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Abstract

Our model in this paper is a 1.5-way quantum finite
automaton which can move its head 0 or +1 position but
not —1 position. It is shown that the most fundamental
decision question, the emptiness problem, is not solv-
able for this model. Note that the emptiness problem is
solvable for push-down automata and even for one-way
nondeterministic stack automata.

1 Introduction

It has become an undoubted fact that the quantum
mechanism gives us a certain kind of - computational
power which cannot be achieved by the conventional
mechanism. However, although we have wonderful re-
ports supporting this idea [Gro96, Sho94], there is still
a lot of unclearness about what is real and concrete rea-
son for such a miracle power and how hard it is to enjoy
this power in designing algorithms. In their recent paper
[KW97], Kondacs and Watrous gave a good hint against
those questions: They introduced 2-way quantum finite
automata, 2QFA’s, and proved that a nonregular lan-
guage, {a™b" | n > 1}, can be accepted by this model in
linear time. (Although the same language can be recog-
nized by 2-way probabilistic finite automata [Fre81] but
it needs exponential expected time [DS89].) They also
defined 1-way QFA’s (1QFA’s) which they prove can rec-
ognize only a proper subset of regular languages. Since
finite automata are much simpler than the general com-
putation model (i.e., Turing machines), it 1s obviously
easier to understand concrete merits and demerits of the
quantum mechanism.

More recently, Ambainis and Freivalds studied 1QFA’s
in more detail [AF98]. Their results are again interesting
from the above viewpoint: (i) If the maximum error rate
is bounded by a small value then 1QFA’s cannot surpass
the power of 1-way reversible finite automata and (ii) In
some cases, we can design 1QFA’s the number of whose
states is exponentially less than conventional ones. More
than that, they gave the following observation about the
power of 2QFA’s: The definition In [KW97] includes the
head position into quantum state and hence the number
of quantum states grows unlimitedly with the growing
size of the input. Ambainis and Freivalds suggest that
this could provide QFA’s with unreasonably high power
and at the same time could make the machine more com-
plicated and more difficult to implement. :

Their suggestion is probably true: In this paper it is
shown that the real power of 2QFA’s can actually be
much higher than it seems. Our main result says that
the emptiness problem, which asks whether a given ma-~
chine accepts the empty set, is not solvable for 2QFA’s.
Moreover, it turns out that we do not need the 2-way
head-move for this result but the 1.5-way head-move (the
head can move 0 or +1 position to the right but not —1
position) is enough. Since all 1.5QFA’s in this paper
does not have a cycle of transitions without moving the
head (called an e-cycle), the theorem also holds for such
1.5QFA’s which run obviously in linear time. The idea of
this extension is to exploit the basic nature of quantum
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machines, i.e., the built-in parallelism of their computa-
tion.

The emptiness problem is probably the easiest one
among popular decision questions such as the equiva-
lence problem and the disjointness problem. The empti-
ness problem is solvable for push-down automata [HU79]
and furthermore for l-way nondeterministic stack au-
tomata (1SA’s) [HU79]. 1SA’s may not be linear time. It
is known that all languages recognized by 1SA’s are also
recognized by deterministic linear-space TM’s [HU68],

- but its proof is not that easy and the difference of power

between these two models is far from trivial. Our un-
solvability result means that 1.5QFA’s can accept some
languages that cannot be recognized by any 1SA’s; it
is quite reasonable to conclude that 1.5QFA’s are very
powerful in some cases.

Tt should be noted that this does not necessarily mean
that 1.5QFA’s are always powerful. We can probably
prove that some regular languages cannot be recognized
by 1.5QFA’s by using the same technique as in [KW97].
However, it seems that such adversary languages have
some common properties in their syntax, which can be
avoided if we allow desirable encoding of input strings.
In the proof of unsolvability, it is almost free to use such
encoding techniques, which could make it easier to inves-
tigate the inherent power of machines without depending
too much on the syntax of languages.

2 Deﬁnitions

2.1 2-way Quantum Finite Automata

Our definitions of QFA’s are exactly the same as

[KW97]. A 2-way QFA (2QFA) is given as M =

@,%,6,90, Qace, @rej), where Q is a finite set of states,

Y 1s a finite set of input symbols, go € Q is the ini-
tial state, and Qgec C @ and Qrej C Q are the sets
of accepting and rejecting states, respectively. Qnon =
Q@ — (Qace U Qrej) is called the set of non-halting states.
¢ and $ (¢ Eg are the left and the right end-markers.
I' = S U {¢,$} is called the set of tape symbols. § :
Q@ xTx@x{-1,0,1} — C is called the state transition
function.

A pair of a head position ¢ and a state p, (i,p), is
called a configuration. Therefore, a 2QFA M on a tape
z of length n has n|Q)| different configurations, denoted
by Cp, = @ X Z,. A superposition of M is any norm
1 element of the Hilbert space H, = I3(C,). For each
¢ € C,, |¢) denotes the unit vector with value 1 at ¢ and
0 elsewhere. For a superposition [¢) = Zcec, aclc), ac
is the amplitude of the configuration ¢ in |9). For each
7,¢ €Q,6 €T and d € {-1,0,1}, 6(q,0,¢',d) shows
the amplitude with which M in state ¢ and reading o
will change to state ¢’ and move its head d position right.
Given a tape z, § determines the time-evolution operator

U7 on I5(Cy) as follows

Ulg k) = > _ (. 2(k),¢', d)l¢’, k + d(mod|z]))
¢',d



where 2(k) is the input symbol at the kth cell. UF|qg, k)
is naturally extended to Uf[+) by linearity. Uf must be
unitary and if so, M is said to be well-formed.

The computation of M on z begins in superposition
|90,1). Then UY is applied step by step. After each step,
the current superposition is observed. Our observable is
Qace D Qrej ® Quon- If “accept” or “reject” is observed,
the computation halts. It is said that z is accepted by
M it “accept” is observed with probability greater than
1/2. L(M) denotes the set of all the tapes accepted by
M and is called the language accepted by M.

To design well-formed 2QFA’s, we can use the follow-
ing approach: Suppose that we have designed a linear
operator V, : [5(Q) — 13(Q) for each o € T' and a func-
tion D : @ — {—1,0,1}. Let {¢'|Vy|q) denote the coefhi-
cient of |¢') in V,|¢). Then define the transition function
bof M as

"WVolg) if D(¢')=d
Sg.0.¢ )= 7
(@.0.¢.9) { 0 it D(q') # d.
It is shown in [KW97] that M is well-formed if and only

if
T 1 ¢1=¢
v, v, =
%, (€'1Vola)(a'|Volaz) { 0 o 4a

for each o €T.

2.2 1.5-way Quantum Finite Automata

A 1.5-way quantum finite automaton is a 2QFA such
that & is defined as 6 : @ xI'x @ x {0,1} — C, and is de-
noted simply'by a QFA from now on.” Namely, QFA’s
cannot move their head —1 position but can move 0
or +1 position. A sequence of states g¢;,,¢i,," *, ¢, is
called an e-cycle if (i) for each ¢;;, 1 < j < m, ¢;; € Qnon
and D(g;;) = 0, (ii) ¢;, = ¢;,, and (iii) there is a tape
symbol o € T such that the coefficient of |¢;, ., ) in V5 |¢; i)
is not zero for all 1 <7< m -~ 1. If a QFA M does not
include an e-cycle, then M clearly halts within a linear
time. All QFA’s in this paper do not include e-cycles.

Fig. 1 shows an example of a QFA, denoted by Mp.
This figure gives a so-called state-transition diagram. For
example, the transition from g (that is the initial state)
means

Vilao) = \/6-—‘1[41) + \/ﬁlgz) + \/(Elqg).

Accepting states are ¢;3 and ¢19. Rejecting states are g3,
a7, €13, @16 and g17. As for the function D, D(¢;) = 0 if
¢i.is an accepting or a rejecting state and D(g¢;) = 1 oth-
erwise. Following the practice [KW97, AF98], we leave
many transitions (e.g., transitions from g7) undefined.
Those transitions may be arbitrary and it is not hard to
define them so that the resulting operator will be uni-
tary. :
Suppose that we observe My after the first step. Then
“reject” (i.e., by gs) is observed with probability 0.2
and if that happens My halts. {q1,¢2} is observed with

probability (v/0.4)2 + (+/0.4)2 = 0.8 and if that hap-
pens, the amplitude of each state changes from /0.4
to \/5% = 1/0.5. This amplitude does not change until

‘\/0.5|¢.113) ++/0.5]q19) is reached unless My drops into ¢7,
13, q16 O q17. If My reads ab or ba in the first two steps,

then it goes to v/0.5|q7) + v/0.5]qe). If “reject” (by g7) is
observed (with probability 0.5) then My stops. Other-

wise My continues its computation from %lqg) = |qo)-
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Suppose that the tape ¢ = zy2o@srs (2; € {a,b}) is
given to this QFA. Then one can see that: (i) If z1 = z2
and x3 = x4 then M, halts in gs with probability 0.2,
and if that does not happen then My reaches v/0.5]q15) +

V0.5|q19). Therefore the probability that “accept” is
observed is 0.8 in total. (ii) If z; = 5 and z3 # x4 then
that probability is 0.4. (iii) If z; # =5 and z3 = 24 then
it is again 0.4. (iv) If ; # 2, and @3 # z4 then the
probability is 0. Thus this QFA accepts the language
T12o23%s | 2; € {a,b}, 1 = x5 and ¢35 = 24}.

2.3 One-Register Machines

To prove the unsolvability, we shall use the unsolv-
ability of the halting problem for one-register machines.
A one-register machine (RM) consists of the finite con-
trol with states po,---,px-1 and a single register that
can hold an (arbitrarily large) integer. Let i be 2 or 3.
For cach state, one of the following three instructions is
specified:

(1) Multiply the current value, R, in the register by
i and move to state p;. This instruction is denoted by
(MUL~4, p;).

(2) Divide R by ¢ and move to p;, denoted by (DIV-
i,p5) :

(3) Test if R is divisible by i. If so, move to p;, and
move to p;, otherwise. This instruction is denoted by
(TEST—i,pjl,pjz). o

po is always the initial state and px_; is always the
only one halting state. Without loss of generality, we
can assume that when instruction (2) is executed, the
current value R is divisible by ¢. For technical reason
we also assume that the instruction associated with the
initial state po is always (MUL-2,p;), which again does
not lose generality. The value R does not change when
(3) is executed. It is known that RM’s are equivalent to
Turing machines: -

Proposition 1 [Min66]. The halting problem for
RM’s that start their computation with the initial regis-
ter value one is not solvable.

3 Main Theorem

The emptiness problem is to decide whether L(M) = ¢
for a given automaton M. If the emptiness problem is
unsolvable for a class of automata, several other prob-
lems are also unsolvable for that class of automata in-
cluding the equivalence problem (L(M;) = L(M;)?) and
the disjointness problem (L(M;)NL(M;) = ¢7). Also an
immediate corollary of Theorem 1 is that the emptiness
problem is unsolvable for 2QFA’s.

Theorem 1. The emptiness problem for QFA’s is
unsolvable.

Proof. It is shown that there is an algorithm (a Tur-
ing machine that always halts) which translates any RM
X into a QFA My such that L(Mx) = ¢ iff X starting
with B = 1 does not halt. Suppose that the given X has
K states, py through pg_;. Recall that each state is as-
sociated with one of the following six instructions (MUL-
2: Pj), (MUL'3» pj): (DIV-?, pj)! (DIV'?’: pj)’ (T ST"2:
Pi1». Pj») and (TEST-3, p;,, Pj,). Since the translation
itself 18 not complicated, 1t will be enough to only give
a detailed description of the target machine My. In the
following, we first explain what kind of language Mx
should accept and then describe how to construct Mx
to that goal.
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3.1 The Language to be accepted by Mx

Let Lx be the following language which is determined
by the RM X and whose alphabet is {po, -, Px—1,PK,
PE+1,,0} (recall that py through px_; are X’s states).
A sequence z contained in Lx has to be of the following
form. Its objective is to show a sequence of configu-
rations that change step by step in the course of X’s
computation:

¢28 = ¢ipo0pxpr00pK41t- - §pi0- - Opif - §prc—10-- - Opifi$

A subsequence surrounded by two §’s is called a block.
The number of 0’s in each block shows the value R. In
more detail, 7 is in Lx iff the following three conditions
are met:

(1) The first and second blocks must be poOpx and
p100 px41, respectively, regardless of X, where px and
PK+1 are new symbols neither of which appears else-
where again. )

(2) Let $p;, 07t pi,fipi, 072 pi, i be any neighboring two
blocks excepting the first and the second ones. Then (i)
pi, must be equal to p;,, and (ii) the relation between
the numbers of 0’s in these two blocks, j; and jz, and the
relation between p;, and p;, must be valid with respect
to the instruction associated with p;, (if the instruction
is (MUL-2, p;), for example, then j; must be 2 - j; and
pi, must be p;).

(3) The last block must start with px_,, i.e., the only
one halting state of the RM X.

3.2 Submachines M; and M,

The whole machine Mx consists of two major sub-
machines M; and M, as shown in Fig. 2. From its
initial state go, Mx splits into M, M, and a reject-
ing state, qo ».;, with amplitudes v/0,4, 0.4 and +/0.2,
respectively, just like the example in Fig. 1. Then
M, tests 8;) whether the first two blocks are proper
using submachine Mo and (ii) whether the (2i + 1)th
and (2¢ + 2)th blocks are proper in the sense of (2)
above for each ¢ > 1. To do so, M; uses submachines
Mi(po), M1(p1),- -, M1(pr—1). M is similar. It checks
whether the first block is proper and then whether the
(2i)th and (2¢ + 1)th blocks are properly related. Both
M; and M, also check whether the last block includes
the X’s halting state pg—1.

Remark 1. M; branches into M;(po), Mi(p1), -+,
Mi(pk-1) by reading po, p1, - - - ;pr—1, respectively. Af:
ter testing the properness of two neighboring blocks,
M; must rejoin into a single state before branching into
Mi(po), My(p1), -, Mi(pk-1) again to test the next
two blocks. The existence of p;, that is the same as p;,
described in (2) above allows us to design this portion of
M, using unitary operators.

As will be shown later, M; reaches “acceptance”, i.e.,
“acceptance” is observed, with probability one (or with
probability 0.4 considering the whole machine Mx), if
the tape z passes the above test. If z does not pass
the test, My can reach “acceptance” with probability

~ roughly 1/N or less, as shown later, where we can set N

as an arbitrarily large integer. This is the same for M.
One can see that if the tape z is in Ly, or represents
a proper halting sequence of X’s configurations, then &
passes both tests of My and M,. That means the whole
machine Mx reaches “acceptance” with probability 0.8,
i.e., ¢ is accepted. If the tape x is not in Lx then it
does not pass at least one of the two tests, which means
Myx reaches “acceptance” with probability at most 0.4+
# < 0.5, namely z is not accepted by Mx. Thus Mx
recognizes Ly .

3.3 Submachines M;y; and My

Fig. 3 illustrates the submachine Mo which checks
the first and second blocks. The machine is easy since all
it has to do is to check whether the beginning portion of
the input is equal to the fixed string. As for the notation,
Vo l90) means Vo lgo) for all o ¢ {¢}. All rejecting
states but the following exceptions have “rej” in their
subscripts. Other rejecting states are s; ; and ;; for
1 < j € N—1. Note that My, includes a split into
VN paths from g1, and the quantum Fourier transform
from r; ;. We actually do not need those gadgets for the

‘above purpose but we introduced them to adjust that

portion to other parts of My, which one can see later.
The behavior of Miq is similar to the example in sec-
tion 2.2. If “rejection” by qo re; is not observed and the

beginning portion of z is proper, then Mg reaches |{g; 3)
with amplitude v/0.5. (More precisely speaking, Mx
reaches /0.5q; s) + |1) where ¢ is some superposition
of My’s states such that || |¢)||= +/0.5. In this expres-

sion, we have omitted the head position since it is not
important.) Subsequently, Mjo goes through the Fourier



203

M2

Fig. 2

transform and one can calculate that it reaches Ojs;,1) +
0|81‘2)+- - ‘+0l51,N—-1)+V0-5|51,N) = \/0.5[81’1\/). Then
Mo goes to v/0.5lqy s14r1). Mag’s behavior is similar.

3.4 Submachines Ml(pwj and M;(p,)

If the input string is proper, Mg reads some p,
0 <z < K~ 1, in state g1 s14r: and branches to sub-
machine M;(p;). Recall that p, is associated with one
of the six instructions. Suppose that p, # px_ and the
instruction for p; is (MUL-2, p,). Then the transition of
M (pz) is as shown in Fig. 4. (The transition for other
five cases are omitted.) If p, = px_; then Mi(pg-1)
has only to check whether the current block is the last
one, whose transition is given in Fig. 5. In what follows,
we overview the case that Fig. 4 applies. All the other
cases are quite similar.

Suppose that p, is associated with (MUL-2, p,). Here
we can use the idea of the 2QFA in [KW97], denoted by
Mgw , which accepts {a™b” | n > 1}. Reading ¢, Mgw
splits into N paths with amplitude 1/+/N. Along the jth
path, Mg operates as follows: if Mgw reads a, its tape
head remains stationary for j steps and then moves right.
If Mgw reads b, the head remains stationary for N —j+1
steps and then it moves right. Now suppose that Mgw
is given the input a™ 5”2, Then it turns out that any
two distinct computation paths will reach the $ symbol
at the same time if and only if n; = ny. To check this
simultaneousness, we can use the Fourier transform. Let
us look at Fig. 3 again: If the machine is. in ﬁlﬁ,l) +
71]7‘17‘1,2) +-o *\/%lrl,N), i.e., if all the N paths reaches
71,1, "1~ at the same time, then the machine reaches
|s1,n) whose amplitude is 1.0. If only one path reaches,
say, r11 at some time (i.e., the machine is in Vlﬁh’l,l) +
l¥) where |} does not include |ry2),---,|r1,v)), then
it Teaches —}vexp(%’\% “Dfsia) + -+ %exp(%’{}l (N -
D)ls1,v_1)+ 7 exp( 35 - N)|sy,n) +]¥') at the next step,

i.e., the amplitude of |s; n) is very small. Recall that all
51,1 through s; y_1 are rejecting states.

We can use the same idea to recognize the slightly dif-
ferent language {0710™ | n > 1}. Actually, the situation
is better than before since we do not need the reverse
move of the head that was mandatory in Mxgw when
the head crosses the boundary of a’s and ’s. Namely,
{0710” | » > 1} can be recognized by a 1.5QFA. To
extend it furthermore into the machine that recognizes
{0"10%® | n > 1} is a straightforward exercise, and that
Is exactly what we want to do in designing M;(py).

Let us look at Fig. 4 more in detail. (i) The machine
starts in gy star+ and branches to Mi(p,) by reading p,
and at the same time splits into N paths. Here, {p.}
means {pg,---,pr-1}. (ii) Then M;(p,) is supposed to
read 0’s, py, #, pw, and again 0’s in this order. Suppose
that py, # px—1. Then Mi(p,) “counts” the numbers
of the first 0’s and the second 0’s in each path by the
method previously explained. In the middle of this ac-
tion, it falls into rejecting states if p, # py. (see (11)
in the figure). Note that p, may be arbitrary. (iii) Sub-
sequently the machine should read p, again (otherwise
falls into rejecting states in (15)) and leaves M (p,), i.e.,
converges to [ry ;) in (14—a). Note that the N paths are
not converged at this moment yet. In the next step the
Fourier transform is applied in (16~a) (which already
appeared in Fig. 3 but is repeated here). ,

Claim 1. If everything is good, then the N computa-
tion paths arrive at 711, -, 71 x at the same time. That
means M) reaches +/0.5|s1 y). Otherwise, if the numbers
of the first 0’s and the second 0’s are not proper for ex-
ample, then each of the N computation paths arrives at
81, at all different steps with amplitude 1/N each time.

If p,, = pg -1 and if this px_; is the proper successor
of p,;, then the second block must be the final one. There-
fore M1(p:) goes to a different routine at (10—5). In
this case, the Fourier transform is applied in (16—5) and
if everything is good then it reaches v/0.5[t; ) instead

of +/0.5|s1 ). In the next step it reaches V0.5|¢1 ace),



where g1 acc 1s one of the four accepting states of Mx.
(The others are ¢ ,4cc In My that is the counterpart of
q1,ace; 41,11,acc 0 M1(px—1) and ¢2,11,acc in Ma2(px-1).)
We omit the description of My(p;), which is almost the
same as M (p;) (but of course we need new states).

There is one thing we should be careful for. There are.

two instructions (TEST-2, p;,, pj,) and (TEST-3, p;,,
p??*) which require us to check whether the number of
0’s is divisible by two and three, respectively. Checking
if it is divisible by two has no problem but checking if
it is divisible by three needs care. Intuitively, this can
be done using three states, say po, p1 and py. If the
number is divisible, then the machine will be always in
po. Otherwise, if not divisible, then the machine may be
p1 0T po; it is not possible to define transition from those
two states to a single state by the same symbol.

3.5 Analysis

Let z = § B1{Bat Bafl - - - § Bt - - - § Bam{l, where B; is the
ith block. Suppose first that all B;’s are proper and that
Mx does not stop at gorej. Then, forall 1 <i<m—1,
submachine M; always reaches 1/0.5|sq ) after it reads
Ba;. Then M, reaches 1/0.5[t; n) after it reads Bap, and
then reaches v/0.5|q1 qcc) finally. Submachine M, always

reaches 1/0.5]s; v} also after it reads Bs;;; for all 0 <
i < m -1 and finally Ba,, is read by Ma(pk-1), which
reaches v/0.5]g2 11,4cc) eventually. Thus the probability
that “acceptance” is observed is (1 — 0.2) - ((+/0.5)% +
(v/0.5)?) = 0.8 and z is accepted by Mx. If z includes
an odd number of blocks, then nothing differs excepting
that the roles of M; and M, are switched. As a result,
we can conclude that if z is in Lx then z is accepted by
Mx.

Now suppose that B; through B;_; are proper but B;
is not for some ¢ > 1. There are two cases:

(1) B; is improper regardless of the number of 0’s; for
example, its syntax is different from p;0-.-Opy or p; or
Py is not what is supposed to be. Then one can see that
at least one of M; and My can detect that improperness
and all the N paths fall into rejecting states. That means
the overall probability that “reject” is observed is at least
0.2+ (1 —0.2) - (v/0.5)2 = 0.6, namely, z is rejected.

(2) The number of 0’s are inconsistent between B;_;
and B;. Then either M; or M, say, M;, which checks
B;_, and B;, can detect it as follows. Recall that A
splits into the N paths each of which has amplitude

V05/V/N. As described in Claim 1, each path, the jth
path, reaches v0.5(% exp(Z&t; - 1) |s1,1) + # exp(3j -
2)|s1,2) + - + % exp(3Ej - N)|s1,n)) at different time.
Recall that s;; through s; y_; are all rejecting states.
Hence, when the fastest path reaches there, the prob-

ability that “reject” is observed is (v0.54)% (for sy,1)
+ (V0.5%)% (for s15) + -+ + (V0.5 5)? (for sy n-1) =
(N=1)-(v0.5%)? = 0.58L. If “reject” is not observed,
then the amplitude of each remaining path is increased

by L times. Therefore when the second fastest
N-1
1-05852

path reaches the same point, the probability that “re-
ject” is observed is that

. .

N N-1

- : 2 _ — :
Yy N?—05(N = 1)

(N-1)-(V05

Tt then follows that the probability that “reject” is ob-
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served for the fastest path or the second fastest path is

N — N — N -1

1, 1
0.5 35—+ (1-05 =)0 (5w =

. N-1
1)) = '2)((05-—]\[—2—-)

Namely, the probability is increased by 0.5]\1[\'7'31 when the

second fastest path arrives. It is not hard to see that the
same amount of probability is also added when the third
fastest path reaches there and so on. As a result, when

the N paths reach there, the probability that “reject” is - -

observed for at least one path, namely that A halts so

far is N1 N1
- N —
N = 05—
Since “reject” is observed with probability 0.2 before M,
branches to M, the overall probability that “reject” is

0.5

observed so far is

N-1 N-1
. —0.2)-05 - 22 =02404—".
02+(1-02)- 0.5 — +04—

If N is sufficiently large, this value is greater than 0.5 and
z is rejected. Thus we can conclude that Mx recognizes

X

Finally we should mention how we have designed Mx
so as to be unitary. The basic idea is to make My re-
versible everywhere but the portions of the Fourier trans-
form. This concludes the proof of Theorem 1.

4 Concluding Remarks

Our study in this paper would reveal several interest-
ing questions yet to be resolved: (i) Now we know that
1.5QFA’s can accept considerably high-class languages
up to at least those which cannot be accepted by one-
way stack automata. Then what is a well-known class of
languages that can contain all the languages accepted by
1:5QFA’s? Furthermore, does the answer to this question
differ much if 1.5 QFA’s are replaced by 2QFA’s? (ii) A
more specific question is whether or not there is a class
of one-way linear-time conventional machines (like alter-
nating off-line TMs) which is at least as powerful-as 1.5
QFA’s without e-cycles. (iii) We were not able to discuss
negative aspects of 1.5QFA’s in this paper. Our conjec-
ture is that there are regular languages that cannot be
accepted by any 1.5QFA’s even if we allow e-cycles. (iv)
Our 1.5QFA’s in this paper have a quite large error prob-
ability. It does not appear to be easy to reduce it signif-
icantly as long as depending on the current approach of
con)lputing conjunctiveness (see the example in Section
2.2).
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