CAUCHY PROBLEMS FOR MIXED-TYPE OPERATORS

KEISUKE UCHIKOSHI

Department of Mathematics,
National Defense Academy
Hashirimizu 1-10-20 Yokosuka, Japan
e-mail: uchikosh@cc.nda.ac.jp
打越敬祐(防衛大)

ABSTRACT. We study a general theory of mixed-type operators containing the Tricomi operators, degenerate hyperbolic operators, and elliptic operators. We will give a necessary and sufficient condition for the Cauchy problems to be well-posed.

Let P(x, D) be a microdifferential operator defined at $x^* = (0; 0, \dots, 0, \sqrt{-1})$ $\in \sqrt{-1}\mathbf{T}^*\mathbf{R}^n$ of order $m \geq 2$, written in the form

(1)
$$\begin{cases} P(x,D) = D_1^m + \sum_{0 \le j \le m-1} P_j(x,D') D_1^j, \\ \text{ord } P_j \le m-j. \end{cases}$$

Here we have written $D' = (D_2, \dots, D_n)$. We also write as $D'' = (D_1, \dots, D_{n-1})$, $D''' = (D_2, \dots, D_{n-1})$. Let $\sigma_m(P)(x, \xi)$ be the principal symbol of P(x, D). We assume that

(2)
$$\begin{cases} \text{ if } x_1 = 0, \text{ then } \sigma_m(P) = \xi_n^m; \\ \text{ if } x_1 \neq 0, \text{ then the equation } \sigma_m(P) = 0 \text{ has } m \text{ distinct roots} \\ \xi_1 = \varphi_1(x, \xi'), \cdots, \varphi_m(x, \xi'). \end{cases}$$

We denote by \mathcal{O} (resp. $\mathcal{O}_{(j)}$) the sheaf of holomorphic functions (resp. the sheaf of functions $f(x_1^{1/j}, x')$ such that f(x) are holomorphic). Without loss of generality, we may assume that $\varphi_j(x, \xi') \in \mathcal{O}_{(m'),x^*}$ for some $m' \in \mathbb{N}$, that they are homogeneous in ξ' of degree 1, and that they vanish when $x_1 = 0$. From now on, we denote $\bar{\mathcal{O}} = \mathcal{O}_{(m')}$. It follows that

$$\left\{ \begin{array}{l} \text{for some } q_j \in \mathbf{N}/m' \text{ and some } \ a_j(x,\xi') \in \bar{\mathcal{O}}_{x^*} \text{ we have} \\ \varphi_j(x,\xi') = x_1^{q_j} a_j(x,\xi'), \ a_j(x^*) \neq 0 \ (1 \leq j \leq m). \end{array} \right.$$

We also assume that

(3)
$$i \neq j \implies (q_i, a_i(x^*)) \neq (q_j, a_j(x^*)).$$

¹⁹⁹¹ Mathematics subject classification. Primary 35M10, Secondly 35J70,35L80.

KEISUKE UCHIKOSHI

We denote by C (resp. E) the sheaf of microfunctions (resp. microdifferential operators). Let us consider the Cauchy problem

(4)
$$\begin{cases} Pu = 0, \\ D_1^{j-1}u(0, x') = v_j(x'), & 1 \leq j \leq m, \end{cases}$$

where $u \in \mathcal{C}_{\mathbf{R}^n,x^*}$ and $v_j \in \mathcal{C}_{\mathbf{R}^{n-1},x^{*\prime}}$ $(x^{*\prime} = (0;0,\cdots,0,\sqrt{-1}) \in \sqrt{-1}\mathbf{T}^*\mathbf{R}^{n-1})$. If P(x,D) is microhyperbolic, (4) is well-posed for arbitrary initial values, as is well-known (See [3]). Otherwise (4) may be solvable for some initial values (e.g., for $v_1 = \cdots = v_m = 0$), but may be unsolvable for other initial values. Therefore there arises a problem to know for which initial values (4) becomes solvable.

To give the main theorem we need to prepare some preliminaries. Let A(x', D') be an both-side invertible $m \times m$ matrix whose components $A_{(\mu,\nu)}(x',D') \in \mathcal{E}_{x^*}^{\mathbf{R}}$ are independent of (x_1,D_1) . Here we denote by $\mathcal{E}^{\mathbf{R}}$ the sheaf of holomorphic microlocal operators (c.f. [1,6]). We choose r rows of this matrix in an arbitrary way. To be clear, let $1 \leq j_1 < j_2 < \cdots < j_r \leq m$ and choose the j_1, \cdots, j_r -th rows of A. Then we obtain an $r \times m$ matrix A'(x',D') of holomorphic microlocal operators. We say that $v_1(x'), \cdots, v_m(x') \in \mathcal{C}_{\mathbf{R}^{n-1},x^{*'}}$ satisfy an r-relation if choosing some r rows of some A(x',D') we have $A'(x',D')\vec{v}(x')=\vec{0}$. Here \vec{v} denotes $t(v_1,\cdots,v_m)$. Note that even if $v_1(x'),\cdots,v_m(x')$ satisfy an r-relation and another s-relation, it does not necessarily mean an (r+s)-relation.

We next define a classification of the characteristic roots. Let $\theta \in \{0, \pi\}$. Let

(5)
$$(x,\xi') \in \mathbf{R}^n \times \mathbf{R}^{n-1}, \ x_1 \neq 0, \ \arg x_1 = \theta.$$

We define

$$\begin{split} M &= \{1,2,\cdots,m\}, \\ M_{0,\theta} &= \{\lambda \in M; \ \operatorname{Re}(x_1 \varphi_{\lambda}(x,\xi')) = 0, \ \operatorname{if} \ (x,\xi') \ \operatorname{satisfies} \ (5)\}, \\ M_{\pm,\theta} &= \{\lambda \in M; \ \pm \operatorname{Re}(x_1 \varphi_{\lambda}(x,\xi')) > 0, \ \operatorname{if} \ (x,\xi') \ \operatorname{satisfies} \ (5)\}, \\ M'_{\theta} &= M \setminus M_{0,\theta} \setminus M_{+,\theta} \setminus M_{-,\theta} \ . \end{split}$$

It is easy to see that $M_{0,\theta} \cup M_{+,\theta} \cup M_{-,\theta} \cup M'_{\theta} = M$ is a disjoint union.

Let $m_{0,\theta}$, $m_{\pm,\theta}$ be the number of the elements belonging to $M_{0,\theta}$, $M_{\pm,\theta}$, respectively. We assume that

(6)
$$M'_{\theta} = \emptyset, \ \forall \theta \in \{0, \pi\}.$$

We also need a condition for the microfumctions. Let

$$\omega(r) = \{ (x, \xi) \in \sqrt{-1} \mathbf{T}^* \mathbf{R}^n; \ |x| < r, \ |\xi''| < r \operatorname{Im} \xi_n \},$$

$$\omega'(r) = \{ (x', \xi') \in \sqrt{-1} \mathbf{T}^* \mathbf{R}^{n-1}; \ |x'| < r, \ |\xi'''| < r \operatorname{Im} \xi_n \},$$

and

$$\omega_0(r) = \{(x,\xi) \in \omega(r); |x'| \le r^{-1}|x_1|, |\xi''| \le r^{-1}|x_1| \operatorname{Im} \xi_n\}, \omega_0'(r) = \{tx'^*; t > 0\}.$$

We define

$$\mathcal{C}_0 = \varinjlim_{r>0} \Gamma_{\omega_0(r)}(\mathcal{C}_{\mathbf{R}^n}, \ \omega_0(r)),$$
 $\mathcal{C}'_0 = \varinjlim_{r>0} \Gamma_{\omega'_0(r)}(\mathcal{C}_{\mathbf{R}^{n-1}}, \ \omega'_0(r)).$

Then we have the following

Theorem. We assume (1)-(3) and (6). Let $v_1(x'), \dots, v_m(x') \in \mathcal{C}'_0$. Then there exists an $m_{+,0}$ -relation and an $m_{+,\pi}$ -relation such that the Cauchy problem (4) has a solution $u \in \mathcal{C}_0$ if, and only if, $v_1(x'), \dots, v_m(x')$ satisfy these relations.

We give some examples. At first we remind the reader of the well-known result for the operators of principal type.

Example 0 (Lewy-Mizohata operators). If $P_{\pm} = D_1 \pm \sqrt{-1}x_1D_n$, then we have $M_{\pm,\theta} = \{1\} (=M), \ M_{\mp,\theta} = \emptyset$. The above theorem means that $P_-u = 0, \ u(0,x') = v(x')$ is solvable for any $v \in \mathcal{C}'_0$ without any relations. In fact using the defining function we only need to let $u(x) = v(x''', x_n + \sqrt{-1}x_1^2/2)$. On the other hand, $P_+u = 0, \ u(0,x') = v(x')$ is solvable only for the case when v(x') satisfies a one-relation. This means v = 0, and u = 0. It follows that $P_+u = 0 \Rightarrow u = 0$, i.e., P_+ is hypo-elliptic in \mathcal{C}_0 (See [6]).

Lewy-Mizohata operators are the simplest case of our theory, and our theorem gives a similar result even for more complicated operators. The characteristic roots belonging to $M_{+,\theta}$ cause obstruction, and correspondingly the Cauchy data must satisfy so many relations. Let us see the case m=2.

Example 1 (microhyperbolic operators). Let $P(x,D) = D_1^2 - x_1^2 D_n^2 + P'(x,D)$, ord $P' \leq 1$. Without loss of generality, we may assume that P' is a polynomial in D_1 of degree 1. Since $\varphi_1(x,\xi') = x_1\xi_n, \varphi_2(x,\xi') = -x_1\xi_n$, and $\arg \xi_n = \pi/2$, it is easy to see that $M_{0,\theta} = \{1,2\}, M_{\pm,\theta} = \emptyset$ for $\theta \in \{0,\pi\}$. It follows that that (4) is solvable for arbitrary $v_1(x'), v_2(x') \in \mathcal{C}'_0$ without any relations (See [3]).

Example 2 (Tricomi operators). Let $P(x,D) = D_1^2 - x_1 D_n^2 + P'(x,D)$, ord $P' \leq 1$. We have $\varphi_1(x,\xi') = \sqrt{x_1}\xi_n$, $\varphi_2(x,\xi') = -\sqrt{x_1}\xi_n$. It follows that $M_{0,0} = \{1,2\}$, $m_{+,0} = 0$, and that $M_{+,\pi} = \{1\}$, $M_{-,\pi} = \{2\}$, $m_{+,0} = 1$. It follows that there exists a 1-relation, and (4) is solvable if, and only if, the Cauchy data satisfy this relation. We can understand this phenomenon as follows. Let $\omega \subset \sqrt{-1}\mathbf{T}^*\mathbf{R}^n$ be a small neighborhood of x^* , and let $\omega^\theta = \{(x,\xi) \in \omega; x_1 \neq 0, \arg x_1 = \theta\}$, $\theta \in \{0,\pi\}$. At first we consider an elliptic boundary value problem in ω_π , giving one boundary datum on $\{x_1 = 0\}$. Then we can always extend this solution to the hyperbolic region ω_0 . This case was considered also by [4]

Example 3 (hypoelliptic operators). Let $P(x,D) = D_1^2 + x_1^2 D_n^2 + P'(x,D)$, ord $P' \leq 1$. Since $\varphi_1(x,\xi') = \sqrt{-1}x_1\xi_n, \varphi_2(x,\xi') = -\sqrt{-1}x_1\xi_n$, it is easy to see that $M_{-,\theta} = \{1\}$, $M_{+,\theta} = \{2\}$, $m_{+,\theta} = 1$ for $\theta \in \{0,\pi\}$. There exist an $m_{+,0}$ -relation and an $m_{+,\pi}$ -relation such that the Cauchy problem (4) uniquely has a solution $u \in \mathcal{C}_0$ if, and only if, $v_1(x'), \cdots, v_m(x') \in \mathcal{C}'_0$ satisfy both of these relations. In most cases two 1-relations mean a 2-relation, but this is not always true. If this is true (4) is solvable only in the case $v_1 = v_2 = 0$, and u = 0. In other words, Pu = 0 does not have any

KEISUKE UCHIKOSHI

non-trivial solutions. It is well-known that this is true if the principal symbol $\sigma_1(P')$ of the lower order term satisfies $\xi_n^{-1}\sigma_1(P') \notin \{\sqrt{-1}, \sqrt{-13}, \sqrt{-15}, \cdots\}$ (See [2,5]). Of course our result applies for higher order operators, too.

REFERENCES

- [1] T. Aoki, Symbols and formal symbols of pseudodifferential operators, Advanced Studies in Pure Mathematics 4 (1984), 181–208.
- [2] L. Boutet de Monvel, Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure Appl. Math. 27 (1974), 585-639.
- [3] M. Kashiwara and T. Kawai, Microhyperbolic pseudodifferential operators I, J. Math. Soc. Japan 27 (1975), 359-404.
- [4] K. Kataoka, Microlocal analysis of boundary value problems with regular or fractional power singularities, Structure of solutions of differential equations, Proceedings of a symposium held at Katata/Kyoto, World Sci. Publishing, River Edge, NJ, 1997.
- [5] S. Nakane, Propagation of singularities and uniqueness in the Cauchy problem at a class of doubly characteristic points, Comm. Partial Differential Equations 6 (1981), 917-927.
- [6] M. Sato, T. Kawai, and M. Kashiwara, Microfunctions and pseudo-differential equations, Lecture Notes in Math., vol. 287, Springer, Berlin-Heidelberg-New York, 1973.