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2 Reflecting Brownian motions and CB-diffusions (Warren’s results)

We introduce the following three different reflecting Brownian motions R, S, A on
the positive half line [0, c0):

(i) The standard reflecting Brownian motion R = (R;) starting at 0: it is well-
known that R is given, from a standard Brownian motion B = (B;) on R with
Bg = 0, by
| . ReBon B
(ii) For # > 0, let S = (S;) be the reflecting Brownian motion starting at 0 with
a constant drift /2 towards the origin: S is given, from a standard Brownian
motion B = (B;) on R with By = 0, by

S; = [Bt — gt} — 01<n£t [BS - gs] . )

(iii) For @ > 0, let A = (A;) be the reflecting Brownian motion starting at 0 with a
sticky boundary at 0 with the rate 2/6: it is characterized by the following SDE
for a nonnegative and continuous process A = (A;) defined on a probability
space with a filtration F ; A is F-adapted, B = (B;) is a standard F-Brownian
motion with By = 0 and they satisfy

t 9 rt
At:/o 1{As>0}st+§/0 1{As:0}d8. (6)

It is well-known that a solution A exists and is unique in the law sense. Actually
it is even known that the joint process (A, B) is unique in the law sense for any
solution of (6), although the solution A can never be a strong solution. According
to [War], this fact was first remarked by R. J. Chitashvili.

When we would emphasize the parameter 6, we write S and A©® for S and A,
respectively. When § = 0, then S coincides with R and A is trivial, i.e. A; =0.

We give several apparently different but essentially equivalent ways of defining
a joint law of (R, S, A) for given constant § > 0. They are given by the followmg
three theorems:

Theorem 2.1. Let S and A be as above and assume that they are mutually inde-
pendent. Define A = (A;) by

t
A, = / 1(p,—oyds, t>0 (7)
0
and R' = (R}) by _ : S
R, = A+ Sa,. (8)
Then, R' £ R.
If we set R := R’ in Theorem 2.1, then this determines uniquely a joint law of

(R, S,A). We call this the joint law of Theorem 2.1.
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Theorem 2.2. Let A satisfy the. SDE (6).and, using the same Brownian motion
B = (By) in (6), define R = (R;) by (4). Then the ]omt Iaw of (R, A) is un1quely
determined. Define A by (7) and set :

Sy = (R —A) g1 = Ry, ’ (9)

where A7 = inf{u | A, > t}, so that t — A;' is the right continuous inverse of
t+s A;. Then ' 2 S and, S’ and A are mutually independent.

If we set S := S’ in Theorem 2.2, then the joint law (R, S, A) is umquely determined
and it coincides with the joint law of Theorem 2.1.

Theorem 2.3. Let R = (R;) be given as above. Let k = (k;) be a measurable

{0, 1}-valued process with the following conditional law given R so that the law of
the joint process (R, k) is uniquely determined: ko =1, a.s. and, for 0 < t; <ty <
co <ty < i, ‘

P(I‘Ltl =1, Ki, = 1,..., Kt,_1 = 1, Kt, = 1|R) = e_M[O’tlle_M[tl’tzl s B_M[t”—l’t"],
(10)
where
M|s,t] = 0(R; — réligtRﬂ), 0<s<t. (11)
Set .
Al = /0 kods, (AN =inf{u|Ay>t}
and define S’ = (S}) and A" = (A}) by
S; = R(Al)t—l, Alt = Rt - S:qi.
Then S' £ S and A’ £ A, and S’ and A’ are independent. Furthermore,
Kkt = l{a=0y  for almost all t, a.s.. . (12)

If weset S := S’ and A := A’ in Theorem 2.3, then the joint law (R, S, A) is uniquely
determined and it coincides with the joint law of Theorem 2.1. Thus we have seen
that there are three apparently different ways of determining the same joint law of

(R,S,A).
The joint process (A, R) can be given explicitly as follows. Let

2 ={(\z) e R}z 20,0 < A<z}

Theorem 2.4. (A, R) is a time homogeneous diffusion on ¥? with Ag = Ry =0
having the transition probability given by ’

plt, (\ z), dNdz') = / /0 ., ©%(da,db)gy” (AN da')



where

guy” (dX'dz) | (13)
= Lig—s<a) - Sar_asa(dX) - &(d2)
o Liz—x>a} - 1{0<,\'<z/ ay - 0-e7ENE g\ gy (da)
+ Lgoasay - €777 8o(dN') - 8(d)

and ©%(da,db) = Py(ming<s<; R(s) € da, R(t) € db), P, being the probability law
governing the standard reflecting Brownian motion R = (R(t)) with R(0) = xz: It is
given explicitly by

20z +b—2a) _@ro-20?
Of(da,db) = —————=-—e" 1 zydadb
t( ) ) m {0<a<bAz}

) 2 z4+b)2
i \/?{i S 1{0<b}(50(da)db

For § > 0 and v € [0,00), let u® = (u®(t), P,) be the CB-diffusion on [0, c0)
with u(®(0) = « which is generated by the differential operator Ly given by (1).
The origin 0 is necessarily a trap. Equivalently, u® is given by the unique strong
solution to the following SDE:

du(t) = \/2u(t) V0 - dB(t) — Ou(t)dt, w(0)=7v (15)

where B = (B(t)) is the Brownian motion with B(0) = 0. The connection of these
CB-diffusions with reflecting Brownian motions R,S and A can be stated in the
following theorem of the Ray-Knight type.

(14)

Theorem 2.5. Let R = (R;), S = (S;) and A = (A;) be reflecting Brownian
motions as above and determine the joint law of (R, S, A) by Theorem 2.1, or equiv-
alently, by Theorem 2.2 or Theorem 2.3. Let l(t,a) and l'(t,a) be the local time or
sojourn time density of R and S, respectively: '

1 t
(¢, a) = li —-/1a“ Uit a) = lim — [ 1iase(Ss)ds. 1
lim oz Jy Hoard (t,a) =lim o | ljaa+el(Ss)ds (16)

Define, for v € [0,00), continuous and nonnegative processes p = (p(t)) and p' =

(W'(t)) by
p(t) =117 (,0),t) and p'(t) =V (7,0),8) (17)

where 171(v,0) = inf{t|l(t,0) > ~} and I'"}(v,0) = inf{t|lI'(t,0) > v}. Then, we
have the following facts: . : ,

(i)  p2 the CB-diffusion p starting at ~.

(i) ' £ the CB-diffusion u© starting at fy
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(iii) It holds that

where
H(S) = 1{,\3:0}. (19)

Since

1=1(7,0)
ult) = /0 I(ds, t),

we may say that y' is obtained from p by a killing determined by a {0, 1}-valued
process k(s). This is what we called a killing operation” in Introduction.

The results of this section are essentially due to Warren ([War]). We amplified
them a little bit by adding Theorems 2.3 and 2.4 which are not stated explicitly
in [War]. These results will be extended to the case of general super-diffusions in
Section 4. In the next section, we recall the notion of Brownian snakes which will
play a fundamental role in this extension.

3 Brownian snakes

Throughout this paper, let £ = {£(¢), P,} be a nice diffusion process on a nice
manifold M generated by a diffusion operator L with L1 = 0. We call ¢ the L-
diffusion. This L-diffusion has been considered as the underlying diffusion of super-
diffusions in Introduction.

In this section, we recall the notion of Brownian &-snake due to Le Gall [L 1]. It
is defined as a diffusion process with values in the space of stopped paths in. M so
that we introduce, first of all, the following notations for several spaces of continuous
paths in M and continuous stopped paths in M:

(i) forz € M, Wo(M) = {w € C([0,00) — M) | w(0) = z}
(if) W(M) = Usens We(M),

9

(iii) forx € M and t > 0,
WO(M) = {w = (w,t) | w € W,(M) such that w(s) = w(sAt) },
() WEP(0) = Uy WIA(21),
(v) WP(M) = Upers WEP(M).
For w = (w,t) € W*(M), we set |w| = t and call it the lifetime of w. Thus we
may think of w € W**“P(M) a continuous path on M stopped at its own lifetime

|w|. We endow a metric on W*P(M) by

(w1, wp) = [[w1] — [wa|] + max p(w:(s), wy(s))



where p is a suitable metric on M. Then, W**?(M) is a Polish space and so is also
WP (M) as its closed subspace. :

3.1 Snakes with determlnlstlc lifetimes

Let « be given and fixed. For each 0 < a < b and w = (w, |w|) € W“"”(M) such
that a < |w|, define a Borel probability Q¥,(dw’) on W2P(M) by the following

property:
(i) |w'| = b for Qyy-a.a. W,
(i) w'(s) = w(s),s € [O,a], for Qy,-a.a. W'

(iii) under QY, the shifted path {(w’)7 (s)
as the stopped path {£(s A (b— a)), s

= w'(a+s), s > 0} is equally distributed
> 0} under Py (q)-

Let ¢(t) be a nonnegative continuous function of ¢ € [0,00) such that {(0) = 0.
Define, for each 0 < t < t and w € WEP(M), a Borel probability P(t,w;t',dw’)
on WSP(M) by ‘ , :
P(t,w;t',dw') = Qucppincan(dW) - (20)

where

m¢[t,t] = min ((u).

t<u<t

It is easy to see that the family {P(¢, w;t',dw’)} satisfies the Chapman-Kolmogorov
equation so that it defines a family of transition probabilities on W*P(M). Then, by
the Kolmogorov extension theorem, we can construct a time inhomogeneous Markov
process X = {X* = (X*(-),{(¢t))} on WEP(M) such that X° = x where x is the
constant path at z: x = ({z(-) = z},0). Note that |X*| = ((¢t). If () is Holder-
continuous, then it can be shown that a continuous modification in ¢t of X* exists (cf.
Le Gall [L 1]). In the following, we always assume that ((t) is Holder-continuous so
that X? is continuous in %, a.s..

Definition 3.1. The Wstor(M)-valued continuous pfocess X = (X') is called the
&-snake starting at © € M with the hfetlme functlon ¢(t). Its law on C([0,00) —
Wstop(M)) is denoted by P5. B

We can easily see that the following three properties characterize the &- snake starting
at z € M with the life time function {(t):

(i) |X*| =¢(t) and, for each te [0, 00),
X':s€[0,00)— X (s)eM
is an L-diffusion such that X t(0) = z and stopped at time ((t),

(i) for each 0 <t < t/,

XY(s) = X4(s), se[o,m[t]],
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(iii) for each 0 <t < #, {X¥(s);s > mé[t;#]} and {X*(-);u < t} are 1ndependent
given X* (m&[t, t]).

3. 2 Browman snakes

In the following, we denote by RBM z(]0, 00)) a reflecting Brownlan motion R =
(R(t)) on [0, 00) with R(0) =

Definition 3.2. The Brownian {-snake X = (X*) starting at 2 € M is a WP(}f)-
valued continuous process with the law on C([0, 00) — W2P(M)) given by

)= <()\PR |
PO = [ PEOPR) | (21)

where P® is the law on C([0, 00) — [0, 00)) of RBM®([0, 00)).
It is obvious that X° = x, a.s.. |

Proposition 3.1. (Le Gall ([L 1])) X = (X?!) is a time homogeneous diffusion on
WtP(M) with the transition probability

P(t,w,dw') = //0 o ol (da, db)QY, (dw') (22)

where @iwl (da, db) is the joint law of (ming<s<; R(s), R(t)), R(t) being RBM™! ([0, 00));
explicitly, '

2(|w| +b—2a) _awitb-20)2

[w] _ — '
0" (da,db) = N 1{0<a<bnjw]} (23)
2 <1w|+b>
+ (e L{o<s}bo(da)db.

The lifetime process ((t) := |X*| is a RBM°([0, 00)) and, conditioned on the process
¢ = (¢(t)), it is the &-snake with the deterministic lifetime fuction ¢(t). '

3.3 The snake description of super-diffusion {u(t), P,}.

Let z € M and X = (X*) be the Brownian ¢-snake starting at z. Then X! is a
RBM?°([0,00)). Let '
za@4m~/mﬂﬁww (29)

el0 2¢

be its local time at a € [0, 00).

Let Mp(M) be the space of all finite Borel measures on M with the topology of
weak convergence and C,(M) be the space of all bounded continuous functions on
M. Introduce the usual notation

/ f@uldz), pe Mp(M), feCy(M).

Let (u(t), P,) be the super-diffusion introduced in Introduction. Recall that this
is given as follows:



(i) the underlying process {£(t), P;} being given by the: L-diffusion,

(ii) the branching mechanism given by

Wz, 2) = —cla)?,

where ¢(x) is a bounded and positive function on M,

so that the log-Laplace functional

u(t, z) = —log Es [exp(—(u(t), f))]
is the solution to the initial value problem

N Iutylw), u(0h) =1,
ot
We assume that ¢(z) = 1; a modification necessary to treat the general case of
positive functions c¢(z) has been studied in [Wat] (cf. [DS]). ’ '
Then, for v > 0 and z € M, the process u(t) under P,.s, can be constructed
from the Brownian &-snake X = (X*) starting at z in the following way: Define
pu(t) € Mp(M),t >0, by

' 171(7,0) s
W), = [ F(Xds,B), f € Co(d), (25)
where (X!) = X*(|X|) € M: the position of X* stopped at its lifetime |X’| and
I71(~,0) = inf{u | I(u,0) > ~}.

Theorem 3.1. (Le Gall [L 1]) {u(t)} defined by (25) is exactly the super-diffusion
{u(t)} under P,.s,. ‘

Let p'(t) be another super-process with the same underlying process as u(t) but
with the branching mechanism now replaced by

Y(z,2) = =2 — 0(z)2.

It is intuitively obvious that the super diffusion g/ (t) is obtained from the super-
diffusion p(t) by eliminating or killing some of its ”particles”; however, there is no
picture of particles in the usual formulation of super processes as measure-valued
processes. We can, however, apply the snake description (25) to realize a killing
operation; in the next section, we discuss how we can modify the expression (25) for
p(t) to obtain p'(¢).
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4 A killing operation on super-diffusions and subsnakes

Let {u(t),P,} and {4/(t), P, } be super-diffusions as above. Then, for z € M and
7 > 0, the measure-valued process u(t) under P..;, has the snake description given
by (25). We would obtain the process 4/(t) under P’ ; in the form:

1~1(v,0) . . :

W p= [ XS D), € Ga), (26)
where £(t) is a certain process taking values 0 or 1. So our problem is concerned with
the definition and the characterization of this process x(t) in terms of the Brownian
é-snake X and the function 6(x). Actually, we would associate to the snake X a
certain nonnegative and continuous process A(t) with A(0) = 0 so that the desired
process k(t) is given by

K(t) = 1iaw=op, t20. (27)

We enlarge the stopped path space WEP(M) ‘to a larger space [W5P(M)] de-
fined by

(W3 (M)] = {(a,w) € [0,00) x WiP(M) | 0 < o < |w]}. (28)

We endow it with the topology induced from the product topology of [0,00) x
WP(M). Given a bounded, nonnegative and continuous function § = ((z)) on M,
we define, for ¢ > 0 and (@, w) € [W5P(M)], a Borel probability P(t, (o, w), do/dw’)
on [WZP(M)] by '

~

P(t, (o, w), do/dw') = // _0(da, db)g(5;™ (do/dw’) (29)
0<a<b<oo ’

where qé‘fb’w)(da’dw’), 0 <a <b< oo, is defined by
(GV(dAdW') = 1{aca)ba(dd)QY,(dW') | (30)

+1l{aza} Lacar<jwyf(w'(c)) exp [_ /

al

6(w' (u))du] do/ QY (dw')

[w'|

+1{a>a} €XP [~—/a H(w’(u))du} Sjw(d) QY (dw').

Theorem 4.1. The family {P(t, (o, w),do/dw’)} defines a system of transition

probabilities on [W*P(M)] and it determines a unique time homogeneous diffu-
sion X = (o', X*) on [WEP(M)].

In the following, we assume a® = 0 and X° = x:

Definition 4.1. The diffusion X = (af, X*) on [W2P(M)] with o® = 0 and X° = x
is called the 6-subsnake of the Brownian &-snake X starting at x.



Obviously, the process X = (X*) defined by the second component of X is a Brow-
nian £-snake starting at z. : o :

Define : ' . : v o

- A =X -af, t>0. (31)

Since |X°| = 0 and a® = 0, we also have A(0) = 0.

Definition 4.2. The diffusion X = (A(t),X?) on [W5*(M)] is called the second
§-subsnake of the Brownian §-snake X starting at .

Theorem 4.2. Let X = (A(t), X*) be the second H-SLibsnake and define the process
k(t) by (27). Then the equation (26) determines the superdiffusion /' (t) under P’ ;5 .

Thus, the killing operation (26) to obtain p'(t) from u(t) through their snake
descriptions can be determined by the second 6-subsnake X, or equivalently, by
the #-subsnake X. So we would like to characterize these snakes in terms of the
Brownian &-snake and the function # in a much simpler way.

Theorem 4.3. Let X = (A(t),X?) be the second 8-subsnake of the Brownian &-
snake starting at x € M. Then, for 0 < s; < s9 < ... < §p1 < Sy and 0 < t; <
... < t;, we have ‘

P (A(51) =0,X(52) = 0,..., A(Smo1) = 0, A(sm) = 0, X" € dwy, ..., X" € dwy,)

71

E (e“M[O’sl]e"M[sl’sz] ce e*M[Sm‘l’s"‘]; Xt g dwy,..., X € dwn) (32)
where
x|
Mis, 1] = / 0(X!(u))du, 0<s<t. (33)
minss'u,gt |X“| .

In other words, conditioned on the Brownian &-snake X, the joint law of the
{0, 1}-valued process (t) = 1{xw=o} is given by

P(k(s1) = 1,k(s2) = 1,...,k(8m-1) = L, k(sm) =1 / X)

— e——M[O,Sl] e-—M[Sl,Sz] . e'—M[Sm—l,Sm]. . (34)

Theorem 4.4. Let X = (A(t),X*) be the second §-subsnake of the Brownian &-
snake starting at x € M. Define '

A= [ Loe-ords (= / t n(s)ds) | (35)
and let A71(t) be the right-continuous inverse of ¢ > A(t). Define fufther
S@t) = [XA"0, t>o0. (36)
Then S(t) is a continuous process and the following identity holds: |

of = S(A(t)), t>0 sothat A(t)=[X'|—S(A(t), t>0. (37)
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‘Theorem 4.4 asserts that the process (A(t),X*) determines the #-subsnake X
or X so that we only need to obtain the process (A(t), X*) in order to obtain the
f-subsnake X or X. By Theorem 4.3, we can obtain the process (k(t), X*) uniquely
in the law sense and hence its measurable version, so that the process (A(t), X?) can
be obtained uniquely in the law sense.

Another characterization of the second f-subsnake X = (A(t), X*) can be given
by means of a stochastic differential equation (SDE) which is a natural generalization
of SDE (6). First, we formulate a SDE.

On a suitable probability space equipped with a filtration F = {F;}, we consider
a continuous process (A(t), X*) on [0, 00) x W5 with A(0) = 0 and X° = x, which
satisfies the following conditions:

(i) the process (A(t), X") is F-adaped and X = {X?} is a Brownian £-snake start-
ing at x, ’

(ii) the Brownian motion {B(¢)} defined by
B(t) = [X'| - (¢,0), (38)

is an F-Brownian motion in the sense that B(t) — B(s) is independent of F,
for every 0 < s < t,

(ili) {A(t)} satisfies the following stochastic differential equation:

1
dA(t) = Lixe>0dB(8) + 51pw=op - 0((X1))dt. (39)

Such a process (A(t),X?) is called a solution of SDE (39), or an F-solution of SDE
(39) when we would refer to the filtration F, with initial values A(0) = 0 and X° = x.

Theorem 4.5. Let X = (\(¢),X") be the second §-subsnake of the Brownian &-
snake starting at © € M. Then it is a solution to SDE (39). Furthermore, the
uniqueness in law of solutions to SDE (39) holds so that X = (A(t), X!) is charac-
terized completely by SDE (39).

In the definition of SDE (39), we assumed that the second component X' of a
solution is a Brownian £-snake. If we rewrite a martingale problem for Brownian
&§-snake studied by Dhersin and Serlet ([DS]), we can also formulate a SDE for the
joint process (A(t), X*) and characterize the second f-subsnake by its solution.

A proof of Theorem 4.5 can be given by showing the following: Set, for a bounded
and continuous function F(a,w) on [WEP(M)] and ¢ > 0,

H(t,(\w) = [

[Wstop(M)] F(a,7 wl)P(t7 (|W| - A, W), daldwl)

where P(t, (o, w), do/dw’) is defined by (29). Then for any F-solution (A(t), X*) of
SDE (39) and a fixed T > 0, t — H(T —t, (\(t), X*)) is an F-martingale.
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