Integral transforms for \mathcal{D}-modules and homogeneous manifolds

Corrado Marastoni

1 Integral transforms, sheaves, \mathcal{D}-modules

Any problem of integral geometry has aspects of geometric nature (e.g. the support of the transform of a datum) and analytic nature (e.g. the differential equations describing the transform of some class of data). The idea of the approach by sheaves and \mathcal{D}-modules (see [8], [4], [9]) is to separate these problems in the calculations of the transform of a constructible sheaf (geometry) and of a coherent \mathcal{D}-module (analysis).

Complex integral transforms and real submanifolds. Since we use the theory of \mathcal{D}-modules, our framework will be complex, and the real transforms will be read by means of \mathbb{R}-constructible sheaves associated to real submanifolds (usually, locally constant sheaves of rank one). Let us explain this point a little more. Let X be a complex analytic manifold with structure sheaf \mathcal{O}_X and $X^\mathbb{R}$ the underlying real analytic manifold: then, the functors $\cdot \otimes \mathcal{O}_X$, $\mathcal{T}hom(\cdot, \mathcal{O}_X)$ and $R\mathcal{H}om(\cdot , \mathcal{O}_X)$ (see [8], [9]) associate a \mathcal{D}_X-module to any \mathbb{R}-constructible sheaf on $X^\mathbb{R}$. In particular, let M be a real analytic submanifold of $X^\mathbb{R}$ such that X is a complexification of M; then, denoting by $j : M \rightarrow X$ the closed embedding and by $(\cdot)^* = R\mathcal{H}om(\cdot , \mathbb{C}_X)$ the duality functor for sheaves, one has $\mathbb{C}_M \otimes \mathcal{O}_X \simeq j_! \mathbb{A}_M$ (analytic functions on M), $\mathbb{C}_M \mathcal{T}hom(\cdot, \mathcal{O}_X) \simeq j_! \mathbb{C}^\infty_M$ (smooth functions), $\mathcal{T}hom(\mathbb{C}_M^*, \mathcal{O}_X) \simeq j_! \mathcal{D}b_M$ (Schwartz's distributions) and $R\mathcal{H}om(\mathbb{C}_M^*, \mathcal{O}_X) \simeq H^{d_M^\mathbb{R}}_M(\mathcal{O}_X) \otimes \mathcal{O}_M | X \simeq j_! \mathcal{B}_M$ (Sato's hyperfunctions).

The general integral transform. Let X and Y be complex analytic manifolds, $q_j \ (j = 1, 2)$ the projections of $X \times Y$ on X and Y. Roughly speaking, the choice of a function (kernel) $k(x, y)$ on $X \times Y$ determines an integral
transform from data (e.g. functions, cohomology classes) on \(X \) to data on \(Y \) by the law \((f \circ k)(y) := \int_{q_2} k(x, y) f(x) \, dx\), where \(dx \) is some volume element on \(X \). Formally, this can be accomplished also in the categories of sheaves or \(D \)-modules, where the pull-back of \(f \) by \(q_1 \) becomes the inverse image by \(q_1 \), the product by \(k \) the tensor product and the integration along \(q_2 \) the proper direct image by \(q_2 \).

More precisely, let \(D^b(C_X) \) (resp. \(D^b(D_X) \)) be the derived category of sheaves of \(C \)-vector spaces (resp. left \(D \)-modules) on \(X \), i.e. the complexes with bounded cohomology modulo quasi-isomorphisms. Any kernels \(K \in D^b(C_{X \times Y}) \) and \(\mathcal{K} \in D^b(D_{X \times Y}) \) define integral transforms by means of the following functors:

\[
\begin{align*}
\circ K : D^b(C_X) & \to D^b(C_Y), \quad F \circ K = Rq_{2!}(K \otimes q_{1}^{-1}F), \\
\circ \mathcal{K} : D^b(D_X) & \to D^b(D_Y), \quad \mathcal{M} \circ \mathcal{K} = q_{2!}(K \otimes \mathcal{O}_{X \times Y} q_{1}^{-1}\mathcal{M}),
\end{align*}
\]

where \(q_{2!} \) and \(q_{1}^{-1} \) are the direct and inverse images in the sense of \(D \)-modules. The functor \(K \circ \cdot : D^b(C_Y) \to D^b(C_X) \) is similarly defined.

A typical situation is when \(\mathcal{K} \) is a regular holonomic \(D_{X \times Y} \)-module and \(K = R\text{Hom}_{D_{X \times Y}}(\mathcal{K}, \mathcal{O}_{X \times Y}) \) (i.e. the complex of holomorphic solutions of \(\mathcal{K} \)) by the Riemann–Hilbert correspondence in Kashiwara's formulation, \(K \) is a perverse sheaf and \(\mathcal{K} \simeq \text{Thom}(K, \mathcal{O}_{X \times Y}) \). For example, we have the geometric correspondences (see [4]): let \(S \) be a smooth complex submanifold of \(X \times Y \) and let \(\mathcal{K} = \mathcal{B}_S \) (the holomorphic hyperfunctions along \(S \)). The Penrose transform (see [6]) is an example. In this case, one has \(K \simeq \mathcal{C}_S[-\text{cod}_{X \times Y}S] \).

If one considers the double fibration (where \(f \) and \(g \) are the projections)

\[
X \leftarrow S \xrightarrow{g} Y,
\]

then it is easy to verify that \(\partial \circ \mathcal{C}_S = Rg_*f^{-1}(\cdot) \) and \(\partial \circ \mathcal{B}_S = g_*f^{-1}(\cdot) \).

Adjunction formulas. The arriving point are the adjunction formulas, where a problem of integral geometry is divided into the problems of calculating the transforms of a sheaf on \(Y \) and a \(D \)-module on \(X \). For simplicity, we suppose the manifolds to be compact.

Proposition 1. ([4], [9]) Let \(X \) and \(Y \) be compact complex analytic manifolds, \(\mathcal{K} \) a regular holonomic \(D_{X \times Y} \)-module and \(K = R\text{Hom}_{D_{X \times Y}}(\mathcal{K}, \mathcal{O}_{X \times Y}) \). Assume that \(\text{char}(\mathcal{K}) \cap (T^*X \times T^*_Y Y) \subset T^*_{X \times Y}(X \times Y) \). Then, for any \(\mathcal{M} \in D^b(D_X) \) and \(H \in D^b(C_Y) \) one has

\[
\begin{align*}
R\text{Hom}_{D_X}(\mathcal{M}, (K \circ H) \otimes \mathcal{O}_X) & \simeq R\text{Hom}_{D_Y}(\mathcal{M} \circ \mathcal{K}, H \otimes \mathcal{O}_Y)[-d_X^C], \\
R\text{Hom}_{D_X}(\mathcal{M}, R\text{Hom}((K \circ H)^*, \mathcal{O}_X)) & \simeq R\text{Hom}_{D_Y}(\mathcal{M} \circ \mathcal{K}, R\text{Hom}(H^*, \mathcal{O}_Y))[-d_X^C].
\end{align*}
\]
Moreover, similar formulas hold when H has \mathbb{R}-constructible cohomology if one replaces \otimes by $\otimes_\mathbb{R}$ and $R\text{Hom}$ by $\mathcal{T}\text{hom}$.

In particular, we are interested in the following case (see [4]). Let \mathcal{F} a holomorphic line bundle on X and \mathcal{F}^\ast. Taking $\mathcal{M} = \mathcal{D}\mathcal{F}^\ast = \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{F}^\ast$, we get

\[
\begin{align*}
R\Gamma(X, (K \circ H) \otimes \mathcal{F}) & \cong R\text{Hom}_{\mathcal{D}_Y} (\mathcal{D}\mathcal{F}^\ast \otimes H \otimes (1 - \mathcal{F}^\ast)[-d_X^Y]), \\
R\text{Hom}((K \circ H)^\ast, \mathcal{F}) & \cong R\text{Hom}_{\mathcal{D}_Y} (\mathcal{D}\mathcal{F}^\ast \otimes H \otimes \mathcal{F}^\ast)[-d_X^Y].
\end{align*}
\]

(1)

Hence, (a) we shall compute the \mathcal{D}-module transform $\mathcal{D}\mathcal{F}^\ast \otimes \mathcal{K}$, and then (b) we shall make different choices of H in order to obtain various applications.

Remark 1. Let p_j ($j = 1, 2$) be the projections of $T^\ast(X \times Y)$ on $T^\ast X$ and $T^\ast Y$ respectively, and denote by p_j the composition with the antipodal map. Assuming, as above, the "non-characteristicity condition" $\text{char}(\mathcal{K}) \cap (T^\ast X \times T^\ast Y) \subset T^\ast_{X \times Y}(X \times Y)$, one has $\text{char}(\mathcal{D}\mathcal{F}^\ast \otimes \mathcal{K}) \subset p_j^\ast \text{char}(\mathcal{K})$. Therefore, it is important to study the "microlocal correspondence" $T^\ast X \leftarrow \text{char}(\mathcal{K}) \rightarrow T^\ast Y$ in order to get informations on the transform $\mathcal{D}\mathcal{F}^\ast \otimes \mathcal{K}$.

2 Generalized flag manifolds and relations to representation theory

We specialize the preceding discussion to the case of compact homogeneous manifolds. Let G be a complex semisimple Lie group, P and Q two parabolic subgroups containing a same Borel subgroup. Let $X = G/P$ and $Y = G/Q$ be the corresponding compact homogeneous manifolds. The diagonal G-action on $X \times Y$ has a finite number of orbits, and the only closed one is $S = G/(P \cap Q)$, which is again a compact homogeneous manifold of G. Let \mathcal{K} be a G-equivariant regular holonomic $\mathcal{D}_{X \times Y}$-module (e.g. the one associated to one of these orbits) and \mathcal{F} be a G-equivariant holomorphic line bundle on X: then $\mathcal{D}\mathcal{F}^\ast$ (resp. $\mathcal{D}\mathcal{F}^\ast \otimes \mathcal{K}$) is a quasi G-equivariant \mathcal{D}_X- (resp. \mathcal{D}_Y-) module (we refer e.g. to [10] for all these notions).

Let G_0 be a real form of G, and let G_0 act on X and Y by restricting the G-action. Then, if H is a G_0-equivariant sheaf (e.g. we shall consider locally constant sheaves of rank one on the closed G_0-orbit in Y), so are $K \circ H$ and the duals, and the formulas (1) and (2) may be interpreted as isomorphisms in the derived category of representations of G_0.
3 The case of Grassmannians

Let $W \simeq \mathbb{C}^n$ and $G = SL_n(\mathbb{C})$. For $1 \leq p \leq n - 1$, the subgroup P_p of matrices in G with the left bottom $(n - p) \times p$ block equal to zero is the “standard pth” maximal parabolic subgroup of G, and the quotient $X = G/P_p$ is naturally identified to the Grassmann manifold of p-dimensional subspaces of W. Recall that X is a compact manifold of complex dimension $p(n - p)$. The homogeneous action of G on X yields the following natural identification:

$$T^* X \simeq \{(x; \alpha) : x \in X, \alpha \in \text{Hom}_{\mathbb{C}}(\frac{W}{x}, x)\}.$$

Let $1 \leq p \neq q \leq n - 1$, $X = G/P_p$ and $Y = G/P_q$; assume for simplicity $p < q \leq n - p$. The diagonal G-action on $X \times Y$ has orbits

$$S_j = \{(x, y) \in X \times Y : \dim_{\mathbb{C}}(X \cap y) = j\} \quad (j = 0, \ldots, p).$$

The closed orbit is $S_p \simeq G/(P_p \cap P_q)$ (the flag manifold of type (p, q) in W), S_0 is the open generic orbit and the other S_j’s are smooth locally closed submanifolds. Again, for $1 \leq j \leq p$ one has the following useful identifications:

$$T^*_S (X \times Y) \simeq \{(x, y; \gamma) : (x, y) \in X \times Y, \gamma \in \text{Hom}_{\mathbb{C}}(\frac{W}{x+y}, x \cap y)\},$$

$$p_1(x, y; \gamma) = (x; \frac{W}{x} \xrightarrow{\pi} \frac{W}{x+y} \gamma \xrightarrow{i} x),$$

$$p_2(x, y; \gamma) = (y; \frac{W}{y} \xrightarrow{\pi} \frac{W}{x+y} \gamma \xrightarrow{i} y).$$

where π and i are the natural maps.

The holomorphic line bundles on X are parametrized (up to isomorphisms) by $\lambda \in \mathbb{Z}$, and we shall denote by $\mathcal{O}_X(\lambda)$ the $-\lambda$th holomorphic tensor power of the determinant of the tautological vector bundle on X. In other words, let $F_p(W) = \{v = (v_1, \ldots, v_p) \in W^p : v_1 \wedge \cdots \wedge v_p \neq 0\}$ (the manifold of p-frames in W, an open dense subset of W^p) and $\pi : F_p(W) \to X$ the natural $GL_p(\mathbb{C})$-bundle assigning to any $v = (v_1, \ldots, v_p) \in F_p(W)$ the p-subspace of W spanned by the v_j’s: then, for any open subset $U \subset X$ one has

$$\Gamma(U; \mathcal{O}_X(\lambda)) = \{\phi \in \Gamma(\pi^{-1}(U); \mathcal{O}_{F_p(W)}) : \phi(vA) = (\det A)^\lambda \phi(v) \forall A \in GL_p(\mathbb{C})\}.$$

We will write $\mathcal{D}_X(\lambda) = \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{O}_X(\lambda)$ for short.
4 Applications

We announce results in two different applications.

4.1 The Grassmann duality ([11])

In the above notations, let $W \simeq \mathbb{C}^n$, $G = SL_n(C)$, $X = G/P_p$, $Y = G/P_{n-p}$ (we assume $p \leq n/2$), $\Omega = S_0$ and $S = (X \times Y) \setminus \Omega$. We consider the integral transform from X to Y given by $K = C_\Omega$ and $K = B_\Omega = T hom(C, \mathcal{O}_{X \times Y})$, i.e. the sheaf of meromorphic functions on $X \times Y$ with poles on S. (This choice generalizes the projective duality (see [5]), which is obtained for $p = 1$.) The nice geometric properties of the correspondence (e.g. for any $y \in Y$ the “slices” $\Omega_y = \{x \in X : (x, y) \in \Omega\}$ are affine charts of X) allow us to prove that:

Theorem 1a. The functor $\cdot \circ C_\Omega : D^b(C_X) \rightarrow D^b(C_Y)$ is an equivalence of categories preserving the objects with R- or C-constructible cohomologies; similarly, the functor $\cdot \circ B_\Omega : D^b(D_X) \rightarrow D^b(D_Y)$ is an equivalence of categories preserving the objects with good coherent or regular holonomic cohomologies.

The closed singular manifold S is a non-smooth (if $p > 1$) hypersurface of $X \times Y$, Whitney-stratified by $S = \bigcup_{j=1}^p S_j$. The group G acts prehomogeneously on $X \times Y$ with singular locus S, and this action is locally isomorphic to that of $GL_p(C)$ on $M_p(C)$ whose semi-invariant is $f : M_p(C) \rightarrow C$, $f(a) = \det(a)$ with b-function $b(s) = (s + 1) \cdots (s + p)$. This is a regular prehomogeneous vector space, and hence we get char(B_Ω) = $T_{X \times Y}^*(X \times Y) \cup \bigcup_{j=1}^p T_{S_j}^*(X \times Y)$. From the above identifications, it is then easy to check that the microlocal correspondence $T^*X \leftarrow \text{char}(B_\Omega) \rightarrow T^*Y$ induces a contact transformation between two open dense subsets $U_X \subset T^*X$ and $U_Y \subset T^*Y$, whose graph Λ is contained in $T_{S_p}^*(X \times Y)$, and moreover $p_1^{-1}(U_X) = p_2^{-1}(U_Y) = \Lambda$. Using this fact and Theorem 1a, we obtain the following result:

Theorem 1b. Let $\lambda^* = -n - \lambda$: then $\mathcal{D}_X(-\lambda) \circ B_\Omega \simeq \mathcal{D}_Y(-\lambda^*)$ if $b(\lambda^* - \nu) \neq 0$ for any $\nu = 1, 2, \ldots$, i.e. if $\lambda \geq -n + p$.

Applying Theorem 1b to (1) and (2) we get the following isomorphisms
for any \(-n + p \leq \lambda \leq -p\) and any \(H \in D^b(C_X)\):

\[
\text{RG}(X; H \otimes \mathcal{O}_X(\lambda)) \simeq \text{RG}(Y; (H \circ C_\Omega) \otimes \mathcal{O}_Y(\lambda^*))[N],
\]

\[
\text{RG}(X; R\text{Hom}(H, \mathcal{O}_X(\lambda))) \simeq \text{RG}(Y; R\text{Hom}(H \circ C_\Omega, \mathcal{O}_Y(\lambda^*)))[-N],
\]

(where \(N = p(n - p)\)) and similarly for \(\otimes\) and \(R\text{Hom}\) replaced by \(\otimes\overline{\mathcal{X}}\) and \(\mathcal{T}\text{hom}\) when \(H\) has \(\mathbf{R}\)-constructible cohomology. Hence, we are left with the choice of \(H\) and the calculation of \(H \circ C_\Omega\). (Using the symmtry of the transform, here we have written the formulas with \(H\) a sheaf on \(X\) rather than on \(Y\).)

Example 1. Let \(Q\) be a hermitian form of signature \((p, n - p)\) on \(W \simeq \mathbb{C}^n\), and let \(G_0 = SU_{p,n-p}(Q)\) be the corresponding real form of \(G\). The \(G_0\)-orbits in \(X\) are \(U'_{i,j} = \{x \in X : Q_x\mid_y \text{ has signature } (i, j)\}\) for \(0 \leq i + j \leq p\) (the only closed orbit is \(U'_{0,0}\), i.e. the \(Q\)-isotropic \(p\)-subspaces, and the open orbits are \(U'_{i,j}\) with \(i + j = p\)). Similarly, the \(G_0\)-orbits in \(Y\) are \(U''_{i,j} = \{y \in Y : Q_y\mid_x \text{ has signature } (i, j)\}\) for \(0 \leq i \leq p, j \geq n - 2p\) and \(i + j \leq n - p\). Let \(y_0 \in U'' = U''_{0,n-p}\), and let \(E'_0 = \{x \in X : x \cap y_0 = 0\} \simeq \mathbb{C}^n\): then \(U' = U'_{p,0}\) is a relatively compact open subset of \(E_0\); similarly, fixed \(x_0 \in U',\ U''\) is a relatively compact open subset of the affine chart \(E''_0 = \{y \in Y : x_0 \cap y = 0\} \simeq \mathbb{C}^N\). Let us consider the closure \(\overline{U'} = \bigcup_{j=0}^{p} U'_{j,0}\), and choose \(H = C_{\overline{U'}}\): then it is possible to prove that \(C_{\overline{U'}} \circ C_\Omega \simeq C_U\) and then from the above adjunction formulas we get

\[
\text{RG}(\overline{U'}, \mathcal{O}_{E'_0}) \simeq \text{RG}_c(U''; \mathcal{O}_{E''_0})[N], \quad \text{RG}(\overline{U''}; \mathcal{O}_{E'_0}) \simeq \text{RG}(U''; \mathcal{O}_{E''_0})[-N]
\]

where all complexes are concentrated in degree zero.

4.2 The generalized Radon-Penrose transform ([3])

Let \(W \simeq \mathbb{C}^{n+1}\), \(G = SL_{n+1}(\mathbb{C})\), \(X = G/P_1\), \(Y = G/P_{k+1}\) (with \(1 \leq k \leq n-2\)) and \(S = S_1\). Note that \(X\) is a \(n\)-dimensional complex projective space and \(S\) is the flag manifold of type \((1, k+1)\) in \(W\); one has \(\dim_{\mathbb{C}} X = n\), \(\dim_{\mathbb{C}} Y = (k+1)(n-k)\) and \(\dim_{\mathbb{C}} S = n + k(n-k)\). We consider the integral transform from \(X\) to \(Y\) given by \(K = C_S[-(n-k)]\) and \(K = B_S\). (This is a natural generalization of Penrose's twistors correspondence (see [6]), which is obtained for \(n = 3\) and \(k = 1\).) We have \(\text{char}(B_S) = \Lambda = T_\Sigma^*(X \times Y)\), and thus let us consider the microlocal correspondence \(T^*X \leftrightarrow \Lambda \rightarrow T^*Y\): it is easy to check that \(p_1|_{\Lambda}\) is smooth and surjective and \(p_2|_{\Lambda}\) is a closed embedding identifying \(\Lambda\) to a smooth regular involutive submanifold \(V \subset \dot{T}^*Y\) (in fact,
it is \(V \simeq \{(y; \beta) : y \in Y, \ \beta \in \text{Hom}_C(W, y), \ \text{rank}(\beta) = 1\} \), which implies that the correspondence induces microlocally a contact transformation with holomorphic parameters. Using the theory of [4], we prove that:

Theorem 2a. \(\mathcal{D}_X(-\lambda) \otimes \mathcal{B}_S \) is concentrated in degree zero if and only if \(\lambda < 0 \), and \(H^0(\mathcal{D}_X(-\lambda) \otimes \mathcal{B}_S) \) is a \(\mathcal{D}_Y \)-module with simple characteristic along \(V \).

For any \(\lambda \in \mathbb{Z} \) we introduce a pair of \(G \)-equivariant holomorphic vector bundles \(\mathcal{H}_\lambda \) and \(\tilde{\mathcal{H}}_\lambda \) on \(Y \), and a \(G \)-invariant differential operator (the *ultrahyperbolic system*) \(P_\lambda \) acting between them. The description of these objects, that will be given in detail in [3], depends upon the sign of \(\lambda^* = -k - 1 - \lambda \) (positive, null and negative helicity cases in Penrose’s terminology [6]): it can be partially found e.g. in [2, Ex. 9.7.1] and, in a real version, in [7].

Let \(\mathcal{N}_{P_\lambda} \) be the coherent \(\mathcal{D}_Y \)-module associated to the differential operator \(P_\lambda \), i.e. \(\mathcal{N}_{P_\lambda} \) is defined by the exact sequence of \(\mathcal{D}_Y \)-modules (where \(\mathcal{D}\mathcal{H}_\lambda^* := \mathcal{D}_Y \otimes_{\mathcal{O}_Y} \mathcal{H}_\lambda^* \) and \(P_\lambda^* \) is the transpose to \(P_\lambda \)):

\[
\mathcal{D}\tilde{\mathcal{H}}_\lambda^* \xrightarrow{P_\lambda^*} \mathcal{D}\mathcal{H}_\lambda^* \longrightarrow \mathcal{N}_{P_\lambda} \longrightarrow 0.
\]

The \(\mathcal{D}_Y \)-module \(\mathcal{N}_{P_\lambda} \) has simple characteristic along \(V \), and we prove that:

Theorem 2b. For any \(\lambda < 0 \), \(\mathcal{D}_X(-\lambda) \otimes \mathcal{B}_S \) is isomorphic to \(\mathcal{N}_{P_\lambda} \).

Again, the application of Theorem 2b to (1) and (2) yields the following isomorphisms for any \(\lambda < 0 \) and any \(H \in \mathcal{D}^b(C_Y) \):

\[
\text{R}\Gamma(X, (C_S \circ H) \otimes \mathcal{O}_X(\lambda)) \simeq \text{RHom}_{\mathcal{D}_Y}(\mathcal{N}_{P_\lambda}, H \otimes \mathcal{O}_Y)[-k],
\]

\[
\text{RHom}_{\mathcal{D}_Y}((C_S \circ H)^*, \mathcal{O}_X(\lambda)) \simeq \text{RHom}_{\mathcal{D}_Y}(\mathcal{N}_{P_\lambda}, \text{RHom}(H^*, \mathcal{O}_Y))[-k]
\]

and similarly for \(\otimes \) and \(\text{RHom} \) replaced by \(\check{\otimes} \) and \(\check{\text{Thom}} \) when \(H \) has \(\mathbb{R} \)-constructible cohomology.

If we choose \(H \) to be a locally constant sheaf of rank one on the closed orbit of some real form \(G_0 \) of \(G \) in \(Y \), we can recover and improve many known results of real integral geometry. We give two hints in this direction (these results will appear in [3]).

Example 2. Let \(W_\mathbb{R} \) be a \((n+1)\)-dimensional real subspace of \(W \) such that \(W \simeq \mathbb{C} \otimes_\mathbb{R} W_\mathbb{R} \), and let \(G_0 = SL_{n+1}(\mathbb{R}) \) be the corresponding real form of \(G \). Assuming for simplicity that \(k+1 \leq (n+1)/2 \), the \(G_0 \)-orbits in \(Y \) are \(\mathcal{N}_j = \{ y \in Y : \dim_\mathbb{R}(y \cap W_\mathbb{R}) = j \} \) \((j = 0, \ldots, k+1)\), and \(N = \mathcal{N}_{k+1} \) is
naturally identified to the real Grassmann manifold of \((k+1)\)-subspaces of \(W_{\mathbb{R}}\). Similarly, the \(G_{0}\)-orbits in \(X\) are \(M_{i} = \{x \in X : \dim_{\mathbb{R}}(x \cap W_{\mathbb{R}}) = i\}\) \((i = 0, 1)\), and \(M = M_{1}\) is naturally identified to the real projective space of \(W_{\mathbb{R}}\). It is known that \(N\) (in particular, \(M\)) is not simply connected: namely, one has \(\pi_{1}(N) \cong \mathbb{Z}/2\mathbb{Z}\). We denote by \(C_{N}(\epsilon)\) \((\epsilon = 0, 1)\) the two distinct locally constant sheaves on \(N\), with the convention that \(C_{N}(0) = C_{N}\). For example, for \(\epsilon = 1\) we recover and improve the results of [7], whereas for \(\epsilon = 0\) the results should be new.

Example 3. Let \(1 \leq k \leq q \leq n-1\), \(Q\) a hermitian form on \(W\) of signature \((q+1, n-q)\), and let \(G_{0} = SU_{q+1,n-q}(Q)\) be the associated real form of \(G\). Assuming for simplicity that \(q + 1 \leq (n + 1)/2\), the \(G_{0}\)-orbits in \(Y\) are \(N_{i,j} = \{y \in Y : Q|_{y}\) has signature \((i,j)\}\) for \(0 \leq i + j \leq k + 1\). The closed orbit is \(N = N_{0,0}\), the \(Q\)-isotropic \((k+1)\)-subspaces of \(W\): one can prove that \(N\) is a generic real submanifold of \(Y\) of dimension \((k+1)(2n-3k-1)\), simply connected if \(k + q + 1 < n\) and affine if \(k = q\). Similarly, the \(G_{0}\)-orbits in \(X\) are \(M_{0,0}, M_{1,0}\) and \(M_{0,1}\); the closed orbit \(M = M_{0,0}\) is a simply connected real hypersurface of \(X\), and \(M_{1,0}\) and \(M_{0,1}\) are the two connected components of \(X \setminus M\). Here, we can extend some results known only in the case of the Penrose transform (see e.g. [1]) by calculating \(C_{S} \circ C_{N}\).

References

CORRADO MARASTONI

Dipartimento di Matematica Pura ed Applicata – Università degli studi di Padova – Via Belzoni, 7 – I-35131 Padova (Italy) – maraston@math.unipd.it