<table>
<thead>
<tr>
<th>Title</th>
<th>Analyzing the Average Behavior of Conjunctive Learning Algorithms (Models of Computation and Algorithms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Reischuk, Rudiger; Zeugmann, Thomas</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1999年, 1093: 123-129</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62961</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Analyzing the Average-Case Behavior of Conjunctive Learning Algorithms

RÜDIGER REISCHUK*
Med. Universität zu Lübeck
Institut für Theoretische Informatik
Wallstraße 40
23560 Lübeck, Germany
reichuk@informatik.mu-luebeck.de

THOMAS ZEUGMANN†
Department of Informatics
Kyushu University
Kasuga 816-8580
Japan
thomas@i.kyushu-u.ac.jp

Abstract. We introduce a framework to analyze the average complexity of learning problems. Based on it we consider the problem of learning monomials in the limit and for on-line predictions in two variants: from positive data only, and from positive and negative examples. The Wholist algorithm is completely analyzed, in particular its average-case behavior with respect to the class of binomial distributions. We consider different complexity measures: the number of mind changes, the number of prediction errors, and the total learning time. Tight bounds are obtained implying that worst case bounds are too pessimistic. On the average learning can be achieved exponentially faster.

Finally, we study a new learning model, stochastic finite learning, in which some information about the underlying distribution is given. We develop techniques to obtain good bounds for stochastic finite learning from a precise average case analysis of algorithms learning in the limit and illustrate our approach for the case of learning monomials.

1. Introduction

Learning concepts efficiently has attracted considerable attention during the last decade. However, research following the traditional lines of inductive inference has mainly considered the update time, i.e., the effort to compute a single new hypothesis. Starting with Valiant’s paper [18], the total amount of time needed to solve a given learning problem has been investigated, too. The complexity bounds proved within the PAC model are usually worst-case bounds. In experimental studies large gaps have often been observed between the time bounds obtained by a mathematical analysis and the actual runtime of a learner on typical data. This phenomenon can be explained easily. Data from running tests provide information about the average-case performance of a learner. Since algorithmic learning has a lot of practical applications it is of great interest to analyze the average-case performance, and to obtain tight bounds.

Pazzani and Sarret [14] have proposed a framework for analyzing the average-case behavior of learners. Several authors have followed their approach (cf., e.g., [12, 13]). Their goal is to predict the expected accuracy of the hypothesis produced with respect to the number of training examples. However, the results obtained so far are not satisfactory. Typically, the probability that a random example is misclassified by the current hypothesis is estimated by a complicated formula. The evaluation of this formula, and the computation of the corresponding expectation is done by Monte-Carlo simulations. Clearly, such an approach does not provide general results about the average-case behavior for broader classes of distributions, and it is hard to compare these bounds with those proved for the PAC model.

We outline a new framework to study the average-case behavior of learning algorithms overcoming these drawbacks.

*Part of this work was performed while visiting the Department of Informatics at Kyushu University supported by the Japan Society for the Promotion of Science under Grant JSPS 29716102.
†Supported by the Grant-in-Aid for Scientific Research in Fundamental Areas from the Japanese Ministry of Education, Science, Sports, and Culture under grant no. 10558047.
2. Preliminaries

Let $\mathbb{N} = \{0, 1, 2, \ldots\}$ be the set of all natural numbers, and $\mathbb{N}^+ := \mathbb{N} \setminus \{0\}$. If M is a set, $|M|$ is used for its cardinality. For an infinite sequence d and $j \in \mathbb{N}^+$ let $d[j]$ denote the initial segment of d of length j. By $(0, 1)$ we denote the open real interval from 0 to 1. For $n \in \mathbb{N}^+$, let $\mathcal{X}_n = \{0, 1\}^n$ be the learning domain and $\wp(\mathcal{X}_n)$ the power set of \mathcal{X}_n. Every $c \subseteq \mathcal{X}_n$ is called a concept, and $\mathcal{C} \subseteq \wp(\mathcal{X}_n)$ a concept class. c is also used to denote its characteristic function, i.e., for $b \in \mathcal{X}_n$: $c(b) = 1$ if $b \in c$. To define the classes of concepts we deal with, let $\mathcal{L}_n = \{x_1, \overline{x}_1, x_2, \overline{x}_2, \ldots, x_n, \overline{x}_n\}$ be a set of literals. x_i is a positive literal and \overline{x}_i a negative one. A conjunction of literals defines a monomial. For a monomial m let $\#(m)$ denote its length, that is the number of literals in it.

m describes a concept $L(m)$ of \mathcal{X}_n in the obvious way, that is $L(m) := \{b \in \mathcal{X}_n | m(b) = 1\}$. The concept class we are going to learn is the set \mathcal{C}_n of all concepts that are describable by monomials over \mathcal{X}_n. There are two trivial concepts, the empty subset and \mathcal{X}_n itself. \mathcal{X}_n, which is called “TRUE”, is represented by the empty monomial. The concept “FALSE” has several descriptions. To avoid ambiguity, we represent “FALSE” by the monomial $x_1 \overline{x}_1 \ldots x_n \overline{x}_n$. We identify the set of all monomials over \mathcal{L}_n and the concept class \mathcal{C}_n. Note that $|\mathcal{C}_n| = 2^n + 1$. We also consider the subclass \mathcal{MC}_n of \mathcal{C}_n consisting of all concepts describable by monotone monomials. It holds $|\mathcal{MC}_n| = 2^n$.

3. Learning Models and Complexity Measures

We start with the on-line prediction model going back to [1, 10]. Here, the learner is given a sequence of labeled examples $d = \langle d_j \rangle_{j \in \mathbb{N}^+} = \langle b_1, c(b_1), b_2, c(b_2), b_3, c(b_3), \ldots \rangle$ from c, where $b_j \in \mathcal{X}_n$. The b_j are picked arbitrarily and the $c(b_j)$ are assumed to be error-free. We call such sequences data sequences and denote by $\text{data}(c)$ the set of all data sequences for c.

A learner P must predict $c(b_j)$ after having seen $d[2j-1] = \langle b_1, c(b_1), \ldots, b_{2j-1}, c(b_{2j-1}), b_{2j} \rangle$. We denote this hypothesis by $P(d[2j-1])$. Then it receives $c(b_j)$ and the next b_{2j+1}. P has successfully learned if it eventually reaches a point beyond which it always predicts correctly.

Definition 1. A concept class \mathcal{C} is called on-line predictable if there is a learner P such that for all $c \in \mathcal{C}$ and all $d = \langle d_j \rangle_{j \in \mathbb{N}^+} \in \text{data}(c)$ it holds: $P(d[2j-1])$ is defined for all j, and $P(d[2j-1]) = d_{2j}$ for all but finitely many j.

For on-line prediction, the complexity measure considered is the number of prediction errors made. We aim to minimize the number of prediction errors when learning monomials.

Next, we define learning in the limit (cf. [5]). We distinguish between learning from informant, and learning from positive data. For a concept c, let $\text{info}(c)$ be the set of those data sequences $(b_1, c(b_1), b_2, c(b_2), \ldots)$ in $\text{data}(c)$ containing each $b \in \mathcal{X}_n$ at least once. Such a sequence is called informant. Let us pair each element b_j with its classification $c(b_j)$. Then the j-th entry of an informant d is $d_j := (b_j, c(b_j))$.

A positive presentation of c is a data sequence containing only elements of c and each one at least once. Thus all the values $c(b_j)$ are 1 and can be omitted. Hence, we denote the sequence simply by $d = \langle d_j \rangle_{j \in \mathbb{N}^+} = \langle b_1, b_2, b_3, \ldots \rangle$. Let $d[j]^+ := \{b_i | 1 \leq i \leq j\}$, and let $\text{pos}(c)$ be the set of all positive presentations of c. The elements of $\text{pos}(c)$ are also called a text for c.

A limit learner is an inductive inference machine (abbr. IIM). An IIM M gets incrementally growing segments of a text (resp. of an informant) d as input. After each input, it outputs a hypothesis $M(d[j])$ from a predefined hypothesis space \mathcal{H}. Each $h \in \mathcal{H}$ refers to a unique element of the concept class.

Definition 2. Let \mathcal{C} be a concept class and let \mathcal{H} be a hypothesis space for it. \mathcal{C} is called learnable in the limit from positive presentation (resp. from informant) if there is an IIM M such that for every $c \in \mathcal{C}$ and every $d \in \text{pos}(c)$ (resp. $d \in \text{info}(c)$): $M(d[j])$ is defined for all j, and $M(d[j]) = h$ for all but finitely many j, where $h \in \mathcal{H}$ is a hypothesis referring to c.

For \mathcal{C}_n we choose as hypothesis space the set of all monomials over \mathcal{L}_n, whereas for \mathcal{MC}_n it is the set of all monotone monomials.

The first complexity measure we consider is the mind change complexity. A mind change occurs iff $M(d[j]) \neq M(d[j+1])$. This measure is closely related to the number of prediction errors. Both complexity measures say little about the total amount of data and time needed until a
concept is guessed correctly. Thus, for learning in the limit we also measure the time complexity. As in [3] we define the total learning time as follows. Let M be any IIM learning a concept class C in the limit. Then, for $c \in C$ and a text or informant d for c, let $Con(M, d) =$ the least $i \in \mathbb{N}^+$ such that $M(d[j]) = M(d[i])$ for all $j \geq i$ denote the stage of convergence of M on d (cf. [5]). By $T_M(d_j)$ we denote the number of steps to compute $M(d[j])$. We measure $T_M(d_j)$ as a function of the length of the input and call it update time. Finally, the total learning time taken by the IIM M on a sequence d is defined as $TT(M, d) := \sum_{j=1}^{Con(M, d)} T_M(d[j])$. Given a probability distribution D on the data sequences d we evaluate the expectation of $TT(M, d)$ with respect to D, the average total learning time.

4. The Wholist Algorithm

Next, we present Haussler's [6] Wholist algorithm for on-line prediction of monomials. For learning in the limit this algorithm can be modified straightforwardly. The limit learner computes a new hypothesis using only the most recent examples received and his old hypothesis. Such learners are called iterative (cf. [8]). Let $c \in C_n$, let $d \in data(c)$, and let $b_i = b_i^1b_i^2 \ldots b_i^n$ denote the i-th Boolean vector in d.

Algorithm \mathcal{P}: On input d do the following:

- Initialize $h_0 := x_1\bar{x}_1 \ldots x_n\bar{x}_n$.
- for $i = 1, 2, \ldots$ do
 - let h_{i-1} denote \mathcal{P}'s internal hypothesis produced before receiving b_i;
 - when getting b_i predict $h_{i-1}(b_i)$; read $c(b_i)$;
 - if $h_{i-1}(b_i) = c(b_i)$ then $h_i := h_{i-1}$
 - else for $j := 1$ to n do
 - if $b_i^j = 1$ then delete \bar{x}_j in h_{i-1}
 - else delete x_j in h_{i-1}
 - let h_i be the resulting monomial

Note that the algorithm is monotone with respect to the sequence of its internal hypotheses.

Theorem 1. Algorithm \mathcal{P} learns the set of all monomials within the prediction model. It makes at most $n + 1$ prediction errors.

To learn the concept class \mathcal{MC}_n, algorithm \mathcal{P} is modified by initializing $h_0 = x_1x_2 \ldots x_n$ and by simplifying the loop appropriately. We refer to the modified algorithm as to \mathcal{MP}.

Theorem 1 can be restated for \mathcal{MP} with the only difference that now the worst-case bound for the number of prediction errors is n.

5. Best and Worst Case Analysis

For the learning models defined we estimate the best-case complexity, the worst-case complexity, and the expectation of algorithm \mathcal{P} and \mathcal{MP}. We start with the first two issues. Both algorithms do not make any prediction errors iff the initial hypothesis h_0 equals the target. For \mathcal{P} this means that the target is “FALSE”, while for \mathcal{MP} it is the all-1 vector. These special concepts are considered as minimal in their class. For them the best-case and the worst-case number of predictions errors coincide.

The literals in a monomial m are called relevant. All other literals in \mathcal{L}_n (resp. in $\{x_1, \ldots, x_n\}$ in the monotone case) are said to be irrelevant for m. There are $2n - \#(m)$ irrelevant literals in general, and $n - \#(m)$ in the monotone case. We call bit i relevant for m if x_i or \bar{x}_i is relevant for m. Let $k = k(m) = n - \#(m)$ denote the number of irrelevant bits.

Theorem 2. Let $c = L(m)$ be a non-minimal concept in \mathcal{MC}_n. Then algorithm \mathcal{MP} makes 1 prediction error in the best case, and $k(m)$ prediction errors in the worst-case.

If c is a non-minimal concept of \mathcal{C}_n, algorithm \mathcal{P} makes 2 prediction errors in the best case and $1 + k(m)$ prediction errors in the worst-case.

As Theorem 2 shows, the gap between the best-case and worst-case behavior can be quite large. Thus, we ask what are the expected bounds for the number of prediction errors on randomly generated data sequences. Before answering this question we estimate the worst-case number of prediction errors averaged over the whole concept class \mathcal{MC}_n, resp. \mathcal{C}_n. Thus we get a complexity bound with respect to the parameter n, instead of $\#(m)$ as in Theorem 2. This averaging depends on the underlying probability distribution for selecting the targets (for the corresponding data sequences we consider the worst input). The average is shown to be linear in n if the literals are binomially distributed.

To generate the probability distributions we assume for \mathcal{MC}_n the relevant positive literals to be drawn independently at random with probability p, $p \in (0, 1)$. Thus, with probability
$1 - p$ a literal is irrelevant. The length of the monomials drawn by this distribution is binomially distributed with parameter p. Thus we call such a distribution on the concept class a **binomial distribution.**

Theorem 3. Let the concepts in MC_n be binomially distributed with parameter p. Then the average number of prediction errors of MP for the worst data sequences is $n(1 - p)$.

In case $p = \frac{1}{2}$, the bound says that the maximal number of prediction errors when uniformly averaged over all concepts in MC_n is $\frac{2n}{3}$.

Next, we deal with the class C_n. For comparing it to the monotone case we have to clarify what does it mean for concepts in C_n to be binomially distributed. Since there are $3^n + 1$ many concepts in C_n for a uniform distribution each concept must have probability $1/(3^n + 1)$. For each position $i = 1, \ldots, n$ three options are possible, i.e., we may choose x_i, \bar{x}_i or neither of them. This suggests the formula $(k_1,k_2,k_3)\begin{pmatrix} n \\ k_1 \end{pmatrix}p_1^{k_1}p_2^{k_2}p_3^{k_3}$, where p_1 is the probability to take x_i, p_2 the probability to choose \bar{x}_i and p_3 the probability to choose none, and $p_1 + p_2 + p_3 = 1$ and $k_1 + k_2 + k_3 = n$. $k_1 + k_2$ counts the number of relevant literals, resp. bits. However, this formula does not include the concept "FALSE." Thus, let us introduce $p_f \in (0,1)$ for the probability to choose "FALSE." Then the formula becomes $(1 - p_f)\begin{pmatrix} n \\ k_1 \end{pmatrix}p_1^{k_1}p_2^{k_2}p_3^{k_3}$. We call such a probability distribution a **weighted multinomial distribution** with parameters (p_f,p_1,p_2,p_3).

Theorem 4. Let the concepts in C_n occur according to a weighted multinomial distribution with parameters (p_f,p_1,p_2,p_3). Then the average number of prediction errors of P for the worst data sequences is $(1 - p_f)(1 + np_3)$.

For the particular case that all concepts from C_n are equally likely, we get that on the average less than $n/3 + 1$ errors are to be expected given the worst data sequences. Hence, in this case the class C_n seems to be easier to learn than MC_n with respect to the complexity measure prediction errors. However, this impression is misleading, since the probabilities to generate an irrelevant literal are different, i.e., $1/3$ for C_n and $1/2$ for MC_n. If we assume the probabilities to generate an irrelevant literal to be equal, say q, and make the assumption that "FALSE" has the same probability as "TRUE," the average complexity is $\frac{1}{1+q}((1 + q)n)$ for C_n and nq for MC_n. Since for C_n, $q = 1 - (p_1 + p_2)$, and for MC_n, $q = 1 - p$, now MC_n is easier to learn than C_n. This is interesting, since it shows the influence of the underlying distribution. In contrast, previous work has expressed these bounds in terms of the VC-dimension which n for both classes.

The results above directly translate to limit-learning from informant or from text for the complexity measure number of mind changes.

What can be said about the total learning time? The best-case can be handled as above. Since the update time is linear in n for both algorithms MP and P, in the best case the total learning time is linear. In contrast, the worst-case total learning time is unbounded for both algorithms. Hence, as far as learning in the limit and the complexity measure total learning time are concerned, there is a huge gap between the best-case and the worst-case behavior. Since the worst-case is unbounded, it does not make sense to ask for an analogue to Theorem 3 and 4. Instead, we continue by studying the average-case behavior of the limit learner P and MP.

6. **Average-Case Analysis for Learning in the Limit from Text**

For the following average case analysis we assume that the data sequences are generated at random with respect to some probability distribution D taken from a class of admissible distributions \mathcal{D} specified below. We ask for the average number of examples till an algorithm has converged to a correct hypothesis. **CON** denotes a random variable counting the number of examples till convergence. Let d be a text of the target concept c that is generated at random according to D. If the concept c is "FALSE" no examples are needed, and if c contains precisely n literals then one positive example suffices. Thus, for these two cases everything is clear and the probability distributions D on the set of positive examples for c are trivial.

For analyzing the nontrivial cases, let $c = L(m) \in C_n$ be a concept with monomial $m = \bigwedge_{i=1}^{\#(m)} \ell_i$ such that $k = k(m) = n - \#(m) > 0$. There are 2^k positive examples for c. For the sake of presentation, we assume these examples
to be \textit{binomially distributed}. That is, in a random positive example all entries corresponding to irrelevant bits are selected independently of each other. With some probability \(p \) this will be a 1, and with probability \(1-p \) a 0. We shall consider only nontrivial distributions where \(0 < p < 1 \). Note that otherwise the data sequence does not contain all positive examples.

The first example received forces \(\mathcal{P} \) to delete precisely \(n \) of the 2\(n \) literals in \(h_0 \). Thus, this example always plays a special role. The hypothesis \(h_1 \) depends on \(b_1 \), but the number \(k \) of literals that remain to be deleted from \(h_1 \) until convergence is independent of \(b_1 \). Using tail bound techniques, we can show the following.

\textbf{Theorem 5.} Let \(c = L(m) \) be a non-minimal concept in \(C_n \), and let the positive examples for \(c \) be binomially distributed with parameter \(p \). Define \(\psi := \min\{\frac{1}{1-p}, \frac{1}{p}\} \). Then the expected number of positive examples needed by algorithm \(\mathcal{P} \) until convergence can be bounded by \(E[\text{CON}] \leq [\log_\psi k(m)] + 3 \).

A similar analysis can be given in the monotone setting for algorithm \(\mathcal{M} \mathcal{P} \).

\textbf{Corollary 6.} For every binomially distributed text with parameter \(0 < p < 1 \) the average total learning time of algorithm \(\mathcal{P} \) for concepts in \(C_n \) with \(\mu \) literals is at most \(O(n(\log n - \mu + 2)) \).

The expectation alone does not provide complete information about the average case behavior of an algorithm. We also like to deduce bounds on how often the algorithm exceeds the average considerably. The Wholist algorithm possesses two properties that simplify this derivation considerably, i.e., it is set-driven and conservative. Set-driven means that for all \(c \in C_n \) all \(d, h \in \text{pos}(c) \) and all \(i, j \in \mathbb{N}^+ \) the equality \(d[i]^+ = h[j]^+ \) implies \(\mathcal{P}(d[i]) = \mathcal{P}(h[j]) \). A learner is conservative if every mind change is caused by an inconsistency with the data seen so far. Now, the following theorem establishes exponentially shrinking tail bounds for the expected number of examples needed in order to achieve convergence.

\textbf{Theorem 7} ([16]). Let \(\text{CON} \) be the sample complexity of a conservative and set-driven learning algorithm. Then \(\text{Pr}[\text{CON} > 2t \cdot E[\text{CON}]] \leq 2^{-t} \) for all \(t \in \mathbb{N} \).

A simple calculation shows that in case of exponentially shrinking tail bounds the variance is bounded by \(O(E[\text{CON}]^2) \).

7. Stochastic Finite Learning

Next we show how to convert the Wholist algorithm into a text learner that identifies all concepts in \(C_n \) stochastically in a bounded number of rounds with high confidence. A bit-additional knowledge concerning the underlying class of probability distributions is required. Thus, in contrast to the PAC model, the resulting learning model is \textit{not} distribution-free. But with respect to the quality of its hypotheses, it is stronger than the PAC model by requiring the output to be \textit{probably exactly correct} rather than \textit{probably approximately correct}. The main advantage is the usage of the additional knowledge to reduce the sample size, and hence the total learning time drastically. This contrasts to previous work in the area of PAC learning (cf., e.g., [2, 4, 7, 9, 11, 17]). These papers have shown concepts classes to be PAC learnable from polynomially many examples given a known distribution or class of distributions, while the general PAC learnability of these concepts classes is not achievable or remains open. Note that our general approach, i.e., performing an average-case analysis and proving exponentially shrinking tail bounds for the expected total learning time, can also be applied to obtain results along this line (cf. [15, 16]).

\textbf{Definition 3.} Let \(\mathcal{D} \) be a set of probability distributions on the learning domain, \(\mathcal{C} \) a concept class, \(\mathcal{H} \) a hypothesis space for \(\mathcal{C} \), and \(\delta \in (0, 1) \). \((\mathcal{C}, \mathcal{D}) \) is said to be \textit{stochastically finite learnable with} \(\delta \)-\textit{confidence} with respect to \(\mathcal{H} \) if there is an IIM \(M \) that for every \(c \in \mathcal{C} \) and every \(D \in \mathcal{D} \) performs as follows. Given a random presentation \(d \) for \(c \) generated according to \(D \), \(M \) stops after having seen a finite number of examples and outputs a single hypothesis \(h \in \mathcal{H} \). With probability at least \(1-\delta \) (with respect to distribution \(D \)) \(h \) has to be correct, that is \(L(h) = c \) in case of monomials. If stochastic finite learning can be achieved with \(\delta \)-confidence for every \(\delta > 0 \) then we say that \((\mathcal{C}, \mathcal{D}) \) can be learned stochastically finite \textit{with high confidence}.

We study the case that the positive examples are binomially distributed with parameter \(p \). But we do not require precise knowledge...
the underlying distribution. Instead, we reasonably assume that prior knowledge is provided by parameters \(p_{\text{low}} \) and \(p_{\text{up}} \) such that \(p_{\text{low}} \leq p \leq p_{\text{up}} \) for the true parameter \(p \). Binomial distributions fulfilling this requirement are called \((p_{\text{low}}, p_{\text{up}})\)-admissible distributions. Let \(D_n(p_{\text{low}}, p_{\text{up}}) \) denote the set of such distributions on \(\mathcal{X}_n \).

If bounds \(p_{\text{low}} \) and \(p_{\text{up}} \) are available, the Wholist algorithm can be transformed into a stochastic finite learner inferring all concepts with high confidence.

Theorem 8. Let \(0 < p_{\text{low}} \leq p_{\text{up}} < 1 \) and \(\psi := \min\{\frac{1}{1-p_{\text{low}}}, \frac{1}{1-p_{\text{up}}}\} \). Then \((\mathcal{C}_n, D_n[p_{\text{low}}, p_{\text{up}}]) \) is stochastically finitely learnable with high confidence from positive presentations. To achieve \(\delta \)-confidence no more than \(O(\log_2 1/\delta \cdot \log_{\psi} n) \) many examples are necessary.

The latter example bound can even be improved to \(\log_{\psi} n + \log_{\psi} 1/\delta \cdot O(1) \) by performing a careful error analysis, i.e., for the Wholist algorithm, the confidence requirement increases the sample size by an additive term \(\log_{\psi} 1/\delta \) only.

8. Average-case Analysis for Learning in the Limit from Informant

Finally, we consider how the results obtained so far translate to the case of learning from informant. First, we investigate the uniform distribution over \(\mathcal{X}_n \). Again, we have the trivial cases that the target is "FALSE" or \(m \) is a monomial without irrelevant bits. In the first case, no example is needed at all, while in the latter one, there is only one positive example having probability \(2^{-n} \). Thus the expected number of examples needed until successful learning is \(2^n = 2^\#(m) \).

Theorem 9. Let \(c = L(m) \in \mathcal{C}_n \) be a nontrivial concept. If an informant for \(c \) is generated from the uniform distribution by independent draws the expected number of examples needed by algorithm \(\mathcal{P} \) until convergence is bounded by

\[
E[\text{CON}] \leq 2^\#(m) \left(\log_{\psi} 2^\#(m) + 3 \right).
\]

Hence, as long as \(k(m) = n - O(1) \), we still achieve an expected total learning time \(O(n \log n) \). But if \(\#(m) = \Omega(n) \) the expected total learning is exponential. However, if there are many relevant literals then even \(h_0 \) may be considered as a not too bad approximation for \(c \). Thus, let \(\varepsilon \in (0, 1) \) be an error parameter as in the PAC model. We ask if one can achieve an expected sample complexity for computing an \(\varepsilon \)-approximation that is polynomially bounded in \(\log n \) and \(1/\varepsilon \).

Let \(\text{err}_m(h_j) = D(L(h_j) \triangle L(m)) \) be the error made by hypothesis \(h_j \) with respect to monomial \(m \), where \(L(h_j) \triangle L(m) \) denotes the symmetric difference of \(L(h_j) \) and \(L(m) \), and \(D \) the probability distribution with respect to which the examples are drawn. Hypothesis \(h_j \) is an \(\varepsilon \)-approximation for \(m \) if \(\text{err}_m(h_j) \leq \varepsilon \).

Finally, we redefine the stage of convergence. Let \(d = (d_j)_{j \in \mathbb{N}^+} \in \text{info}(L(m)) \), then we set \(\text{CON}_\varepsilon(d) = \# \) the least number \(j \) such that \(\text{err}_m(P(d[i])) \leq \varepsilon \) for all \(i \geq j \).

Note that once the Wholist algorithm has reached an \(\varepsilon \)-approximate hypothesis all further hypotheses will also be at least that close to the target monomial. The next theorem gives an affirmative answer to the question posed above.

Theorem 10. Let \(c = L(m) \in \mathcal{C}_n \) be a nontrivial concept. Assuming that examples are drawn independently at random from the uniform distribution, the expected number of examples needed by algorithm \(\mathcal{P} \) until converging to an \(\varepsilon \)-approximation for \(c \) can be bounded by

\[
E[\text{CON}_\varepsilon] \leq \frac{1}{\varepsilon} \cdot (\lfloor \log_2 k(m) \rfloor + 3).
\]

Therefore, additional knowledge concerning the underlying probability distribution pays off again. Using Theorem 7 and modifying Section 7 mutatis mutandis, we achieve stochastic finite learning with high confidence for all concepts in \(\mathcal{C}_n \) using \(O(\frac{1}{\varepsilon} \cdot \log_2 \frac{1}{\varepsilon} \cdot \log n) \) many examples. However, the resulting learner now infers \(\varepsilon \)-approximations. Comparing this bound with the sample complexity given in the PAC model one notes an exponential reduction.

Finally, we generalize the last results to the case that the data sequences are binomially distributed for some parameter \(p \in (0, 1) \). This means that any particular vector containing \(\nu \) times a 1 and \(n - \nu \) a 0 has probability \(p^\nu (1 - p)^{n-\nu} \) since a 1 is drawn with probability \(p \) and a 0 with probability \(1 - p \). First, Theorem 9 generalizes as follows.

Theorem 11. Let \(c = L(m) \in \mathcal{C}_n \) be a nontrivial concept. Let \(m \) contain precisely \(\tau \) positive literals and \(\pi \) negative literals. If the labeled examples for \(c \) are independently binomially distributed with parameter \(p \) and
\(\psi := \min\{\frac{1}{1-p}, \frac{1}{p}\} \) then the expected number of examples needed by algorithm \(\mathcal{P} \) until convergence can be bounded by \(E[\text{CON}] \leq \frac{1}{p^*(1-p^*)} \left([\log_\psi k(m)] + 3 \right) \).

Theorem 10 directly translates into the setting of binomially distributed inputs.

Theorem 12. Let \(c = L(m) \in C_n \) be a nontrivial concept. Assume that the examples are drawn with respect to a binomial distribution with parameter \(p \), and let \(\psi := \min\{\frac{1}{1-p}, \frac{1}{p}\} \). Then the expected number of examples needed by algorithm \(\mathcal{P} \) until converging to an \(\varepsilon \)-approximation for \(c \) can be bounded by \(E[\text{CON}] \leq \frac{1}{\varepsilon} \left([\log_\psi k(m)] + 3 \right) \).

Finally, one can also learn \(\varepsilon \)-approximations stochastically finite with high confidence from informant with an exponentially smaller sample complexity.

Theorem 13. Let \(0 < p_{\text{low}} \leq p_{\text{up}} < 1 \) and \(\psi := \min\{\frac{1}{1-p_{\text{low}}}, \frac{1}{p_{\text{up}}}\} \). For \((C_n, D_n[p_{\text{low}}, p_{\text{up}}]) \) \(\varepsilon \)-approximations can be learned stochastically finitely with \(\delta \)-confidence from informant for all \(\varepsilon, \delta \in (0, 1) \). Further, \(O\left(\frac{\delta}{\varepsilon} \cdot \log_2 1/\delta \cdot \log_\psi n \right) \) resp. \(O\left(\frac{1}{\varepsilon} \cdot (\log_\psi 1/\delta + \log_\psi n) \right) \) many examples suffice for this purpose.

References

