Title: Common-face embeddings of planar graphs with applications

Author(s): Chen, Zhi-Zhong; He, Xin; Kao, Ming-Yang

Citation: 数理解析研究所講究録 (1999), 1093: 33-38

Issue Date: 1999-04

URL: http://hdl.handle.net/2433/62976

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Common-face embeddings of planar graphs with applications *

陈 教中 (Zhi-Zhong Chen), Xin He, Ming-Yang Kao
Tokyo Denki University, SUNY at Buffalo, Yale University

1 Introduction

It is a fundamental problem in mathematics to embed a graph into a given space while optimizing certain objectives required by applications. A graph is called planar if it can be embedded on the plane so that any pair of edges can only intersect at their endpoints; a plane graph is a planar one together with such an embedding. A classical variant of the problem is to test whether a given graph is planar and in case it is, to find a planar embedding. This planarity problem can be solved in linear time.

In this paper, we initiate the study into the following new planarity problem. Let \mathcal{G} be a planar graph. Assume that \mathcal{G} is simple. Let \mathcal{M} be a sequence C_1, \ldots, C_q, where each C_i is a family of vertex-sets of \mathcal{G}. A plane embedding Φ of \mathcal{G} satisfies C_i if the boundary of some face in Φ intersects every set in C_i. Φ satisfies \mathcal{M} if it satisfies all C_i. \mathcal{G} satisfies \mathcal{M} if \mathcal{G} has an embedding that satisfies \mathcal{M}. The CFE problem is the following:

- **Input:** \mathcal{G} and \mathcal{M}.
- **Question:** Does \mathcal{G} satisfy \mathcal{M}?

We show that the CFE problem is NP-complete.

For the special case where every vertex subset in \mathcal{M} induces a connected subgraph of \mathcal{G}, we give an $O(\alpha \log \alpha)$-time algorithm, where α is the input size. The CFE problem arises naturally from topological inference [1]. For instance, a less general and efficient version of our algorithm for the special case has been employed to design fast algorithms for reconstructing maps from scrambled partial data in geometric information systems. In this application, each vertex subset in \mathcal{M} describes a recognizable geographical feature, and each family in \mathcal{M} is a set of features that are known to be near each other. Similarly, our algorithm for the special case can compute a constrained layout of VLSI modules, where each vertex subset consists of the ports of a module, and each subset family specifies a set of modules that are required to be close to each other.

2 The main results

Theorem 2.1 The CFE problem is NP-complete.

The size $|C_i|$ of C_i is the total cardinality of the sets in C_i. The size $|\mathcal{M}|$ of \mathcal{M} is $|C_1| + \cdots + |C_q|$. $|\mathcal{G}|$ denotes the total number of vertices and edges in a graph \mathcal{G}. Let $\alpha = |\mathcal{G}| + |\mathcal{M}|$. The next theorem is the main theorem of this paper.

Theorem 2.2 If every vertex subset in \mathcal{M} induces a connected subgraph of \mathcal{G}, then the CFE problem can be solved in $O(\alpha \log \alpha)$ time.

Proof: We consider three special cases:

- Case M1: \mathcal{G} is connected.
- Case M2: \mathcal{G} is biconnected.
- Case M3: \mathcal{G} is triconnected.

Theorem 3.8 solves Case M3. Theorem 4.1 reduces this theorem to Case M1. §5 reduces Case M1 to M2. Theorem 6.1 uses Theorem 3.8 to solve Case M2.

The remainder of the paper assumes that every vertex subset of \mathcal{G} in \mathcal{M} induces a connected subgraph of \mathcal{G}.

3 Case M3

This section assumes that \mathcal{G} is triconnected. Then, \mathcal{G} has a unique combinatorial embedding up to the choice of the exterior face. Thus, the CFE problem reduces in linear time to that of finding all the faces in the embedding whose boundaries intersect every set in some C_i. The naive algorithm takes $\Theta(|\mathcal{G}| |\mathcal{M}|)$ time. We solve the latter problem more efficiently by recursively solving the ACF problem defined below.

Throughout this section, for technical convenience, the vertices of a plane graph are indexed by distinct positive integers. The faces are indexed by positive integers or -1. The faces indexed by positive integers have distinct indices and are called the positive faces. Those indexed by -1 are the negative faces.

Let \mathcal{H} be a plane graph. A vf-set of \mathcal{H} is a set of vertices and positive faces in \mathcal{H}. A vf-family is a family of vf-sets; a vf-sequence is a sequence of vf-families. Let \mathcal{N} be a vf-sequence D_1, \ldots, D_q of \mathcal{H}. Also, let $D = \{S_1, \ldots, S_d\}$ be a vf-family of \mathcal{H}.
Let F_i be the set of faces in S_i. Let U_i be the set of vertices in S_i.
- $|D| = |S_1| + \cdots + |S_k|$; similarly, $|N| = |D_1| + \cdots + |D_q|$.
- $\Lambda_\sigma(D)$ is the set of vertices in the intersection of the v-sets in D.
- $\Lambda_r(\mathcal{H}, D)$ is the set of positive faces F of \mathcal{H} such that for each S_i, F is a face in S_i or its boundary intersects $S_i - \Lambda_\sigma(D)$.

The ACF problem is the following:
- **Input:** \mathcal{H} and N.
- **Output:** $\mathrm{A}\mathrm{C}\mathrm{F}(\mathcal{H}, D_1), \ldots, \mathrm{A}\mathrm{C}\mathrm{F}(\mathcal{H}, D_q)$.

To solve the ACF problem recursively, \mathcal{H} need not be simple or triconnected. Furthermore, those faces that are indexed by -1 are ruled out as final output during recursions. To solve the problem efficiently, each vertex in $\Lambda_\sigma(D_i)$ is meant as a succinct representation of all the faces whose boundaries contain that vertex. Similarly, the positive faces in the input D_i and the output are represented by their indices.

The next lemma relates the CFE problem and the ACF problem.

Lemma 3.1 Let the faces of \mathcal{G} be indexed by positive integers. Then, the output to the CFE problem is “yes” iff for all G_i, $\mathrm{CFE}(G, G_i) \neq \emptyset$.

3.1 A counting lemma

Lemma 3.2 1. Let v_1 and v_2 be distinct vertices in \mathcal{G}. Let F_1 and F_2 be distinct faces in \mathcal{G}. Then, both v_1 and v_2 are on the boundaries of F_1 and F_2 iff v_1 and v_2 form a boundary edge of both F_1 and F_2.

2. Given a set U of vertices in \mathcal{G}, there are $O(|U|)$ faces in \mathcal{G} whose boundaries each contain at least two vertices in U.

3. Given a set F of faces in \mathcal{G}, there are $O(|F|)$ vertices in \mathcal{G} which are on the boundaries of at least two faces in F.

Corollary 3.3 If \mathcal{H} is simple and triconnected, then the output of the ACF problem has size $O(|N|)$.

3.2 A simplification technique

To solve the ACF problem efficiently, we simplify the input graph by removing unnecessary edges and vertices as follows.

For a v-set S of \mathcal{H}, the topological subgraph $\mathcal{H} \cap S$ of \mathcal{H} constructed as follows is said to simplify \mathcal{H} over S.

Let U and \mathcal{F} be the sets of vertices and positive faces in S, respectively. Let \mathcal{F}_U be the set of the positive faces in \mathcal{H} whose boundaries each contain at least two distinct vertices in U. Let V' and E' be the sets of boundary vertices and edges of the faces in $\mathcal{F} \cup \mathcal{F}_U$, respectively. Let \mathcal{H}' be the plane subgraph of \mathcal{H} consisting of $V' \cup U$ and E'.

Let U' be the set of vertices which are of degree at least three in \mathcal{H}'; note that each vertex in U' appears on the boundaries of at least two faces in $\mathcal{F} \cup \mathcal{F}_U$. A critical path P in \mathcal{H}' is a maximal path such that (1) every internal vertex of P appears only once in it, and (2) no internal vertex of P is in $U \cup U'$. By the choice of U', every internal vertex of a critical path is of degree 2 in \mathcal{H}'. We use this property to further simplify \mathcal{H}'. Let $\mathcal{H} \cap S$ be the plane graph obtained from \mathcal{H}' by replacing each critical path with an edge between its endpoints. This edge is embedded by the same curve in the plane as the path is. For technical consistency, if a critical path forms a cycle and its endpoint is not in $U \cup U'$, then we replace it with a self-loop for the vertex of the cycle with the smallest index.

Each vertex in $\mathcal{H} \cap S$ is given the same index as in \mathcal{H}. The closure of the interior of each face of $\mathcal{H} \cap S$ is the union of those of several faces or just one in \mathcal{H}. Let F be a face in $\mathcal{H} \cap S$ and F' be one in \mathcal{H}. If σ (resp., σ') denote the closure of the interior of F (resp., F'). If $\sigma = \sigma'$, then F and F' are regarded as the same face, and F is assigned the same index in $\mathcal{H} \cap S$ as F' is in \mathcal{H}. For technical conciseness, these two faces are identified with each other. If σ is the union of the closures of the interiors of two or more faces in \mathcal{H}, F is not the same as any face in \mathcal{H} and is indexed by -1.

Lemma 3.4 1. Given \mathcal{H} and S, we can compute $\mathcal{H} \cap S$ in $O(|\mathcal{H}| + |S|)$ time.

2. Let S' be a v-set of $\mathcal{H} \cap S$. If $S' \subseteq S$, then $\mathcal{H} \cap S' = (\mathcal{H} \cap S) \cap S'$.

3. If \mathcal{H} simplifies \mathcal{G} over a v-set S^* with $S \subseteq S^*$, then $|\mathcal{H} \cap S| = O(|S|)$.

3.3 Algorithms for ACF

To solve the ACF problem recursively, we use simplification to reduce the number of D_i and the number of sets in each D_i.

For brevity, let $\mathcal{H} \cap D = \mathcal{H} \cap (S_1 \cup \cdots \cup S_d)$; similarly, $\mathcal{H} \cap N = \mathcal{H} \cap (D_1 \cup \cdots \cup D_q)$. Given a v-set S^* of \mathcal{H}, we say $D \leq S^*$ if $S_i \subseteq S^*$ for all S_i; we say $N \leq S^*$ if $D_i \leq S^*$ for all D_i.

Lemmas 3.5 and 3.6 below reduce to 1 the number of D_i in N in the ACF problem.

Lemma 3.5 Assume $q \geq 2$. Let $N_{\ell} = D_{1}, \ldots, D_{\lfloor q/2 \rfloor}$. Let $N_r = D_{\lceil q/2 \rceil} + 1, \ldots, D_q$. Let $\mathcal{H}_{\ell} = \mathcal{H} \cap N_{\ell}$ and $\mathcal{H}_r = \mathcal{H} \cap N_r$.

1. Given \mathcal{H} and \mathcal{N}, we can compute \mathcal{H}_t and \mathcal{H}_r in $O(|\mathcal{H}| + |\mathcal{N}|)$ time.

2. For $1 \leq i \leq \lfloor q/2 \rfloor$, $\mathcal{H} \triangle D_i = \mathcal{H}_t \triangle D_i$. Similarly, for $\lfloor q/2 \rfloor + 1 \leq i \leq q$, $\mathcal{H} \triangle D_i = \mathcal{H}_r \triangle D_i$.

3. If \mathcal{H} simplifies G over a vs-set $S^* \subseteq N \leq S^*$, then $|\mathcal{H}_t| = O(|\mathcal{D}| + |\mathcal{D}_{(q/2)}|)$ and $|\mathcal{H}_r| = O(|\mathcal{D}_{(q/2)}| + |\mathcal{D}_{q/2} + \ldots + |\mathcal{D}_{q}|)$.

Lemma 3.6 Assume $q \geq 1$. Let $\mathcal{H}_t = \mathcal{H} \triangle D_i$.

- If \mathcal{H} simplifies G over a vs-set S^* with $N \leq S^*$, then $|\mathcal{H}_t| = O(|\mathcal{D}_i|)$.

- If \mathcal{H} simplifies G over a vs-set S^* with $N \leq S^*$, then given \mathcal{H} and \mathcal{N}, we can compute all \mathcal{H}_t in $O(|\mathcal{H}| + |\mathcal{N}| \log(q + 1))$ time.

Theorem 3.8 Let $D_i = \{S_1, \ldots, S_{\lfloor q/2 \rfloor}\}$ and $D_r = \{S_{\lfloor q/2 \rfloor + 1}, \ldots, S_q\}$. Let $\mathcal{H}_t = \mathcal{H} \triangle D_i$ and $\mathcal{H}_r = \mathcal{H} \triangle D_r$. Let $D' = \{\text{ACF}(\mathcal{H}_t, D), \text{ACF}(\mathcal{H}_r, D_r)\}$.

- $\text{ACF}(\mathcal{H}, D) = \text{ACF}(\mathcal{H}, D')$.

- If \mathcal{H} simplifies G over a vs-set S^* with $D \leq S^*$, then given \mathcal{H} and \mathcal{D}, ACF(\mathcal{H}, D) can be computed in $O(|\mathcal{H}| + |\mathcal{D}| \log(d + q))$ time.

Theorem 3.8 Assume $k \geq 1$. Let $\mathcal{U}_{j,i} = \{U \in \mathcal{U}_{j} \mid U \subseteq V(\mathcal{G}_i)\}$.

- Let \mathcal{H}_f be the subgraph of \mathcal{G} induced by $\{w \cup W_i, \mathcal{G}_{1}, \ldots, \mathcal{G}_{k}\}$.

- Then, \mathcal{H}_f simplifies \mathcal{M} over a family \mathcal{H}_f.

Lemma 3.9 Assume $q \geq 1$. Let $\mathcal{H}_t = \mathcal{H} \triangle D_i$.

- If \mathcal{H} simplifies G over a vs-set S^* with $N \leq S^*$, then given \mathcal{H} and \mathcal{N}, we can compute all \mathcal{H}_t in $O(|\mathcal{H}| + |\mathcal{N}| \log(q + 1))$ time.

Theorem 3.8 Let d be the maximum number of vs-sets in any D_i in N. If \mathcal{H} simplifies G over a vs-set S^* with $N \leq S^*$, then ACF(\mathcal{H}, D) can be computed in $O(|\mathcal{H}| + |\mathcal{N}| \log(q + 1))$ time.

Theorem 3.8 Let d be the maximum number of vs-sets in any C_i in \mathcal{M}. Case 3 of the CFE problem can be solved in $O(|\mathcal{G}| + |\mathcal{M}| \log(d + q))$ time.

4 Reduction to Case M1

Let G be a graph. Let $V(G)$ denote the set of vertices in G. A cut vertex of G is one whose removal increases the number of connected components in G; a block is a maximal subgraph with no cut vertex. Let $\Psi(G)$ denote the forest whose vertices are the cut vertices v and the blocks B of G and whose edges are those $\{v, B\}$ with $v \in B$. $\Psi(G)$ is a tree if G is connected. A set $U \subseteq V(G)$ is G-local if $U \subseteq V(G)$. A family C of sets is G-local if every set in C is G-local. For a vertex subset $W \subseteq V(G)$, let $G - W$ denote the graph obtained from G by deleting the vertices in W.

Let G_1, \ldots, G_k be the connected components of G. A family C_i in \mathcal{M} is global if for every $i \in \{1, \ldots, k\}$, C_i is G_i-local. Let H be an edge-labeled graph defined as follows. The vertices of H are G_1, \ldots, G_k. For each w-global family, C_i has a cycle C of length 2 where (1) the vertices of C are those G_i such that some set in C_i is G_i-local and (2) the edges of C are all labeled G_i. For every B_j, let U_j be the family consisting of all sets U such that some edge of B_j is labeled C_i with $U \subseteq C_i$. For each G_i, let M_i be the sequence consisting of the G_i-local families in \mathcal{M} as well as the family $U_i = \{U \subseteq V(B_j) \mid U \subseteq V(G_i)\}$ for each B_j with $G_i \subseteq V(B_j)$.

Theorem 4.1 G satisfies \mathcal{M} if and only if every G_i satisfies \mathcal{M}_i. Consequently, Theorem 2.2 holds if it holds for Case M1.

5 Reducing Case M1 to M2

This section assumes that G is connected.

Let w be a cut vertex of G. Let W_1, \ldots, W_k be the vertex sets of the connected components of $G - \{w\}$. Let G_i be the subgraph of G induced by $\{w \cup W_i, \mathcal{G}_{1}, \ldots, \mathcal{G}_{k}\}$.

- Assume $C_h - \{U_{h,1}, \ldots, U_{h,t_h}\}$ is G_i-local for some G_i. Then, G satisfies \mathcal{M} if G_i satisfies \mathcal{M} with C_h replaced by $C_h - \{U_{h,1}, \ldots, U_{h,t_h}\}$.

- Assume that C_h is w-global. Then, G_i satisfies \mathcal{M} if G_i satisfies \mathcal{M}.

By Lemma 5.1, we may assume that (1) each set in an H-global family is H does not contain w and (2) each set in a family in \mathcal{M} is G_i-local for some G_i. Let H be an edge-labeled graph constructed as follows. The vertices of H are G_1, \ldots, G_k. For each w-global family, C_i has a cycle C of length 2 where (1) the vertices of C are those G_i such that at least one set in C_i is G_i-local and (2) the edges of C are all labeled C_i.

Let B_1, \ldots, B_p be the blocks of H. Clearly, for each w-global family, $C_i \in \mathcal{M}$, exactly one block of H contains all the edges labeled C_i. For each B_j, let U_j be the family consisting of $\{w\}$ and all $U \subseteq V(G_i)$ such that some edge of B_j is labeled C_i with $U \subseteq C_i$. For each G_i, let M_i be the sequence consisting of the G_i-local families in \mathcal{M} as well as the family $U_i = \{U \subseteq V(B_j) \mid U \subseteq V(G_i)\}$ for each B_j with $G_i \subseteq V(B_j)$.

Lemma 5.2 G satisfies \mathcal{M} if and only if every G_i satisfies \mathcal{M}_i.

By Lemma 5.2, Case M1 can be reduced to Case M2 in quadratic time. The inefficiency comes from the one-by-one removal of cut vertices. Using the union-find data structure and splay trees, we can remove all the cut vertices in almost linear time.
6 Case M2

We here assume G is biconnected, and prove:

Theorem 6.1 Theorem 2.2 holds for Case M2.

6.1 SPQR decompositions

A planar st-graph G is an acyclic plane digraph such that G has exactly one source s and exactly one sink t, and both vertices are on the exterior face. These two vertices are the poles of G.

A split pair of G is either a pair of adjacent vertices or a pair of vertices whose removal disconnects G. A split component of a split pair (u, v) is either an edge (u, v) or a maximal subgraph C of G such that C is a planar uv-graph and (u, v) is not a split pair of C. A split pair (u, v) of G is maximal if there is no other split pair (u', v') in G with (u, v) in a split component of (u', v').

The decomposition tree T of G is a rooted ordered tree recursively defined in four cases as follows. The nodes of T are of four types $S, P, Q,$ and R. Each node μ of T has an associated planar st-graph $\text{ske}(\mu)$, called the skeleton of μ. Also, μ is associated with an edge in the skeleton of the parent ϕ of μ, called the virtual edge of μ in $\text{ske}(\phi)$.

Case Q: G is a single edge from s to t. Then, T is a Q-node whose skeleton is G.

Case S: G is not biconnected. Let c_1, \ldots, c_{k-1} with $k \geq 2$ be the cut vertices of G. Since G is a planar st-graph, each c_i is in exactly two blocks G_i and G_{i+1} with $s \in G_i$ and $t \in G_{k}$. Then, T's root is an S-node μ, and $\text{ske}(\mu)$ consists of the chain e_1, \ldots, e_k and the edge (s, t), where the edge e_i goes from c_{i-1} to c_i, $c_0 = s$, and $c_k = t$.

Case P: (s, t) is a split pair of G with at least two split components. Then, T's root is a P-node μ, and $\text{ske}(\mu)$ consists of $k + 1$ parallel edges e_1, \ldots, e_{k+1} from s to t.

Case R: Otherwise. Let $\{s_1, t_1\}, \ldots, \{s_k, t_k\}$ with $k \geq 1$ be the maximal split pairs of G. Let G_i be the union of the split components of $\{s_i, t_i\}$. Then, T's root is an R-node μ, and $\text{ske}(\mu)$ is the simple triconnected graph obtained from G by replacing each G_i with an edge e_i from s_i to t_i and inserting the edge (s, t).

In the last three cases, μ has children χ_1, \ldots, χ_k in this order, such that each χ_i is the root of the decomposition tree of G_i. The virtual edge of χ_i is the edge e_i in $\text{ske}(\mu)$. G_i is called the pertinent graph $\text{pert}(\chi_i)$ of χ_i as well as the expansion graph of e_i. G is the pertinent graph of T's root. Also, no child of an S-node is an S-node, and no child of a P-node is a P-node.

The allocation nodes of a vertex v of G are the nodes of T whose skeleton contains v; note that v has at least one allocation node.

In the above description of T, for each non-leaf node μ, an additional edge is added into $\text{ske}(\mu)$ between its two poles (which does not correspond to any child of μ). This additional edge has no effect on our algorithm. From now on, we ignore this edge in $\text{ske}(\mu)$.

For each non-S-node μ in T, $\text{pert}(\mu)$ is called a block of G [2], which differs from that in §4 and §5. For a block $B = \text{pert}(\mu)$, let node(B) = μ. For an ancestor ϕ of node(B), the representative of B in $\text{ske}(\phi)$ is the edge in $\text{ske}(\phi)$ whose expansion graph contains B.

Let μ be an R- or P-node in T with children χ_1, \ldots, χ_k. For each $k \in \{1, \ldots, b\}$, let e_k be the virtual edge of χ_k in $\text{ske}(\mu)$. If χ_k is an S-node, $\text{pert}(\chi_k)$ is a chain consisting of two or more blocks. If χ_k is an R-node or P-node, $\text{pert}(\chi_k)$ is a single block. For each $k \in \{1, \ldots, b\}$, we say that the blocks in $\text{pert}(\chi_k)$ are on edge e_k. The minor blocks of $\text{pert}(\mu)$ are the blocks on e_1, \ldots, e_b.

6.2 Basic ideas

An st-orientation of a planar graph is an orientation of its edges together with an embedding such that the resulting digraph is a planar st-graph.

Fact 1 (see [2]) If an n-vertex planar graph has an st-orientation, then every embedding, where s and t are on the exterior face, of this graph can be obtained from this orientation through a sequence of $O(n)$ following operations:

- Select one of the two possible flips of an R-node's skeleton around its poles.
- Permute the skeletons of a P-node's children with respect to their common poles.

Let $\{s, t\}$ be an edge of G. Since G is biconnected, we convert G to a planar st-graph in $O(n)$ time for technical convenience. For the remainder of §6, let T be the decomposition tree of G. Also, let $C_i = \{U_i, 1, \ldots, U_i, r\}$.

Let μ be a node of T. T_μ denotes the subtree of T rooted at μ and $\text{dep}(\mu)$ denotes the distance from T's root to μ.

- $U_{i,j}$ is contained in $\text{pert}(\mu)$ if the vertices of $U_{i,j}$ are all in $\text{pert}(\mu)$; $U_{i,j}$ is strictly contained in $\text{pert}(\mu)$ if in addition, no pole of $\text{pert}(\mu)$ is in $U_{i,j}$.
- Let done($U_{i,j}$) be the deepest node μ in T such that $U_{i,j}$ is strictly contained in $\text{pert}(\mu)$, if such a node exists. If no such μ exists, then $U_{i,j}$ contains a pole of G and let done($U_{i,j}$) be T's root.
- A family C_i straddles $\text{pert}(\mu)$ if at least one set in C_i is strictly contained in $\text{pert}(\mu)$, and at least one set in C_i has no vertex in $\text{pert}(\mu)$.
Let done(C_i) be the deepest node μ in T such that for every $U_{i,j} \in C_i$, at least one vertex of $U_{i,j}$ is in $\operatorname{pert}(\mu)$. Let $\operatorname{sub}(\mu) = \{U_{i,j} | \operatorname{done}(U_{i,j}) = \mu\}$ and $\operatorname{fam}(\mu) = \{C_i | \operatorname{done}(C_i) = \mu\}$. If μ is a P- or R-node, let $\operatorname{xfam}(\mu) = \operatorname{fam}(\mu) \cup (\cup_{x} \operatorname{fam}(x_k))$ and $\operatorname{xs}\mu(\mu) = \operatorname{sub}(\mu) \cup (\cup_{x} \operatorname{sub}(x_k))$, where x_k ranges over all S-children of μ.

In a fixed embedding of a block B, the poles of B divide the boundary of its exterior face into two paths side$_1(B)$ and side$_2(B)$, called the two sides of B. $U_{i,j}$ is two-sided for B if both side$_1(B)$ and side$_2(B)$ intersect $U_{i,j}$. In particular, $U_{i,j}$ is two-sided for B if it contains a pole of B. $U_{i,j}$ is side-1 (resp., side-2) for B if only side$_1(B)$ (resp., side$_2(B)$) intersects $U_{i,j}$. Assume that B is a minor block of $\operatorname{pert}(\mu)$ for some μ. Let e_k be the representative of B in $\operatorname{ske}(\mu)$. In a fixed embedding of $\operatorname{ske}(\mu)$, e_k separates two faces F and F'. When embedding $\operatorname{pert}(\mu)$, we can embed side$_1(B)$ towards either F or F', referred to as the two orientations of B in $\operatorname{pert}(\mu)$.

A family C_i is side-0 (resp., side-1 or side-2) exterior-forcing for B if done(C_i) is an ancestor of node(B) in T and some $U_{i,j} \in C_i$ strictly contained in B is two-sided (resp., side-1 or side-2) for B. For $p = 0, 1, 2$, define $\operatorname{ext}_p(B) = \min\{\operatorname{dep}(\operatorname{done}(C_i)) | C_i$ is side-p exterior-forcing for $B\}$, if there is side-p exterior-forcing for B; $\operatorname{ext}_p(B) = \infty$ otherwise.

Let $\mu = \operatorname{node}(B), \phi_1, \phi_2, \ldots, \phi_h$ be the path in T from μ to ϕ_h, where $\operatorname{dep}(\phi_h) = \operatorname{ext}_p(B)$. For each $\ell \in \{1, \ldots, h-1\}$, the representative of B in $\operatorname{ske}(\phi_{\ell})$ must be an exterior edge in any satisfying embedding of $\operatorname{ske}(\phi_{\ell})$. In addition, if $p = 1$ or 2, side$_1(B)$ must be embedded towards the exterior face of the block $\operatorname{pert}(\phi_{\ell})$.

Since (s, t) is an edge of G, the root ρ of T is a P-node and has a child Q-node ϕ representing (s, t). A subtle difference between ρ and each non-root node of T is that the two sides of $G = \operatorname{pert}(\rho)$ is actually on the same face. To eliminate this difference, we delete ϕ from T; afterwards, if ρ has only one child, we further delete ρ from T. From here onwards, T denotes this modified tree.

6.3 The CFE algorithm

The CFE algorithm processes T from bottom up. A ready node μ of T is either (1) a leaf node or (2) a P- or R-node such that the non-S-children of μ and the children of every S-child of μ all have been processed. The CFE algorithm processes the ready nodes of T in an arbitrary order. An S-node is processed when its parent is processed. We detail how to process μ as follows.

For the case where μ is a leaf node of T, note that $\operatorname{pert}(\mu)$ is a single edge of G. Since no $U_{i,j}$ is strictly contained in $\operatorname{pert}(\mu)$, $\operatorname{fam}(\mu) = \emptyset$. Therefore, we simply set $\operatorname{ext}_p(\operatorname{pert}(\mu)) = \infty$ for $p = 0, 1, 2$.

We next consider the case where μ is a non-leaf ready node. Before μ is processed, an embedding of every minor block of $\operatorname{pert}(\mu)$ is already fixed, except for a possible flip around its poles. Moreover, for each minor block B of $\operatorname{pert}(\mu)$ and each $p \in \{0, 1, 2\}$, $\operatorname{ext}_p(B)$ is known. When processing μ, the CFE algorithm checks whether some embedding Φ_μ of $\operatorname{pert}(\mu)$ satisfies the following two conditions:

- Φ_μ satisfies every C_i in $\operatorname{xfam}(\mu)$.
- For each C_i straddling $\operatorname{pert}(\mu)$ and each $U_{i,j} \in C_i$ strictly contained in $\operatorname{pert}(\mu)$, at least one vertex of $U_{i,j}$ is embedded on the exterior face of Φ_μ. (Remark: This ensures the existence of an embedding of $\operatorname{pert}(\operatorname{done}(C_i))$ satisfying C_i later.)

If no such Φ_μ exists, then G cannot satisfy \mathcal{M} and the CFE algorithm outputs "no" and stops. Otherwise, it finds such an Φ_μ and fixes it except for a possible flip around its poles. It also computes $\operatorname{ext}_p(\operatorname{pert}(\mu)) = p = 0, 1, 2$.

To detail how to process μ, we classify the sets $U_{i,j}$ in each C_i into four types and define a set $\operatorname{img}(U_{i,j}, \mu)$ for each type as follows.

Type 1: $U_{i,j}$ contains at least one pole of $\operatorname{ske}(\mu)$.

Then, $\operatorname{done}(U_{i,j})$ is an ancestor of μ. Let $\operatorname{img}(U_{i,j}, \mu) = \{v \in U_{i,j} | v$ is a vertex in $\operatorname{ske}(\mu)\}$.

Type 2: $U_{i,j}$ contains at least one vertex but no pole of $\operatorname{ske}(\mu)$.

Then, $\operatorname{done}(U_{i,j}) = \mu$. Let $\operatorname{img}(U_{i,j}, \mu)$ as in the case of type 1.

Type 3: $U_{i,j}$ is strictly contained in $\operatorname{pert}(\chi)$ for some S-node χ of μ and $U_{i,j}$ contains at least one vertex in $\operatorname{ske}(\chi)$. Then, $\operatorname{done}(U_{i,j}) = \chi$. Let $\operatorname{img}(U_{i,j}, \mu) = \{\text{virtual edge of } \chi \in \operatorname{ske}(\mu)\}$.

Type 4: $U_{i,j}$ is strictly contained in a minor block B of $\operatorname{pert}(\mu)$. Then, $\operatorname{done}(U_{i,j})$ is node(B) or its descendant. Let $\operatorname{img}(U_{i,j}, \mu) = \{\text{representative of } B \in \operatorname{ske}(\mu)\}$.

Each element of $\operatorname{img}(U_{i,j}, \mu)$ is called an image of $U_{i,j}$ in $\operatorname{ske}(\mu)$. The remainder of §6.3 details how to process of μ.

6.3.1 Processing an S-child

When processing μ, for each S-child χ of μ, we need to find an embedding of $\operatorname{pert}(\chi)$ satisfying certain conditions. We call this process the S-procedure and describe it below.
Let χ be an S-child of μ. Then, $\text{ske}(\chi)$ is a path. Let e_1, \ldots, e_b be the edges in $\text{ske}(\chi)$. For each $k \in \{1, \ldots, b\}$, let B_k be the expansion graph of e_k. Before the S-procedure is called on χ, the following requirements are met:

- For each $k \in \{1, \ldots, b\}$, an embedding of B_k has been fixed, except for a possible flip around its poles.
- For some $k \in \{1, \ldots, b\}$ and $p \in \{1, 2\}$, $\text{side}_p(B_k)$ is required to face either the left or the right side of $\text{ske}(\chi)$.

Our only choice for embedding pert(χ) is to flip B_1, \ldots, B_b around their poles. We need to check whether for some combination of flippings of B_1, \ldots, B_b, (1) the resulting embedding satisfies every $C_i \in \text{fam}(\chi)$ and (2) the second requirement above is met.

The S-procedure consists of the following five stages:

Stage S1 constructs an auxiliary graph $D = (V_D, E_D)$ with $V_D = \{k_p \mid 1 \leq k \leq b, p = 1, 2\}$ as follows. For each $C_i \in \text{fam}(\chi)$, insert a path P_i into D to connect all $k_p \in V_D$ such that for some type-4 $U_{i,j} \in C_i$, (a) $\text{img}(U_{i,j}, \chi) = \{e_k\}$ and (b) $U_{i,j}$ is side-p for B_k. To avoid confusion, we call the elements of V_D points, and the connected components of D clusters. Those points $k_p \in V_D$ such that $\text{side}_p(B_k)$ is required to face the left side of $\text{ske}(\chi)$ are called L-points. R-points are defined similarly. For each cluster C of D, all $\text{side}_p(B_k)$ where k_p ranges over all the points in C must be embedded toward the same side of $\text{ske}(\chi)$. Also, each type-3 $U_{i,j} \in C_i$ contains a vertex in $\text{ske}(\chi)$ which is on both sides of $\text{ske}(\chi)$. For this reason, such sets were not considered when constructing D.

Stage S2 checks whether there is a cluster of D containing both an L-point and an R-point. If such a cluster exists, then S2 outputs "no" and stops. Otherwise, each cluster C consists of either L-points only or R-points only. In the former (resp., latter) case, we call C an L-cluster (resp., R-cluster).

Stage S3 constructs another auxiliary graph $RD = (V_{RD}, E_{RD})$ from D as follows. The vertices of RD are the clusters of D. For each $k \in \{1, \ldots, b\}$, there is an edge $\{C_1, C_2\}$ in RD, where C_1 (resp., C_2) is the cluster of D containing point k_1 (resp., k_2). RD may have self-loops.

Stage S4 checks whether RD is bipartite. If it is not, then S4 outputs "no" and stops. Otherwise, for each connected component K of RD, the clusters in K can be uniquely partitioned into two independent subsets $V_{K,1}$ and $V_{K,2}$ of clusters. If $V_{K,1}$ or $V_{K,2}$ contains both an L-cluster and an R-cluster, S4 outputs "no" and stops. Otherwise, V_{RD} can be partitioned into two independent subsets V_{RD}^L and V_{RD}^R of clusters such that all L-clusters are in V_{RD}^L and all R-clusters are in V_{RD}^R. Let $V_D^L = \{k_p \mid k_p$ is in a cluster in $V_{RD}^L\}$ and $V_D^R = \{k_p \mid k_p$ is in a cluster in $V_{RD}^R\}$.

Stage S5 embeds $\text{side}_p(B_k)$ toward the left side of $\text{ske}(\chi)$ for each $k_p \in V_D^L$.

6.3.2 μ is an R-node

In this case, $\text{ske}(\mu)$ is a simple triconnected graph and has a unique embedding. Let χ_1, \ldots, χ_b be the children of μ in T. For each $k \in \{1, \ldots, b\}$, let $B_{k,1}, \ldots, B_{k,s_k}$ be the minor blocks of pert(μ) in pert(χ_k). When χ_k is an R- or P-node, $s_k = 1$. To process μ, the CFE algorithm proceeds in five stages.

6.3.3 μ is a P-node

In this case, $\text{ske}(\mu)$ consists of parallel edges e_1, e_2, \ldots, e_b between its two poles with $b \geq 2$. Let χ_1, \ldots, χ_b be the children of μ in T. For each $k \in \{1, \ldots, b\}$, let $B_{k,1}, \ldots, B_{k,s_k}$ be the minor blocks of pert(μ) in pert(χ_k). When embedding $\text{ske}(\mu)$, edges e_1 through e_b can be embedded in any order. The CFE algorithm first finds a proper embedding of $\text{ske}(\mu)$ in three stages. It then tries to embed pert(μ) based on the embedding of $\text{ske}(\mu)$.

References
