for every
€>0,T >0, there is a compact set K.7 C Mp such that

(3.2) , i%f P u(N)(Zn't EK.r for0<t<T)>1-c¢

Moreover for f, = —nlog(l — f/n) with f € D(A) such that ||f|| < 1 and inf f > 0, if it
holds that

(3.3) iy Ic%e ~adn) () = L2~ ()] =,

then (Zn,t,Pn’MSIN)) = (Zt,P“) in D([0,0), MF).

This result can be shown, if we take Mg, M};‘), M(n) as E, E,, G, of Ch. 4, Cor. 8.16
(p236) in [3], respectively.

Here we mention the following relations:

N.SN+FN—1—-—0

Z Zp —9(zn)) =0,

] m-lk 1
1_7

-
5 > sa(en)aalor) - (1, g0 (™, g2) + (™), g195).

\ m=1 k=1

Proof of Theorem 8.1. By Theorem 3.2 the uniqueness follows from the uniqueness of
the total mass process and from the jump-type Fleming-Viot process.
By using the above relations we have, with f, = —nlog(1 — f/n) of Lemma 3.1,

LZem b (W)
= LZe ()
+ [“ — ) (97, (= £/ Y, G0 — /) — )

(™, (L f/n) Gl — f/n)—l)] 1)

D= (), Ay g +——nA7}\(,N) [%(uﬁm,\lf(f»

1-7 ™ ()
+ n2N (( M, ) - (M&N),ﬁ(uﬁm,f))}e (wnofn) 4 R, (uM),

where R, (™) is the error term. Therefore noting that lim,_,e Wfo=fll=0,f>f2
inff=e>0,|f||<C;= ||f}|/(1 =11 (IFN < 1), im0 @n/m = ¢ and (3.1), we can

easily get lim,_, Sup R (n™))| = 0 in both cases of A\,(M) = yMa,,yna,, and thus
the condition (3.3) is fulfilled.



107

In order to prove that (Z,,, P M(N)) satisfies the condition (3.2), it is enough to show
that for each z > 0,
Y

P ) (Sup(Zn,t,l) > I) < =",
>0

Tyln T

However this immediately follows from the following result.

LEMMA 3.2. For each o > 0, the following are P ) -martingales.
t , ,
My(a) = eot@ut) = [(fZematt)(z, )ds
0

e~ *Znol) _ yna, (e"‘/nGn(e"a/“) - 1) /Ot(Zn,s, 1)eZne) s
(M) = 7May),

e~ Znel) _ yna, (ea/”Gn(e—“/n) - 1) /0 e~ Znsl)dg
| (An(M) = ynan)

and

(Zo1y1) = lim —(1 — M, 4(a)).

ald o

Therefore the weak convergence follows by Lemma 3.1. The semi-martingale represen-
tation can be shown as in the proof of Th. 6.1.3 in [1]. We complete the proof of Theorem
3.1. O
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