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1 Introduction

The purpose of this expository article is to introduce Dynkin-Kuznetsov’s work on the
Markov snake, which was recently studied in [DyK95]. The notion of Markov snake has
been originally introduced by Le Gall [LG93], who calls it differently, say, the Brownian
snake. Le Gall formulates the family of these newly introduced processes as a certain class
of path-valued Markov processes, and it is well-known that he has been accomplishing so
many remarkable interesting results by taking much advantage of the new object. For
instance, 1) the study on sample path properties of superdiffusion, 2) the probabilistic
research on partial differential equations with nonlinear operator Au — u?, etc. While,
Dynkin and Kuznetsov [DyK95] are advocating the name, Markov snake, in connection with
their series of works on branching measure-valued processes (cf. [Dy89], [Dy93], [Dy94] and
[DyKSk94}). Successfully, they have recently established ”an isomorphism theorem” that
allows us to translate the results on continuous superprocesses into the language of Markov
snakes, and vice versa. In addition, they have obtained new types of limit theorems for
discrete Markov snakes by making use of this theorem. In what follows, we shall introduce
mainly this isomorphism theorem for Markov snakes.

First of all, we begin with introducing notations. We denote by W the space C ([0, |wl],
E) of all continuous paths in a Polish space £ with its own domain [0,u|. Here we write
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|w| for the terminal time u and Ow for the corresponding value w(u). Put
Wu=Wpu ={weW; [u|=u}, Wgy:={weW, |[uw <b}.
For w € W, g and @ € Wiy, r < s <vt, if w(s) = w(s) holds, then we define
wb:=w on [rs]; and =@ on [s,1.

When |w| > a, then w<, means that its domain is restricted on [0,a]. We denote by
Fw(R4) the o-algebra in Wiy o generated by the cylinder sets. We sometimes write
simply Fyy7 for Fyp7(Ry). The symbol bpB(R., ) indicates the space of all positive bounded
Borel-measurable functions on R .

2 Snakes and Historical Superprocesses

Let § = (&, 11,2) be an E-valued continuous Markov process, and £<; denotes the path of
§ during time interval [0,¢]. As a matter of fact, this £<; can be interpreted as the state of
a path-valued process, and we call it the historical process for ¢. In [DyK95] ¢ is assumed
to be a right process, so we do. Here is the definition of historical process.

Definition 1 We say that Z is the historical process for a Markov process (& 1,.z) if G =
|Z| =t and if
Zy = ZTW, Vr < t,

where W is the path of £ on the interval [r,t] started from the terminal point 8Z,.

The state space at time ¢ is equal to W,. We often write &<¢ for Z;. In other words, we
consider Z as a Markov process with the transition probabilities determined by the formula

IEuf (€)= [ Fwi)Tlou(di),  F € bpB(Wy). )

Definition 2 Z = {2} is said to be a discrete random snake if Z, is a W -valued stochas-
tic process with a discrete time parameter t € Z. such that

(a) Zy41 is the restriction of the path Z; on the interval |0, Gev1] if o1 < G, and

(b) Zoi1 = ZW holds if (v > G,

where W is a random element of W (s, (i1 1).

Definition 3 A simple snake ZPis a discrete Markov snake for which ¢ is the simple
random walk on BZ. with reflection at 0.

Next we introduce the Markov snake.
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Definition 4 We say that Z is a Markov snake with parameters (,€) (or simply a (C, 5)-
snake ) if ' | ' :

(a) ¢ is a Markov process in Ry,

(b) W is the path of an E-valued continuous Markov process £ on the interval [(;, Cev1)-

As a conséquence, the Markov property of ({,£)-snake (= Markov snake) can be thought
to be transplanted from those of (,£). In fact we have the following observation. Before
stating the result, we need some notations. Let I, be the transition probabilities of ¢,
and II, , the transition probabilities of £&. For simplicity, we write '

a = 121[13]@, b* == (.

The symbol ([r, c0) stands for a path of ¢ on [r, 00), i.e., for a map from [r,c0) N Z, to
R, and W¢[r, 00) is the space of all such paths.

Theorem 1 ([DyK95],Theorem 1.1, §1.2, p.444) The ({,£)- snake Z is a Markov

process with transition probabilities P, ., connected with Hﬁm and I, , by the formula

— ' ¢ , ~ ~
Pr,w(p(C[ra OO))F(Zt) - /Wg[r,w) (P(C)Hr,}w] (dC) ]W[a*,b*] F(wﬁa*w)na*,w(a*)(dw)7 (2)
where @, F' are positive measurable functions.

The Brownian snake is a special case of the Markov snake in Dynkin-Kuznetsov’s sense.

Definition 5 The Brownian snoke Z with parameter c is a Markov snake for which ( is
the reflectiong Brownian motion in R, with generator (c/2)(d?/ds?). For the special case
c =1, it is called the standard Brownian snake.

Lastly we introduce the so-called historical superprocess. We denote by Mp(D) the
space of all finite measures on D. The historical (£, 1))-superprocess is an Mp(W;)-valued
Markov process (X, Py,,,) such that the Laplace functional is given by

Pre X — o=@y ey Y f € pB(WY), (3)

where v" solves the following log-Laplace equation

V() + Ty [0 Eds = Tuf(E), T<t, weW, (@

Remark. In [DyK95] a process € is fixed, and terminology ”a superprocess with branching
parameter ¢” is used for the historical (§,)-superprocess with branching mechanism (z)
= (2/c)2>

~To state a limit theorem for discrete Markov snakes later, we need to define a specific
type of snake. That is, we deal with a simple snake Z” started at time 0 from point z € E
and killed at the first return to z. The paths are loops in W. More precisely,



30

Definition 6 A simple snake ZP is called a simple L-snake if each path is a continuous
mapping z : [0,u] — W such that

=2,=7 and z; £z for 0<s<u.

We call such mappings W-excursions from z, and denote by Z, the space of all such
excursions. The law of 27 is a probability P? on Z,.

Remark. With respect to the measure P?, the process {; = |Zf | is for ¢ > 1 the simple
random walk killed at 0. However, the transition from (o = 0 to {3 = [ just corresponds
not to killing but to reflection at 0.

Analogously, we can define the Brownian L-snake as a Markov process (Z;, N,), in which
N, is an infinite measure on the W-excursion space Z,, closely related to the so-called 1t
measure dn on the space of positive Brownian excursions. dn was originally introduced by
K. Itd in his theory of the Brownian excursions [IM74]. We set '

)= e (-4 ) = s

Then N, is a measure on Z, with finite-dimensional distributions

Nm{zh € dwl, Cr 2y € dwk} = th(dwl)P(tl, w1, tz, d’wg) cee ’P(tk_l,wk_l; tk, dwk) (5)

for every 0 < t; < --- < ty where P is the transition function of the Brownian snake Z
killed at Wy and the P-entrance law v is given by the formula

() = [ Ty € (0 muldy). (©

Definition 7 A Markov process (Z;,N;.) is called the Brownian L-snake if it has Z,-
valued paths such that (; is the Brownian motion in R, killed at 0 and started with an
entrance law

1
ni(B) = 11_{[01 Egp(oa £;1, B)7

where p is the transition function of the killed Brownian motion.

3 Z-Additive Functional and X-Additive Functional

Let Z denote a Brownian snake, and X a historical superprocess. w<; stands for the
restriction of w to [0, s]. We say that a function A(w) on W is monotone increasing if

A(wee) < A(w) holds for all s < |w|,
and that A(w) is left continuous if

Alw<s) — Aw) as s1|w| for every we W.
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Definition 8 The class A is the set of all monotone increasing left continuous measurable
functions A(w) on W such that '

A(w<s) =0 ass—0
and A(w) is bounded on each set W, = {w: |w| < b}

For every A € A we define a time-homogeneous additive functional I4 of Z and an additive
functional J4 of X. Recall that Z is a time-homogeneous process and X is a inhomogeneous

process.

Definition 9 We say that A belongs to the class A% if A € A and if there exists b such
that A(w) = A(w<p) for all w with |w| > b.

Put Ae A, if A € A and if Alw) = A(wzb) holds for |w| > b and A(w) < b holds for all
w. Note that <
0 __ UAb
b

Write A, = A if A, — A pointwise and if there exists b such that A, € A, for all n.
An ! A means that A, — A pointwise and that A,4; —A, € A for all n. For every
subclass A of class A, we denote by ¢(A) the minimal subset of A which contains A and
is closed under operatlons = ‘and . o

The followings are important typlcal examples of Z-additive functionals I4 and X-

additive functionals Jy4.

Example 1 If A(w) = Ia<|w| a > 0, then L* = I, is the local time at point a for the
reflecting Broumian motion (. If

A(w) = Ia(lw\f(wﬁa)a
then I4(ds) = f(Z,)L*(ds), resp. Ja(ds) = (f, Xs)ba(ds) gives respectively an impor-
tant example of Z-additive functional ( resp. X-additive functional ).

Definition .10 The class A' is the set of functions

w) = 3 Lol fH(wsr), | (7)

teA

where A = {t; < --- < 1,} is a finite subset of (0,00) and f* € bpFyy, for each t € A.

Example 2 If ”
A(w) :L flw<s)ds, (8)

then the corresponding Z-additive functional and X -additive functional are given respec-

tively

I4(ds) = f(2s)ds, Ja(ds) = (f, Xs)ds. (9)
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Definition 11 The class A? is the set of a € A of the form. Eq (8) with a positive
bounded function f vanishing on |w| > b for some b > 0.

Then we have the following equivalence
A= c(A!) = ¢(A?)
(cf. Lemma 2.1, p.446, §2.2, [DyK93] ). |
Example 3 Let Q C W be finely open and define the first exit time
=inf{t>0: we # Q} | (10)
stmalarly as usual one. Suppose that f(w) =0 if |w| = 0. Let

0, f we, €Q  for all s < |w|,

Alw) = { : (11)

flw<,) otherwise.

Then we have an X-additive functional J4(Ry) = (f, X,).

4 Construction of Z-Additive Functional 4

In this section let ¢ stand for the standard Brownian motion on R; with reflection at 0
and let mg be the minimum of {, on the interval [s,t]. The symbol e.g. ¢ with bar is used
for the case of standard Brownian motion killed at 0. The function

9 2
h(s,z) = \/%exp {—;—S} for 0<s,z<o00 (12)

is the probability density of (s given (o = 0 and

2(z+y—20) ox {~(a:+y—-2c)2

} for O0<ec<zAy (13)

is the joint probability density of /g and ¢ given (o = z ( cf. [IM74] ).
If A € A, then to every w € W there corresponds a measure A(w, -) on R, concentrated
on the interval [0, jw|) such that

A(w,[0,s)) = A(w<s) for all 0<s<|uw)|.

Note that, if A is given by formula Eq.(8) in Example 2, then

[, eA@) = [ o fwe)du
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holds. For brevity’s sake, put

: h(s,u)h(t — s,u+ v), if s<t,
Hy(s,t;u,v) == (s, u)h( ) (14)
h(t,v)h(s —t,u + v), otherwise,
and . ’
h(s,u)8(t — s,u;c,v), if s<t,
H(s,t;u,c,v) := (s, u)0( ) (15)
h(t,v)0(s — t,v;c,u), otherwise.

Take A, B € A? associted with f,g respectively by formula Eq.(8). We may use the
standard Brownian snake Z to define

14(ds) = f(2s)ds, Ig(ds) = g(2Zs)ds. (16)
Then it is easy to see that
P, / (t)Ia(dt) = Mo, / ~ A(du) / bt w)p(t)dt (17)
0 0

holds for every ¢,% € pBgr,. Moreover, a simple calculation together with the Markov
property of ((s, Hiz) gives the equality

Po [ () Lalds) / ROIACH

- / ~ o(s)ds / £)dt / dello oMl e.. / A(du)TLe.. A " H (s, t;u, ¢,v) B(dv)

+ / / Y(t)dtTlo 5 [) A(du)Tlo A ~ Ho(s, t;u,v) B(dv), (18)
(cf. Lemma 2.2, p.447, §2.3, [DyK95]) when we make use of the formula (2) in Theorem 1.

Theorem 2 ([DyK95]|, Theorem 2.1, p.449) There exists a mapping : A — 14 from
A to the set of homogeneous additive functionals of the standard Brownian snake Z which
satisfies conditions (17), (18). This Z-additive functional 14 is defined uniquely up to
P ,-equivalence for all z. :

The existence of an additive functional I, is greatly due to Lemma 2.4.2 in [Dy94, p.33].
Dynkin’s general theory of additive functionals shows that there exists a homogeneous
version of I4. Furthermore, this 74 has the following properties.

Proposition 1 We have the following equalities in the sense of P -equivalence.
(a) I.4 = cl 4 holds for allc >0, Ac A.
(b) Iarp = 14+ Ip holds for all A,B € A.

If A, = A, then for every t and every ¢ € bpBg,,

¢ ¢
/ p(8)1a,(ds) — / w(s)14(ds), in P, — probability.
0 0
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If An ft A, then for every ¢ € pBg,,

Aw¢@qumo/jAw¢@ugug, P, —as.

If
B(w):/[| l)f('LUgs)dA(’st) in the sense of P, — equivalence
0,|w

where f € pFw and A, B € A, then Ig(ds) = f(Z;)1a(ds).
Proposition 2 [4(ds) does not charge the set {s: (s =0}.

Note that the trivial case I4(ds) = ds corresponds to A(w) = |w|.

5 Branching Particle Systems

Let us consider a system of particles moving in E according to the law of a continuous
Markov process (&, I1,.,;). Each particle lives for a constant time 3 and it produces at death

time offspring of size n with probability p,, n =0,1,2,--- Here we assume only that
Z np, = 1, <1
n=0

The birth place of offspring coincides with the death place of the parent. There is no other
intersection between particles. We write b < b if b is the parent of &. The historical path
of b is the combination

w® = w(bo)w(br) - - - w(by)
of paths of b = b, and all its ancestors by < b < --- < b,. We also assume that the
process starts at time a > 0 by a finite number of progenitors with prehistories w; € W,.

Remark. Under these assumptions, all particles disappear almost surely after a finite
number of generations.

Let M% = M(W,,Z,) denote the space of all finite integer-valued measures on W,.
Fo,v 1s the measure on the space of diagrams D which corresponds to the particle system
started at time a by particles with prehistories wy, - - -, w,. Put

Pow=Pus,, Pori= / P, M(dv) for M e Ms.

Let t, stand for the death time of b. The formula

X(B)= Y L), tepz,
{bitb:t}

determines a Markov process in the state space MY, with the transition Probabilities P,
Here the state space changes in time.
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Remark. The probability distribution of w® under F,, is identical to the probability
distribution of &[0, t] under I, . ' ~

A random measure X on W is defined by
X(C) = ; Io(w).
Notice that the measure X; is the restriction of X to W;.
p(z) = iopnzn
is the offspring generating function, and put
0al2) = gl B2) — 14+ ).
05 is a measure on $Z, given by the formula o(s) = g for all s € §Z... Then the quantity
Bllaw Xs: Vg (u)(E<s)
is well-defined for 0 < u < 1/ and may be expressed alternatively by

Moo [ 5 (u(<) 03(ds).

Here a € $Z, and the sum is taken over s € 8Z, U (a, 00). .
Now we think of passing to the limit 3 — 0. We suppose that a positive function F' on
W depends on 3 and also that ¥5(2) — 9¥(z). We set

o0

Y(2) = 2%, U(2)(w) = Maw [ ¥(2)(E<s)ds.

In additioh, for A € A%, we define
=283 {Aw") - Aw")}.
‘ b<b ,
N(c) is the Poisson random variable with mean c. First of all, we obtain
Proposition 3 For every positive function F' on W, the Laplace functional of X is given
by ; ,
Po e 7 = exp{—pv(w)}, < (19)

where v solves the following log-Laplace equation
v+ Ha,wL (% (v(é<s)) Uﬂ(ds) = Ilw Z F(€<s) + How ; Gﬁ('u) (533)0'{3 (ds) (20)

as long as 0 < v < 1/0, where

| o
Goe) = 0yalo) — vp—g— = 25 (7" =1+ BF).
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See [Da93]. As a matter of fact, the passage to the limit 8 — 0 is justified for a special

family Fj, namely,
Fp(w) = A(w) — A(wp-p).

Theorem 3 ([DyK95|, Theorem 4, p.456, §4.2) The following limit erists
. 1, — po(w :
lﬁl?()l Pa,N(p/ﬁ)w exp {—5]51} = e pv( )’ (21)

where v is a solution of the equation
v+ ¥ (v) = Haw {A(€co) — A(w)} . (22)

An application of Theorem 3.4.2(p.53) in [Dy94] together with Proposition 3 guarantees
that Eq.(22) has a positive solution v. As a corollary of Theorem 3, we can readily obtain
- the following result, whereby the existence of historical (¥, &)-superprocess X is guaranteed
in accordance with the definition (3), (4). Let X, be a M z(t5)-valued Markov process
defined in the former part of Section 5, with time

§3 = k03, for (k—1)8<s<kg.
Let X, be the image of X; under the mapping : w — w<; from W; 5 to Wy

Corollary 1 For every a <t and every f € bpFw,, we have
lim Pan, 5 exp {=B(f, Xi)} = e, (23)
where v is a solution of the equation

v(w) — V(v)(w) = Mywf(E<) for all a<t. (24)

6 Construction of X-Additive Functional J4

It is well-known that Eq.(4) has the unique solution (cf. Theorem 1.2.1 in [Dy93] ) for
a large class of functions ¥ which includes ¥(v) = ev?, (¢ > 0) and for all f € bpFy,.
Note that the aforementioned Eq.(24) is equivalent to Eq.(4). We denote the unique
solution by V;"f. Operators V;" preserve bounded convergence and they form a semigroup
(cf. [Da93]; see also [Dy94, §1.1]), which we call the log-Laplace semigroup generated by
Y. By Eq.(23)-(24) in Corollary 1, exp{—(V,2f, 1)} is the limit, as 8 — 0, of the Laplace
functionals

/e“<f’”>Mg(dz/),

where Mj is the probability distribution of ,BXt relative to Paﬂm 6 Therefore, by virtue of

arguments in [Dy94, Chap. 3, 3.4C, p.51](see also [T'99]), it follows that functional exp{—
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(Vi*f, 1)} is the Laplace transform of a measure P on W, which depends on a,w and t.
Hence we denote it by

P(aa w; t) )

The semigroup prbperty of V;* implies that P satisfies the Chapman-KolmogordV equation,
and therefore P proves to be the transition function of a Markov process X = (X3, Py.,.).
(For the detail of the proof, see [Dy93]). Clearly, X satisfies the definition of a historical

superprocess in Section 2 (cf. (3),(4) ).

Tt is known [F'88] that there exists a version of X; such that (f, Xt) is right continuous
a.s. relative to all measure F,,, for every R-continuous function f. Moreover, P, x,Y is
a.s. Tight continuous on interval [0, u] for every positive Y which is measurable with respect
to the o-algebra generated by X, s > u. The next assertion easily yields from Theorem 3
and discussions in [Dy94]. The proof goes similarly as in the proof of Theorem 2.

Theorem 4 ([DyK95], Theorem 4.2, p.459, §4.4) Let X be the historical (£, v)-super-
process with twice continuously differentiable 1. There exists a mapping : A Ja from A
to the set of additive functionals of X such that, for all ™ > 0, p € Mp(W,),

P‘r,pe‘JA [rio0) . o= () (25)

where v is a solution of Eq.(22) in Theorem 3.

Moreover, this X-additive functional J4 has quite similar properties as Z-additive func-

tional has in Section 4.

Proposition 4 (a) Joa = cJa a.s. for allc > 0.
(b) Jarp =Ja+ Jp a.s. for A,B € A.

We have P, ,Jalr,t) =11, ,A[r, 1), where A[r, t) = A(f<t) — A(€<y). If ¢ = ¥7(0), then
tAL

P, Jalr, t)J 5[, 1) = I, ,Alr, )11, JA[r, 1) + qIL,, | e Als, )T, Als, f)ds.

Proposition 5 (a) If A, = A, then for allr <t € Ry, p € Mp(W,),
Jar,t) = Jalr,t)  in L*(B.,).

(b) If Ap 1t A, then Ja,[r,t) / Jalr,t) holds P, ,-a.s. forallT <t e Ry, p € Mp(W,).

7 The Isomorphism Theorem

Suppose that X; is a positive measurable function on a probability space (;, Fi, ), for

i = 1,2. Then we write
(X1, P) <= (X2, P»)



38

if the probability distribution of X relative to P is identical to the probability distribution
of X, relative to B.

Through the whole section, let Z be a Brownian snake with parameter cand X a
superprocess with branching parameter c. We denote by L0 [0, s) the local time at O for the
reflecting Brownian motion ¢; = |2;|. Define

=inf{t >0 : L0[0,1) > p).

Then P, ,, are the transition probabilities of Z. We are now in a position to state one of
the main results in [DyK93].

Theorem 5 (The Isomorphism Theorem) For all z € E and A € A, we have the
equivalence

(14[0,0,), Pow) <= (Ja, Pops.),  for w=z€ W (26)
Simple applications of this isomorphism theorem allow us to derive several important as-
sertions.

Application 1. For every Ay, -, An € A, the joint probability distribution of
IAI [0> UP); T IAn [07 U,D)

relative to Py, (for w = 2 € Wy ) is the same as the joint probability distribution of
J Ars s Ja

n

relative to Py ps, -

Application 2. For all z € E, t € R, and all positive measurable functions f, the following
equivalence holds, i.e.,

([ 121 s), Po) 4= (17,50, Poss.). .

This relation has been established by Le Gall(1993) in [LG93; Theorem 2.1].

Application 3. Let 7 be the first exit time of €< from a finely open set Q C W. Let L? be
the additive functional /4 corresponding to

0, ifwc;e@Q for alls<uw,
A(U)) = 01 if Ww<o ¢ Q: (28)

1, otherwise.

Then the additive functional f(Z,)L?(ds) corresponds to Eq.(11) in Example 3 of §3. For
all z € E and all positive measurable functions f such that f(w) = 0 if |w| = 0, we readily
obtain

( I f(zs)LQ(ds),Po,m) e ((f, X2}, Pos,) - 29

Here functional L@ is called the exit local time of Z from Q.

Remark. If Q = {w: |w| < a}, then formula Eq.(28) is identical to the simple case given
in Example 1 of §3. In this case, L? = L¢ is nothing but the Brownian local time at a.
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8 Limit Theorems for Simple Snakes

8.1 The Case of Z-Additive Functional
Suppose that a measurable function X is given on a probability space (QP, FP, PP) for
every 8 > 0, and let X be a measurable function on a probability space (Q,F,P). We

write
(X7, PP) = (X, P)
if the probability distribution of X relaﬁive to PP cénverges weakly to the probability

distribution of X relative to P as 8 — 0.

We consider a simple snake ZP. To every A € A, there correponds a random measure

ii on Z, given by the formula

AR A7) - AL (30)

We denote by £° the measure on 7. which charges every point of the set {t : {(t) = 0} by
23. For simplicity we put

P):=LP0,t), 1) :=L°0,1).

Then we have the following limit theorem for discrete Markov snakes, in terms of Z-additive

functional 14, namely,

Theorem 6 ([DyK95], Theorem B, p.437) Let 22, Pg’m) be a simple snake and (Z;, Po )
the standard Brounian snake. If A € A° and if ¢ is integrable and piecewise continuous,
then

([" e i@).pi,) = ([ etus)1a@s). Po. ) 31)

holds as B — 0, where I, is a Z-additive functional constructed in Theorem 2 of §4.

8.2 The Case of X-Additive Functional
It is obvious that the path-valued process W; = wh for t =0,1,---is a simple L-snake.

To prove this, we have only to pay attention to the key fact that W] is the simple random
walk killed at the first return to 0. Therefore, for every A € A, we get the equivalence

(li(ov 'Yl]a PO,J:) — (]Ep PO,&:)»

where 71 is the time of the first return of ¢ to 0, and jﬁ is defined in Section 5.

Py, stands for the probability law of the branching system started by N independent
progenitors at point z. Then it follows immediately from the above-mentioned equivalence
that

‘ E [Poym[exp {—iﬁ(O,fﬁ]}]]N — Pyoeia.
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Theorem 7 ([DyK95], Theorem B’, p.440) Let X be the standard historical super-
process. Then for allz € E, A€ A° and p > 0,

(JZ7 PN(P/Zﬁ)l‘) == (JAa P07P2)7 v (32)

where Ja is an X-additive functional constructed in Theorem 4 of §6.

9 Limit Theorems for L-Snakes

By virtue of some discussions on Poisson random measures (cf. Appendix, pp.469-471,
[DyK95]), we can easily verify with Proposition 2 of §4 that

— log P exp (— /oo (1(s))1a(ds) ) / /Z e""’(m"(z)} dtN4(dz) (33)
0

" holds for every A € A and for every positive Borel function . Here I4(z) indicates the
value of the additive functional of the Brownian L-snake on its life interval.‘ By applying

Eq.(33) to ¢(u) = L,<1, we get
— log Pg ge~ /410D — /Z , {1-e4@1N, (dz). (34)
Hence we may employ Eq.(26) in Theorem 5 of Section 7 together with (34) to obtain
N[l —e 4] = —log Pos,e /4. - (35)
Thus we attain

Theorem 8 ([DyK95|, Theorem C, p.442) Let (Z° ,Pg,m) be a simple L-snake and
let (Z,N,) be the Brownian L-snake. Put

=Y |AZ) - AL,

If A€ A° and if g is a positive continuous function on R, such that g(u)/u is bounded,
then

lim 55PLla(05)] = Nag(1), (30)

where I4 = 14[0,1*) with the terminal point i* of its life interval.
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