<table>
<thead>
<tr>
<th>Title</th>
<th>Generation of k-permutations in 0(1) time per permutation by reversing sublists (Models of Computation and Algorithms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mikawa, Kenji; Semba, Ichiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1999), 1093: 5-10</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62981</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Generation of k-permutations in $O(1)$ time per permutation by reversing sublists

三河 賢治 (Kenji MIKAWA) 仙波 一郎 (Ichiro SEMBA)

Department of Computer Science, Ibaraki University
{mikawa, isemba}@cis.ibaraki.ac.jp

Abstract

We discuss the problem of generating all k-permutations of n objects. Several papers have introduced a technique to alternatingly reverse sublists of a listing for some combinatorial Gray codes in an efficient manner. Our approach is to apply the technique to a listing of all k-permutations of n objects constructed recursively by reversing sublists. We show that the list contains $n!/(n-k)!$ permutations so that each string differs from its predecessor by the transposition of two elements. It is easy to convert the construction to a recursive algorithm and then we develop the algorithm that produces successive permutations in a constant amortized time per permutation.

1 Introduction

Many algorithms have been published for generating all permutations of n objects and then there is a number of listings of successive permutations. One of the listings is the transposition order that is introduced independently by Johnson [3] and Trotter [11]. It is well-known that each permutation differs by the transposition of adjacent elements.

Recently several interesting papers have been achieved for generating some combinatorial Gray codes in a constant or constant amortized time per object [1, 9, 5, 6, 8, 10, 2]. However, it is not trivial to generate a listing of combinatorial Gray codes in a unique manner. Most of those papers managed to give a simple recurrence relation for combinatorial Gray codes. Ruskey generalized a close relationship between some combinatorial Gray codes constructed recursively by reversing sublists [9]. To reverse certain sublists seems to contribute a reduction of differences between successive objects.
A k-permutation of n objects is an arrangement of the first k objects out of n objects. First, we give a few modified definitions for k-permutations which are extended into n length strings such that the set of all permutations of n objects contains the smaller set of the extended k-permutations. Our approach is to apply the reversing technique to such k-permutations. Then a listing of all k-permutations is obtained such that successive strings differ by the transposition of two elements. This paper presents a recursive algorithm for generating them in a constant amortized time per string. It is obtained directly from the recursively defined construction for k-permutations. Note that we do not count the time for printing permutations.

2 Definitions and properties

To begin with, we extend k-permutations of n distinct objects to strings of length n: a k-permutation of length n consists of n elements which the first k elements are arranged in its original order and the rests are arranged in a lexical order. For example, if a string 52 is a 2-permutation of the set \{1, 2, 3, 4, 5\}, then its extension is 52134. When it will not lead to confusion, we call them simply k-permutations.

The following useful notations are defined in [9]. If L is a list of strings and x is a symbol, then $x \cdot L$ denotes the list of strings obtained by appending an x to each string of L. For example, if $L = 12, 21$, then $3 \cdot L = 312, 321$. If L and L' are lists then $L \circ L'$ denotes the concatenation of the two lists. For example, if $L = 12, 21$ and $L' = 34, 43$, then $L \circ L' = 12, 21, 34, 43$.

For a list L, let $\text{first}(L)$ denote the first element on the list and let $\text{last}(L)$ denote the last element on the list. If L is a list l_1, l_2, \ldots, l_n, then \overline{L} denotes the list obtained by listing the elements of L in reverse order; i.e., $\overline{L} = l_n, \ldots, l_2, l_1$. Note the obvious equations $\text{first}(\overline{L}) = \text{last}(L)$ and $\text{last}(\overline{L}) = \text{first}(L)$.

Let $T_k(n)$ be a listing of all k-permutations of the set \{\(p_1, p_2, \ldots, p_n\)\}. The construction for the lists consists of two parts, one of which generates k length permutations in their original order and the other of which generates $n - k$ length permutations in a lexical order. The following construction is the case for the original part. The list involves n recursively defined sublists which are alternatingly reversed.

\[
T_k(n) = \begin{cases}
\pi_1 \cdot T_{k-1}(n-1) \circ \pi_2 \cdot T_{k-1}(n-1) \circ \cdots \\
\vdots \circ \pi_n \cdot T_{k-1}(n-1) \circ \pi_n \cdot T_{k-1}(n-1) & \text{if odd } n, \\
\pi_1 \cdot T_{k-1}(n-1) \circ \pi_2 \cdot T_{k-1}(n-1) \circ \cdots \\
\vdots \circ \pi_n \cdot T_{k-1}(n-1) \circ \pi_n \cdot T_{k-1}(n-1) & \text{if even } n,
\end{cases}
\]
and the case for the lexical part,

\[T_k(n) = \pi_1 \cdot T_{k-1}(n-1). \]

These are subject to the terminal condition that \(T_k(0) = \emptyset \). The construction appends \(\pi_i \)’s \(\in \{ p_1, p_2, \cdots, p_n \} \) to sublists in a lexical order from left to right and each sublist is reconstructed with the set obtained by deleting a given element and renumbering the rests from \(\pi_1 \) to \(\pi_{n-1} \). This constraint requires that permutations contain all distinct elements.

Lemma 2.1 The list \(T_k(n) \) satisfies the following properties:

1. Successive \(k \)-permutations in \(T_k(n) \) differ in exactly two elements.
2. First \((T_k(n)) = p_1 p_2 \cdots p_n.\)
3. Last \((T_k(n)) = \begin{cases} p_n p_{n-1} p_1 p_2 \cdots p_{n-2} & \text{if odd } n \text{ and } k \geq 2, \\ p_n p_1 p_2 \cdots p_{n-1} & \text{otherwise.} \end{cases} \)

Proof. The proof is by induction on \(n \). The list obviously has the stated properties for 1 \(\leq k \leq n \leq 2 \). Suppose that the lemma is true for \(n \geq 3 \). We must show it to be correct for \(n + 1 \). For convenience, we assume the \(i \)th element in a permutation to be placed in the position \(n - i \), that is, the last element is placed in the position 0.

Obviously the list \(T_1(n + 1) \) contains \(n + 1 \) permutations in which the \(i \)th permutation is \(p_i p_1 \cdots p_{i-1} p_{i+1} \cdots p_{n+1} \) and the permutation differs from its predecessor by two elements in positions \(n \) and \(n - i \). Otherwise, for \(k \geq 2 \), the list contains \(n + 1 \) sublists and we need to inspect the transposition of successive permutations at the interface between the \(i \)th sublist and the \((i + 1) \)st sublist. The transposition behaves in different ways according to the parities \(n \) and \(i \).

The first case is for even \(i \). The \(i \)th sublist is reverse and the \((i + 1) \)st sublist is natural. The contiguous permutations between the \(i \)th sublist and the \((i + 1) \)st sublist differ by two elements, since the last permutation of the \(i \)th sublist is the lexically first one, as shown below.

\[
\begin{align*}
p_i \cdot T_{k-1}(n) & \quad \begin{cases} \vdots \\
\quad p_i \quad p_1 \cdots p_{i-1} \quad p_{i+1} \quad p_{i+2} \cdots p_{n+1} \\
\quad p_{i+1} \quad p_1 \cdots p_{i-1} \quad p_i \quad p_{i+2} \cdots p_{n+1} \\
\vdots
\end{cases} \\
p_{i+1} \cdot T_{k-1}(n) & \quad \begin{cases} \vdots \\
\quad p_{i+1} \quad p_1 \cdots p_{i-1} \quad p_i \quad p_{i+2} \cdots p_{n+1} \\
\vdots
\end{cases}
\end{align*}
\]

The underlined elements that are swapped appear in positions \(n \) and \(n - i \). When odd \(n + 1 \), this case occurs on the last interface. The third property
holds, since the last permutation of $T_k(n + 1)$ is $p_{n+1} \cdot \text{last}(T_{k-1}(n))$, that is, $p_{n+1} p_n p_1 \cdots p_{n-1}$.

The second case is for odd i. The ith sublist is natural and the $(i + 1)$st sublist is reverse. (1) When odd $n + 1$, the contiguous permutations between the ith sublist and the $(i + 1)$st sublist are shown below.

$$p_i \cdot T_{k-1}(n) = \left\{ \begin{array}{l}
p_i \ p_1 \cdots p_{i-1} p_{i+1} \cdots p_{n+1} \\
\vdots \\
p_i \ p_{n+1} p_1 \cdots p_{i-1} p_{i+2} \cdots p_{n}
\end{array} \right.$$

$$p_{i+1} \cdot \overline{T_{k-1}(n)} = \left\{ \begin{array}{l}
p_{i+1} \ p_{n+1} p_1 \cdots p_{i-1} p_i \ p_{i+2} \cdots p_{n}
\vdots \\
p_{i+1} \ p_1 \cdots p_i p_{i+2} \cdots p_{n+1}
\end{array} \right.$$

The underlined elements that are swapped appear in positions n and $n - i - 1$. (2) When even $n + 1$, we can give some formulae for detecting the transposition of successive permutations at each interface. The successive permutations at the last interface differ by the elements in positions n and $n - 1$, as shown below.

$$p_n \cdot T_{k-1}(n) = \left\{ \begin{array}{l}
p_n \ p_1 \cdots p_{n-1} p_{n+1} \\
\vdots \\
p_n \ p_{n+1} \ p_1 \cdots p_{n-1}
\end{array} \right.$$

$$p_{n+1} \cdot \overline{T_{k-1}(n)} = \left\{ \begin{array}{l}
p_{n+1} \ p_n \ p_1 \cdots p_{n-1} \\
\vdots \\
p_{n+1} \ p_1 \cdots p_{n-1} p_n
\end{array} \right.$$

The last property holds in this case. Otherwise, for $i < n$, the transposition behaves in two different ways depending upon the value of k. When $k = 2$, the elements of permutations that appear in positions greater than 2 are arranged in a lexical order. The contiguous permutations between the ith sublist and the $(i + 1)$st sublist are identical in arrangements as the ones for the case (1), that is, the elements that are swapped appear in positions n and $n - i - 1$. When $k > 2$, they are shown below.

$$p_i \cdot T_{k-1}(n) = \left\{ \begin{array}{l}
p_i \ p_1 \cdots p_{i-1} p_{i+1} \cdots p_{n+1} \\
\vdots \\
p_i \ p_{n+1} p_n p_1 \cdots p_{i-1} \ p_{i+2} \cdots p_{n-1}
\end{array} \right.$$

$$p_{i+1} \cdot \overline{T_{k-1}(n)} = \left\{ \begin{array}{l}
p_{i+1} \ p_{n+1} p_n p_1 \cdots p_{i-1} p_i \ p_{i+2} \cdots p_{n-1}
\vdots \\
p_{i+1} \ p_1 \cdots p_i p_{i+2} \cdots p_{n+1}
\end{array} \right.$$

The elements that are swapped appear in positions n and $n - i - 2$. The list $T_k(n + 1)$ has the stated properties. The proof is complete. ■
procedure interchange(n,k,i:integer);
begin
 if (k=1) or not(odd(i)) then swap(n-1,n-i-1)
 else if odd(n) then swap(n-1,n-i-2)
 else if i=n-1 then swap(n-1,n-2)
 else if k=2 then swap(n-1,n-i-2) else swap(n-1,n-i-3);
end {of procedure};

Figure 1: The procedure interchange(n,k,i).

procedure gen(n,k:integer);
var i:integer;
begin
 if k>0 then
 for i:=1 to n do begin
 if odd(i) then gen(n-1,k-1) else neg(n-1,k-1);
 if i<n then interchange(n,k,i);
 end
end {of procedure};

Figure 2: The recursive procedure gen(n,k).

3 Implementation and analysis

To begin with, we summarize the transposition of successive permutations between the ith sublist and the (i + 1)st sublist and show it in a Pascal procedure, in Figure 1. The procedure swap(i,j) swaps the elements in positions i and j. The definition of the list $T_k(n)$ leads directly to a recursive algorithm for generating all k-permutations of n objects. The Pascal procedure gen(n,k) generates the list $T_k(n)$, shown in Figure 2 and the procedure neg(n,k) is a symmetric procedure of gen(n,k) which generates the reversed list $T_k(n)$.

Let us analyze the running time of gen(n,k). The procedure gen does n recursive calls to either gen or neg in the while statement. We also know that it calls interchange once per loop and the interchange operation takes a constant time to find the two elements that are swapped. Thus the total amount of computations is proportional to the number of recursive calls, which is $O(n!/(n-k)!)$.

To summarize above, the procedure gen generates all k-permutations in an amortized constant time to go from one string to the next.
References

