
3次元可逆自己増殖セルオートマトンについて

堀貴博 $\dagger$ , 今井克暢, 森田憲– f

\dagger NEC アイシーマイコンシステム
thori@nims.nec.co.jp

\ddagger 広島大学工学部
{imai, $\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{a}$ } $@\mathrm{k}\mathrm{e}.\mathrm{S}\mathrm{y}\mathrm{s}.\mathrm{h}\mathrm{i}\mathrm{r}\mathrm{o}\mathrm{S}\mathrm{h}\mathrm{i}\mathrm{m}\mathrm{a}-\mathrm{u}.\mathrm{a}\mathrm{c}.\mathrm{i}\mathrm{p}$

1 Introduction

A reversible cellular automaton (RCA) is one of
the reversible computing models. Its global func-
tion is injective and every configuration has at
most one predecessor. Intuitively, it “remembers”
the initial configuration and one can reconstruct
its initial configuration from a configuration of
any time. So reversible property is a strong con-
straint and one cannot generate nor extinct signals
freely. Toffoli showed that there exist computation-
universal $\mathrm{R}\mathrm{C}\mathrm{A}\mathrm{s}[13]$ and the BBM cellular automa-
ton (BBMCA), was introduced by $\mathrm{M}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{s}[7]$ . It
is computation-universal and it has a direct relation
with a physical reversible and conservative comput-
ing model (the Billiard Ball $\mathrm{M}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}$) $[3]$ . The Billiard
Ball Model (BBM) has an important aspect that it
is possible to compute any function without dissipa-
tion of balls as garbage. Once von Neumann conjec-
tured that computing without erasing information
is impossible and erasing one-bit information must
dissipate at least $ln2kT$ joules of energy. But the
BBM is a conservative model and it is possible to
construct a computer that can computes with no
energy dissipation in principle.

This fact means garbage collection can be per-
formed with reversed sub-computations and such
garbage collector can be constructed with reversible
manner. This technique is first introduced by Ben-
nett. He showed that his reversible Turing machine
is computation-universal and garbage collection can
be implemented in reversible $\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}[1,2]$ . But the
fact does not mean any computing process can be
simulated effectively in $\mathrm{r}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}[10,4]$. Especially,
it is very difficult to place a preferred initial configu-
ration and start computing on reversible computing
models. This problem is described as a restriction
of generation and extinction of signals in RCAs, and
synchronizing signals and distributing specific pat-
terns on RCAs are also quite difficult.

So we proposed a simple self-reproducing RCA
based on a shape-encoding mechanism $(SR_{8})1^{1}1]$ .

In $SR_{8}$ , self-reproduction can be performed with-
out garbage in two-dimensional reversible cellular
space.

In this paper, we extend $SR_{8}$ into three-
dimensional reversible cellular sp\‘ace. Even if its cel-
lular space is reversible, it can self-reproduce vari-
ous three-dimensional patterns wi.thout garbage dis-
sipation. In order to design an RCA we use a frame-
work of partitioned cellular automaton (PCA). In
the next section, first we define PCA.

2 Definitions
Partitioned cellular automaton $(\mathrm{P}\mathrm{C}\mathrm{A})[8]$ is re-
garded as the subclass of standard cellular automa-
ton. Each cell is partitioned into the equal number
of parts to the neighborhood size and the informa-
tion stored in each part is sent to only one of the
neighboring cells (Fig. 1). In PCA, injectivity of
global function is equivalent to injectivity of local
function, thus a PCA is reversible if its local func-
tion is injective. Using PCA, we can construct a
reversible CA with ease.

A $dete\Gamma min\dot{i}sti_{C}$ two-dimensional partitioned cel-
lular automaton (PCA) $P$ is defined by

$P=(\mathrm{Z}^{2}, (C, U,R, D, L), \varphi, (\#, \#, \#, \#, \#))$

where $\mathrm{Z}$ is the set of all integers, $C,$ $U,$ $R,$ $D,$ $L$ are
non-empty finite sets of center, up, right, down, left
parts of each cell, $\varphi$ : $C\cross D\cross L\mathrm{x}U\cross Rarrow$

$C\cross U\mathrm{x}R\cross D\mathrm{x}L$ is a local function (Fig.2),
and $(\#, \#, \#, \#, \neq)\in C\mathrm{x}U\mathrm{x}R\cross D\cross L$ is a
quiescent state which satisfies $\varphi(\#, \#, \#, \#. ’\#)=$

$(\#, \#, \#, \#, \neq)$ .
A configuration over $C\cross U\mathrm{x}R\mathrm{x}D\cross L$ is a

mapping $c:\mathrm{Z}^{2}arrow C\cross U\cross R\cross D\cross L$. Let Conf$(C\cross$

$U\cross R\cross D\cross L)$ denote the set of all configurations
over $C\cross U\mathrm{x}R\mathrm{x}D\cross L$ .

Conf$(C\cross U\cross R\cross D\cross L)=$

$\{c|c : \mathrm{Z}^{2}arrow C\cross U\cross R\cross D\cross L\}$

数理解析研究所講究録
1093巻 1999年 206-211 206



Globa! function

$\Phi_{A}$ : Conf$(C\cross U\cross R\cross D\mathrm{x}L)$

$arrow \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{f}(C\cross U\cross R\cross D\cross L)$

is defined by

$\Phi_{A}(c)(X)=\varphi(\mathrm{C}\mathrm{E}\mathrm{N}\mathrm{T}\mathrm{E}\mathrm{R}(c(x,y))$ ,
DOWN$(C(x, y+1))$ ,
LEFT$(c(x+1,y))$ ,

UP$(c(_{X},y-1))$ ,
RIGHT$(c(x-1,y)))$

where CENTER (UP, RIGHT, DOWN, LEFT, re-
spectively) is the projection function which picks
out the center (up, right, down, left) element of a
quintuple in $C\cross U\cross R\cross D\cross L$ . It has been proved
that $P$ is reversible iff $\varphi$ is $\mathrm{o}\mathrm{n}\triangleright \mathrm{t}_{0}-o\mathrm{n}\mathrm{e}[8]$ .

$P$ is called a rotation-symmetric (or isotropic)
PCA iff (i) and (ii) hold.
(i) $U=R=D=L$.
(ii) $\forall(c, u, r, d, l),$ $(c’,urd^{;}’,’,, l’)\in C\cross U^{4}$ :

if $g(c, d, l,u, r)$ $=$ $(c’,urd”,’,, l’)$ then
$g(c, r, d, l, u)=(c’, l’,du’,r’,’)$ .

Figure 1: Cellular space of PCA.
$\copyright_{u}r$

$rua_{1\cdot \mathrm{b}-)}e\iotaarrow ld\mathrm{E}$

Let Conf$(C\cross U\cross R\cross D\cross L\mathrm{X}p_{\mathrm{X}}B)$ denote the set
of all cnfigurations over $C\cross U\cross R\cross D\cross L\cross F\cross B$ .

Conf$(C\cross U\cross R\cross D\cross L\cross F\cross B)=$

$\{c|c:\mathrm{Z}^{3}arrow C\cross U\cross R\cross D\cross L\cross F\cross B\}$

Global function is also defined in the same way as
in the two-dimensional case.

Figure 3: Domain and rage of local function in $3\mathrm{D}$

$7$-neighbor PCA.

3 Self-reproduction in a two-
dimensional RPCA

3.1 Definition of $SR_{8}$

In this section, we construct non-trivial self-
reproducing structures can be constructible in a
reversible cellular space. The idea of our model
is based on Langton’s sheathed $\mathrm{L}\mathrm{o}\mathrm{o}\mathrm{p}[6]$ , and
to achieve more flexibility we introduced a self-
inspection method.

In the cellular space of $SR_{8}[11]$ , encoding the
shape of an object into a “gene” represented by a
command sequence, copying the gene, and inter-
preting the gene to create an object, are all per-
formed reversibly. By using these operations, vari-
ous objects called Worms and Loops can reproduce
themselves in a very simple manner.

The RPCA (
$‘ SR_{8}$

” is defined by

Figure 2: A representation of a rule.

A deterministic three-dimensional partitioned cellu-
lar automaton (PCA) $P_{3}$ is also defined by

$P_{3}=(\mathrm{Z}^{3},$ $(C, U, R, D, L, F, B),$ $\varphi 3$ ,
$(\#, \#, \#, \#, \#, \neq, \#))$

where $\mathrm{Z}$ is the set of all integers, $C,$ $U,$ $R,$ $D,L,$ $F,$ $B$

are non-empty finite sets of center, up, right,
down, left, forward, back parts of each cell, $\varphi_{3}$ :
$C\cross D\cross L\mathrm{x}U\cross R\cross B\cross Farrow C\cross U\cross$

$R\mathrm{x}D\cross L\cross F\cross B$ is a local function (Fig.3),
and $(\#, \#, \#, \#, \#, \#, \#)\in C\cross U\cross R\cross D\cross$

$L\mathrm{x}F\cross B$ is a quiescent state which satisfies
$\varphi_{3}(\#, \#, \#, \#, \neq, \#, \#)=(\#, \#, \neq, \#, \#, \#, \#)$.

A configuration over $C\mathrm{x}U\cross R\cross D\cross L\cross F\cross B$

is a mapping $c:\mathrm{Z}^{3}arrow C\cross U\cross R\cross D\cross L\cross F\cross B$.

$SR_{8}=(\mathrm{Z}, (C, U, R, D, L),g, (\#, \#, \#, \#, \#))$ ,

$C=U=R=D=L=\{\#, *, +, -, \mathrm{A},\mathrm{B},\mathrm{C},\mathrm{D}\}$.
Hence, each of five parts of a cell has 8 states. The
states $\mathrm{A},$ $\mathrm{B},$

$\mathrm{C}$ and $\mathrm{D}$ mainly act as signals that
are used to compose “commands”. The $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}*,$ $+$ ,
and –are used to control these signals. The local
function $g$ contains 765 rules. It is. a one-to-one
mapping and $\mathrm{r}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}arrow \mathrm{s}\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$ .

3.2 Signal transmission on a Wire
A wire is a configuration to transmit signals $\mathrm{A},$

$\mathrm{B}$ ,
and C. Fig. 4 shows an example of a part of a simple
(i.e., non-branching) wire.

A command is a signal sequence composed of two
signals. There are six commands consisting of sig-
nals $\mathrm{A},$

$\mathrm{B}$ and $\mathrm{C}$ as shown in Table 1. These com-
mands are used for extending or branching a wire.
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Figure 4: Signal transmission on a part of a simple
wire $(x_{i},y_{i}\in\{\mathrm{A},\mathrm{B},\mathrm{C}\})$ .

Table 1: Six commands composed of $\mathrm{A},$
$\mathrm{B}$ , and C.

3.3 A Worm
A Worm is a simple wire with open ends that are
called a head and a tail. It crawls in the reversible
cellular space as shown in Fig. 5.

Commands in Table 1 are decoded and executed
at the head of a Worm. That is, the command
AA extends the head straight, while the command
AB (or $\mathrm{A}\mathrm{C}$ , respectively) extends it leftward (right-
ward). On the other hand, at the tail cell, the shape
of the Worm is “encoded” into an advance com-
mand. That is, if the tail of the Worm is straight (or
left-turning, right-turning, respectively) in its form,
the command AA (AB, $\mathrm{A}\mathrm{C}$ ) is generated. The tail
then retracts by one $\mathrm{c}\mathrm{e}\mathrm{U}$ .

3.4 Self-reproduction of a Worm

Figure 5: Behavior of a Worm.

By giving a branch command, any Worm can self-
reproduce indefinitely provided that it neither cy-
cles nor touches itself in the branching process.

3.5 Self-reproduction of a Loop Figure 6: An example of a Loop.

A Loop is a simple closed wire, thus has neither a
head nor a tail as shown in Fig. 6.

If a Loop contains only advance or branch com-
mands, they simply rotate in the Loop and self-
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$\ovalbox{\tt\small REJECT}_{\mathrm{D}\mathrm{c}\mathrm{E}\mathrm{C}}^{\mathrm{D}\mathrm{B}}\mathrm{C}\mathrm{r}\mathrm{e}\mathrm{a}\circ \mathrm{n}\mathrm{t}\mathrm{e}\mathrm{a}\mathrm{n}_{\mathrm{h}\mathrm{h}\mathrm{a}\mathrm{p}\mathrm{e}}\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{m}\mathrm{s}\mathrm{o}\mathrm{f}$

aLoop

Table 2: Commands DB and $\mathrm{D}\mathrm{C}$ .

reproduction does not occur. In order to make a
Loop self-reproduce, commands in Table 2 are used.

By putting a command DB at an appropriate po-
sition, every Loop having only AA commands in all
the other cells can self-reproduce in this way. When
DB reaches the bottom right corner, it starts mak-
ing an “arm” and this corner become a transmit-
ter of commands. First, all AA commands in the
mother Loop are transmitted through the arm and
generated DC commands encode whole shape of the
mother Loop into command sequences simultane-
ously and these commands are transmitted after all
static AA commands are transmitted. Finally DC
commands reaches the bottom right corne.r and the
arm is split from the mother Loop.

3.6 Controlling the position of
daughter Loops in $SR_{8}$

One of our main motivations is to place preferred
initial patterns to a reversible cellular space. As
mentioned above, a closed Loop has only AA com-
mands. If AB or AC commands are placed in the
Loop, generated position of the daughter Loop can
be changed.

But DB (create an arm command) advances the
bottom side of a loop and the length of the Loop
does not equal to the running length of the whole
commands. Thus the embedded position of turn-
ing commands in the daughter Loop differ from the
mother Loop.

Although such a shifting of reading-frames of its
command sequence is interesting phenomenon, it is
difficult to control. So we modify $SR_{8}\mathrm{f}\dot{\mathrm{o}}\mathrm{r}$ solving
this timing problem. .

Fig.7 is the process of modified version of $SR_{8}$ .
DB signal is not $\mathrm{a}\mathrm{d}\dot{\mathrm{v}}\mathrm{a}\mathrm{n}\mathrm{C}\mathrm{e}$bottom side and the repro-
ducing process starts from the bottom right corner
as soon as the Worm reaches at this position. So
created daughter Loop is rotated in 90 degrees. Be-
cause of this rotation, Loops make collision after 4
generations. But this collision can be avoidable by
inserting direction commands into the mother Loop
(Fig.8) and this modification acts important $\mathrm{r}\mathrm{o}\mathrm{U}$ in
extending $SR_{8}$ to three-dimensional one in the next
section.

Figure 7: Self-reproducing process of a Loop of
modified $SR_{8}$ .

4 Self-reproduction in a three-
dimensional RPCA

4.1 Three-dimensional self-
reproducing RPCA $(SR_{9})$

In this section, we extend $SR_{8}$ into a three-
dimensional RPCA.

A two-dimensional 5-neighbor PCA can be em-
bedded directly into a three-dimensional 7-neighbor
PCA. But due to the rotation-symmetric condi-
tion of $SR_{8}$ , the Worm cannot know the directions
of right, left, up and down. In three-dimensional
rotation-symmetric $\mathrm{C}\mathrm{A}$ , up to 24 rotated rules are
regarded as the same rule. So we introduce an-
other glue state $‘=$ ’ for $SR_{8}$ and combine two
Worms whose command sequences are complemen-
taly placed as presented in table 3.

The three-dimensional self-reproducing RPCA
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Figure 9: Four kind of turns in $SR_{9}$ .

width 2 ladder approach in the previous section is
impossible. So we add a center wire and Fig.10 is a
simple Worm in $SR_{9}$ .

Figure 10: A simple Worm in $SR_{9}$ .

Figure 8: Self-reproducing process of a Loop of
modified $SR_{8}$ .

“
$SR_{9}$

” is defined by

$SR_{9}=(\mathrm{Z}^{3},$ $(C, U, R, D, L, F, B),$ $g$ ,
$(\#, \#, \#, \#, \#, \#, \#))$ ,

$C=U=R=D=L=F=B=$
$\{\#, *, +, -, =, A,B, C, D\}$ .

. Local rules are available via WWW.
http: $//\mathrm{k}\mathrm{e}\mathrm{l}\mathrm{p}.\mathrm{k}\mathrm{e}$ . sys. hiroshima-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/$

$\mathrm{P}^{\mathrm{r}\mathrm{o}}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{s}/\mathrm{r}\mathrm{c}\mathrm{a}/\mathrm{s}\mathrm{r}3\mathrm{d}/$

Although $SR_{9}$ has 6886 rules, if rotated rules are
regarded as equivalent, it become only 338 $\mathrm{r}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{s}[5]$ .

To construct ‘true’ three-dimensional structures,
a Worm in $SR_{9}$ can twist its head in $\pm 90$ degrees
(Fig.9). This can be possible by employing ribbon
of width 3 shaped Worms. As far as using $SR_{8}$

command sequences in rotation-symmetric spaces,
the length of the path should be kept equal and the

When both wires of a three-dimensional Worm
have the same sequence ‘AB AA $\mathrm{A}\mathrm{C}$ ’ (or ‘AC AA
AB’), its head is twisted leftward (rightward). Us-
ing twisting commands, complex three-dimensional
Worms and Loops such as Fig.11 are constructible.
Although the existence of twisting commands in
$SR_{9}$ , its self-reproducing mechanism is completely
the same as that of $SR_{8}$ .

4.2 Controlling the position of
daughter Loops in $SR_{9}$

When extending $SR_{8}$ to $SR_{9}$ , we use the modi-
fied version of $SR_{8}$ discussed in section 3.6. So
Loop positioning commands can also be inserted
freely in $SR_{9}$ . And this modification has an impor-
tant meaning in the three-dimensional case because
it makes possible to generate different topological
shapes. Fig.12 is a chain formed from a single Loop.
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[3] Redkin, E., Toffoli, T.: Conservative logic, Int.
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253.

Figure 11: Complex Worm and Loop in $SR_{9}$ .

This shape-construction technique can be possible
by the positioning a daughter Loop with a specific
command sequences in the mother Loop.

Figure 12: A chain formed from a single Loop in
$SR_{9}$ .

5 Conclusion

In this paper, we extend our two-dimensional
self-reproducing reversible PCA $SR_{8}$ into a three-
dimensional reversible PCA and show its various
behaviors. The features of this three-dimensional
reversible “turtle graphics” are d.erived from its self-
inspective mechanism. The data as shapes and pro-
grams as command sequences are represented in the

$arrow\backslash \backslash$same manner.
$\mathrm{k}$

The self-reproducing processes are hard to de-
scribe on a paper. They can be seen as QuickTime
Movies at the following addresses via WWW.
$SR_{9}$ : http: $//\mathrm{k}\mathrm{e}1_{\mathrm{P}}.\mathrm{k}\mathrm{e}$ . sys. hiroshima-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/$

$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{S}/\mathrm{r}\mathrm{c}\mathrm{a}/\mathrm{s}\mathrm{r}3\mathrm{d}/$
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