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FERRAT S REKETRE

(Divisor Problem with Characters)

HEBRE S A1 475 (Yoshio Tanigawa) -

Let x be a Dirichlet character rhod k and let rq(n,x) be the function

defined by - :
X) =Y x(d)d
din

where a is a fixed real number. When yx is identically 1, this function is a
classical divisor function usually written by o,(n). On the other hand, when

a = 0 and x is the Kronecker symbol corresponding to Q(i), then

ro(n, x) = %T(n)

with r(n) = §{(z,y) € Z?| 22 + y?> = n}. Hence we can also consider ,(n, x)
as a generalizétion of the counting function of the lattice points on a circle.
We shall consider the sum of 74(n, x) and the mean square of its error term.

Before stating our results, we shall recall some known results about‘ the

sum of o,(n). Put
Ap(z) = Z'ao(n) —z(logz + 2y —1) — 1/4,
n<z

where vy is Euler’s constant and the prime on the summation means that the

last term is to be halved if z is an integer. In 1956, Tong proved that

/ Ao =1 <4<(?/)2)X3/2+O(X10g X).



and the O-term was improved to O(X log* X) by Preissmann in 1988. For
—1 < a <0, we define 4
SNV () = (1 —ayp — ST e Lo
Ay(z) = Z aa(n) — (1 — a)z Ta © + 2C( a).

n<lz

The mean square formula of A,(z) for —1/2 < a < 0 was first considered by

Kinchi. and improved by Meurman. Tn fact. Meurman [2] proved that

[ i

( ((3/2 = a)((3/2+ a)(*(3/2) y 37240 ‘
6+ 4a)r2C(3) X327+ L O(X) for —1/2<a<0
= mzig(/;))XlogX+O(X) for a=—-1/2
| O(X) for —1l<a<-1/2

For the case —1 < a < —1/2, the more precise formula had already been
obtained by S. Chowla in 1932. In [1], he showed that

X 2(1 —a)((-2a
/1 |Ag(z)Pdx = ¢ (112(:(2)5(2; )X+O(X3/2+“logX)

for —1 < a < —1/2. Recently, the last formula was obtained independently
by Yanagisawa in a somewhat general situation in [3]. He proved that

[ alonwa = (3 al*“(hngl”(kn))"

+0O(X G+t /2 100 X).

n=1

for -1<a<0,~-1<b<0,a+b<—1and h>0,k>0,(hk)=1.

The aim of this note is to show the corresponding mean square formula
for r4(n, x). We assume throughout that yx is a non-trivial Dirichlet character
mod k. In our case, the error term of the sum function of r4(n, x) is defined

by | :
Aa($> X) = era(n’ X) - L(l - a,x)w + %L(—aaX)'

n<z



Theorem 1. Let —1 < a, b < 0 be real numbers and let k < VX.
Suppose that x1 and X2 are primitive Dirichlet characters mod k with the
same parity.

(i) For a+b > —1, we have

X
/ Aa(x,X1)Ab($ﬂX2)dx
1 .

= C1X(3+“+b)/2 + O(min(kZX, l_cX(logX)z)) + O(kmax(%-{-“—g:’l,l)X)’

where |

c T(XI)T(Xz)k(—1+a+b)/2
! 272(3 + a + b)

« C(3—‘3—_‘9)L(3—+§—‘b,>‘<1)13(3”—;‘+—”, )22)13_(&;—_”’7 )21)22)
L(3, X1X2) ’
and
k-1 .
(x) = D x(m)e*mmE.
. n=1

(ii) For a + b= ~1, we have

._ / A (@, X1) A1 _a(z, X2)d
1

) CaXlog X + O(min(k*X, kX (log X)?)) if x2= X1
O(min(k%X, kX (log X)?)) otherwise

with
2

0, = XtEDLE + a0, %) L(1 - a, x1) I[--2
24¢(3) prd SRR

Theorem 2. Let—-1<a, b<0,a+b> —1 and k < VX. Suppose that
x1 and x2 are primitive Dirichlet characters mod k with the opposite parity.

Then we have

) X
[ Aa(waXI)Ab(m7X2)dm

= O(min(k*X, kX (log X)?)) + O(k==G+F x).



For the case a + b < —1, we have the following theorem.

Theorem 3. Let —1<a, b<0,a+b< -1 and k <« vX. Let x1 and

X2 be non-trivial Dirichlet characters mod k. Then we have
X
/ Aq(, x1)A(z, X2)dz = C3X + O(k? log kX 3++9/2 Jog X)
1

where
C- = L(l — a, Xl)L(l - b’ X2)L(_a - b, X1X2)
3 12L(2 — a — b, x1X2)

In these theorems, the O-constants do not depend on the modulus k.

Outline of the proof of Theorems 1 and 2.

For the proof of Theorems 1 and 2, we need the Voronoi formula for
Aq(z,x). Let ¢(s) be the generating function of 74(n,x). It is easily seen
that ¢(s) = ((s)L(s — a, ). Let

5 0 if x is an even character,
X 1 if x is an odd character,

and W(x) = (=1)%*7(x)/vk. Then the functional equation of ¢(s) is given
by

¢(S) — W(X)k1/2+a,—s7r2.9-—(1+a.) P((l - S)/2)F((1 +a-—s+ 5X)/2)

T(s/2)T((s — a + 0y)/2) $(l+a—s)

where
é(s) = ((s — a)L(s, %)

The coefficients of ¢(s) are given by

Fa(nsx) = D X(

din

)de.

a3

This function plays an important role in Voronoi formula.



" First we assume that —1 /2 < a < 0. We have
Az, X)

a/2 (a o, m(a— 0
= -W(x)k /2 (+1)/2Zn(§+1)>/<£ {cos ( - X)Y1+a.(47r /_—na:/k)

+sin W—(g—z_ﬁ‘lJHa(élm/mc/k) + % Cos ﬂ?——zﬁ‘lKHa(M\/nx/k)}

W(x)
V2T

4a +8a+3

32272

x cos(4m/nafk — (3/4 + 8,/2)m) + O(ke/*+5/450/2-3/4),

— kA Ay a/2+1/42 3 /4+ /2 cos(4m/nz/k — (1/4+ 6, /2))

2+3/4,.a/2-1/4 — 7a(n, X)
T WOk Ay D

Here, Yi44(2), Ji+4(z) and Ki4,(z) denote the standard Bessel functions of

- order 1+ a. We also need the sum formula of 7,(n, x). It is given by

> Falmx) = HOL 00 ptve s ¢(-a)L0,9) + Baln, 0

s 1+a

—a/2 (a (7, X a—4
= W( /2 (a+1)/2 Z i { ~£~é-—x-)~Y1 +a(4m/nz k)

+ sin ZT—((I;—(SX)JHGMW\/nx/k) + —cos ﬂ%-—ai)KHa(@u/nx/k)}

W(X) ,-a/2+1/4, a 4 = ra(n, X) /‘““"‘
= —\/—iﬂ_‘-k /+1/.’17 /2+1/ ZWCOS(‘I’/’T nx/k—(1/4+6x/2)7r)

4a +8a+3——
32v/272

x cos(dm/nz/k — (3/4 + 6,/2)7) + O(k —a/245/45,/2-3/4),

W(X)k a/2+3/4 a/2 1/4ZT¢;/?+3§:)2
n

Following Meurman, we get the truncated expression of A,(z,x) from the
above formulas valid for —1 < a < 0.



Lemmal. For—-1<a<0,y>1,X>vy,Z>2yandy¢ Z, we have

Aa(ya X) = Aa(y7X> X) + Ra(yr X, Z)
+0(k1-+5y—1/4+a/2 +k3/4+a/2y—-1/2 + k,5/4+a/2y—3/4+a/2),

where
Aa(y b X) _ V\‘;(_X) 7,,a./2+1/43a/2+1/4
? b 2
To(n,
f Z n3§4+>2 cos(4m\/ny/k — (1/4 + 6, /2)m)du
n<uX

and

R, (y,X Z)

= X)Zra n,x / / !sin(—= \/_ Vn)Vt)dtdu
n<Z

with some constant ¢ which s independent on k.

From this Lemma , we get Theorems 1 and 2. Note that if x; and o

have the opposite parity, there occurs no main term.

Outline of the proof of Theorem 3
In this case the Voronoi formula does not work well. We use the Chowla-

Walum’s type formula instead. Namely we have

Lemma 2.

Moz, X) =~ 3 x(mmp(Z) =2 3 nTP(=) + O(K*(log k)z*/?)
m<yz n<VT

where

Y(zr) = z—[z]—1/2
P(z) = =) x(n) —~Zx

n<zc n<k



- The main term comes from the product of the first sums of A,(z, x;) and
Ap(z, X2). The remaining products give the error term. To show this, we

need Yanagisawa’s main lemma.

Lemma 3. Let f(t) and g(t) be piecewise continuous functions of period A

and of bounded variations. Suppose that

FOI<F 9@ <G,

[ -

Then, for any n < VX and any sequence of points {Xn}, and {Y;,} with
0<Y,— X, <X, we have

and

Z [/mf )g(= )dx|<<GXlogX( (A+o0_1(n)) +V})
m<\/_

where V; is the total variation of f in [0, A].

The above summation is estimated as o_;(n)X log X in [3], but it is not
sufficient for our purpose. So we made the dependence on the modulus k&
explicit in Lemma 3. Note that x; and x» do not need to be primitive

characters, because we don’t use functional equation in this case.

As in the theorems of Meurman and Chowla-Yanagisawa, the mean square
formula is effectively deduced by Voronoi formula when ¢ + b > —1 and by
Chowla-Walum formula when a+b < —1. This phenomenon can be expressed

symbolically as



Voronoi

Chowla-Walum 3/2+(a+b)/2

X

a+b
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