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The generalized Whittaker functions
for the discrete series representations of SU(3, 1)

Yoshi-hiro Ishikawa

Problem. Let G be a semi-simple Lie group and , its discrete series representation.
What kind of models does w4 has? Exactly when the models exist, with how many
multiplicity? What explicit form do functions corresponding to the model have?

More precisely, let R be a closed subgroup of G. For my € G4 and a representation 7 of
R, evaluate the upper bound of

dimcHomg,, k) (73, Indgn)’

where 7} is a contragredient of 4. When the dimension does not equal to zero, write
down explicitly the functions describing the intertwiners.

Let G = NAK be the Iwasawa decomposition of G. When R is the maximal unipotent
subgroup N of G and 7 a non-degenerate character of N, IndSy is the Gelfand-Graev
representation, hence the problem above is a traditional problem on Whittaker model,
considered from various point of view. Here we treat the special unitary group of isometry
for the Hermitian form of signature (34,1-) realized by

G = SU(3,1) := {g € SL(4,C)['gls.19 = Is, ).

Whittaker model for discrete series representations of this group G was investigated by
Taniguchi [Ta], where he obtained a formula for dimension of the space of the intertwiners
and an explicit form of corresponding functions (Whittaker function for 7). His formula
tells that the dimension of the Whittaker model not necessarily smaller than one even
if the growth condition on the corresponding functions is imposed: The multiplicity one
property is not valid for this model. We replace the Gelfand-Graev representation for
the reduced generalized Gelfand-Graev representation and consider the generalized Whit-
taker model. That is, we take an irreducible infinite dimensional unitary representation
of N, note N is a Heisenberg group, as 7 and a bigger group containing N as R. We
investigate this model and give an explicit form of generalized Whittaker functions. By
fixing coordinate on G and explicit realization of representations, we reduce the problem
to solving a certain system of difference-differential equations for the coefficient functions
of generalized Whittaker functions. ’

"We put some remarks. In the case of the group SU(2,1), we obtained an explicit
form and the multiplicity one result for generalized Whittaker functions for the standard
representations previously [I] from a motivation of automorphic forms. And this is just
an “étude” for the work on generalized Whittaker functions on SU(n, 1), which will come

- soon. Main difference from the case of SU(2, 1) is in troublesome combinatorial calculation
of K-types S-types.
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<Groups and algebras>
We fix a coordinate on subgroups of G as follows,

c=(r+r1)/2,
) | s=(-r")/2,}

K=((* g )1EEU@) A= o= ( -

TER>0
1 %l —?_1 a=1-— L«L L—l—+zt
N=expn={ Loaoma ﬂ—1+@—+@——zt }-
A —m oo p Ct€R
-2 —2y « ﬁ 21,226 (S

Here the Lie algebra n of N is given by

ni= é(RX,, + RY,) ® RW,
( 1 -1 ( —i i)

Xlz )},1: . )

Xe=) = ’ i —i

\ -1 / \ i / i —i

where i denotes the complex unity v/—1. By natural isomorphisms we identify these
groups as

K = U(3), N = H(cC?).

Here H(C?) denotes the real Heisenberg group of dimension 5. The center Z (N) of N is
of the form

it 11—t
The Cartan decomposition of g = Lie G is given by g = p @ ¢, with ¢ = Lie K,

p={(8-§ %()IXEC:"}-

The action of the Levi subgroup L of P :=exp p on N is naturally extended to that on
N. By Ston-von Neumann theorem, the unitary dual N of N is exhausted by unitary
characters and infinite dimensional irreducible unitary representations. And the infinite
dimensional ones p are determined by their central characters . Hence the sta,blhzer S
of p in L is the centralizer of Z(N) and of the following form

S = {diag(m,d,d) € G|meU(2), d=(det m)~Y/2},

1;
Z(N)={zt:=( 1+t —-it)ltEIR}

which coincides with the Levi part of P. Using this S, we define the group R as
R:=S«xN = U(2)x H(C?).
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Let t := {diag(ihy,%hs,ths,ihs)| hj € R,hy + - -+ + hy = 0} be a Cartan subalgebra of
t and define roots §;; : tc > diag(ihy,hy, ths, thy) — t; — t; € C. We denote ¥, and X,
the sets of compact and noncompact roots, respectively. In our choice of coordinate,

Y. = {Br2, P13, Bas, Pa1, Bs1, B2}, T = {Bua, Paa, B4, Bax, Paz, Pas},

and matrix element E;; (1 < 4,j < 3) generates the root space gp,;- we put

{ —FE;; when(s; 5) = (2,1),(3,1),(3,2);
Xﬂ.’j =

E;; otherwise,

and take it as a root vector in gs,;- Lhese root vectors decompose with respect to the
Iwasawa decomposition as

L 1 -1 1 i
. 1 i 1 i
Xpe = Xprs — 2X1 - §Y1; Xpu = X — 2X1 + 2Y1,
1 i 1 )
Xﬁ“ = Xﬂza - 2X2 - ’2‘Y2: Xﬂu = Xﬂaz - 2X2 + 2Y2,

0, ‘
where Hj, is a generator ( 1 ) of a :=logA. This is used to calculate the action
. 1 ' ' .
of Schmid operators.

<Representations>
We fix realization of representations of groups.
Parameterization of irreducible K-modules
In this subsection, we recall the Gel'fand-Zetlin basis, which gives a nice realization of
irreducible representation of K. The set L} of X, -dominant T-integral weights is given
by L} = {(I,m,n) € z®|l > m > n}. For a given T}-dominant T-integral weight
= (A1, A2, A3) € LF, let V), be a complex vector space spanned by v(Q)’s. :

Vi o= cu(@).

QEGZ(A)

Here the index set GZ()) is the set of the Gel’fand-Zetlin schemes with top raw A:
A1 Az A3
. _ AL 2 1 2 A2 > e = A,
GZ()\) = {Q— ( 23 M2 ) l 'u,lekZuz, /\,f,[.tj,kGZ )
The #c-module structure defined by

TA(H1)v(Q) = kv(Q), ma(Hzy)v(Q) = (lu] — k)v(Q), ma(H34)v(Q) = (M| - |u))v(Q),

(X J0(Q) = a'F(@)(QH) + a% (Qv(Q@*),  T3(Xp)0(Q) = 6} (Q)v(Q1),
x(Xpy Ju(Q) = b3 (Q(Q™*) + %3 (Q(Q ™),  7a(X4,,)v(Q) = b7 (Q)v(Q-1)
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gives an irreducible K-module (73, V)) via the highest welght theory. " The coefﬁments
appearing above are given as follows.

1 =) (e = — 1)()\ ,u\l —2)\1/2 - '
1@ = (dy + 1)(dy +;) ) Wmt1-k
24 _ (A1 + 1= p2)( Ao — p2)(As = po — 1)\1/2
a 2 (Q) - ( - d#l(dpl + 1) . ) k “2’
= = k) (k +1— pa),

b (Q) = _((/\1 +1- ltlc)if;\(zd; il)l()/\s B — 1))‘”\/;1_:;’. .

i) = (- B e e

b7 (Q) = —/(m+1-k)(k — ).

And the indices Q*¢', Q**2, Q1 mean

/\1 )\2 /\3 ‘ )\1 Az )‘3 '
Q* = pE1 H2 , QF2 = M1 pe 1 .
k k ,

’ Al A2 A3
Qs = 1 M2 )
k+1

respectively. The basis {v(Q) | @ € GZ())} prescribed above is called the Gef fand-Zetlin
basis of (1, V3).

Tensor products with p.
We regard the 6-dimensional vector space p¢ as a Ec- module via the adJomt representation.
Then p, and p_ are invariant subspaces, and

py =CXp,, ®CXp ®CXpyy = Vo, p_ = CXg,, ®CXp,, ®CXp,; = V-

Given an irreducible K-module V) Clebsch-Gordan’s theorem tells us the following de-
composition of V\®cp.:

VA®Cp+ = VM—ﬁu @ V«\+ﬂ24 57 Vz\+ﬂsu V)\®Cp—' = Vz\+ﬂ41 @ Vr\+ﬂ42 @ VA+ﬂ43'
The decompositions of V) ® p induce the following projectors:
p+ﬂ“ : V,\®Cpc - Vz\+ﬂus p~ﬂ14 : V/\®Cpc - VA—-ﬁur

P Va®cbe = Varpaer D7 VaBcPe = Vi
p+ﬁ34 : Va®cbe = Vasgse p—ﬁ‘“ : Va®cPe = Va-gsq

' In terms of {v(Q)}, they are expressed as follows:
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Proposition 1 The projectors are described as follows.
(1)
pP(v(Q) ® Xp) = ATk — p2v(QF) ~ By y/pa + 1 = ku(Q5?)

PPH(0(Q) ® Xp,,) = AT/ — kv(Q™) + By y/k + 1 — ppv(Q %)
PP (Q) ® Xpiy) = /(1 + 1= p2) (M — p1)v(Q)

with coefficients
_ (/\2 - [J,l)()\a - M1 — 1) 1/2 : _ ()\2 +1- /Jz)(Ag - /1,2) 1/2

A = — = - —_ .
= dy(dy +1) [PV BT = | (du + 1)(dyw +2) VA= m

(2)

PP (0(Q) ® Xp,,) = — A7k — p2v(Q5") — By /1 + 1 — kv(QZ$)
PP (u(Q) ® Xp,,) = —Az /1 — kv(Q™) + By \/k + 1 — pp0(Q%)
PP (0(Q) ® Xpy) = /(o — 12) (11 + 1 = X)u(Q)

with coefficients

- Ml =Yz e o a2 - m) (A — )2
A = |— — = |- — .
7 =[5 dy (dy + 1) [V - By =] (dw + 1)(dy +2) [T+t

(3) | ST
pPae W(Q) ® Xp,,) = —A; /k — mv(@:?) + By +1-— kv(ijz)

PP (0(Q) ® Xp,,) = — A5/ — kv(Q™) — By \Jk+1 = pau(Q™)

PP (@) @ Xa) = /i + 1= Xa) (s +2 = 2)0(@)

with coefficients
- (M + 1= p)(Ag — p1) 172 ‘ = (A2 = )N+ 1 — pg)1/2

Ay = |- v/ 1-2A = S Y/ -
=] dy (dy + 1) "kt 1-0, By =] (dw + 1)(du +2) [V 42— |

(4)

p+ﬂ34. (U(Q) ® Xﬁu) = A;— V H1 - k'l}(@f{’) - B;— \/ k-~ H2 + lv(éi?
P (u(Q) ® Xp, ) = —Af vk — m2v(Q*) — Bf y/u + 1 - ku(Q)

PP (0(Q) ® Xpy) = /(11 + 1 — X3)(pz — Ma)u(Q)

with coefficients

+ M=) — )2 v | Q=) —p —1) /2 ‘
47 =| dy(dy +1) VA0 B = | (dy + 1)(dyw + 2) CEEY

0
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~ Here we dénote Gel'fand-Zetlin schemata with top raw A & (3
At p
p £ 1  ppE1
k+1

by Q € GZ(A%B). Note Bus, Bas, Bas is (2,1,1), (1,2,1), (1,1,2) respectively. And other . .
schemata mean as follows.

3 A+ B _ A+
re = | 2 petl |, Q= m+1 - k2 |,

k42 k+2

3 At f . Y

Q¥ = | wp£2 pptl |, Q= m+1 prt2 .
k+1 k+1

Representations of S
By identifying the group S with U(2), for each dominant weight p' = (u}, p5), relations

Uu‘( {4 - H£4 — Haq)wy = |H'lwk’, Uﬂ'( 14 - H§4)wk’ = (2k’ - |ﬂ’l)wk',

0w (Ko yww = /(= K)E + 1 — ph)wp, ow(Xp;)ww = /(sh + 1 — K)(K — p)wis

!
" ' (C'UJkI .

define a representation o, of S on Wy 1= @y

The Fock representation of n
Here we realize the infinite dimensional unitary representation p with central character
Ve : Z(N) 3 z— eV~ 1ot € €M), s € R\{0}, on Clz1, 23] by

P, H(C%) — Aut(f}),

pu(X) = VElm 2, pu(Y) Ve - ),
py, (W) = v—1s,

when s is positive. We choose the monomials f;, j, = 222, ji = 0,1,2,... of two
variables, abbreviated by f;, as a base of C[z1, 23]

Representations of R with nontrivial central characters
By natural identification R = S x N is isomorphic to U(2) x H (€?) and can be regarded
as a subgroup of Sp,(R) x H(R?*). From the theory of Weil representations, we have the
canonical extension ’

wy X py ¢ Spy(R) x H(R*) = Aut(Clz1, 2]).
Let R be the pullback R := S x N = U(2) x H(R*) of R by the covering
pr x id : §py(R) x H(R*) - Sp(R) x H(R?).

Then tensoring an odd character x;/2 of U(2) to (wy x py)| 7» We have a representation of
R
X12® (wyp X py)lz : R=SxN — Aut(Clz, 2])-
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A result of Wolf ([Wolf] Prop 5.7.) says that all representations of R which come from
infinite dimensional representation of H(C?) are exhausted by the representations of the
form of this representation tensored by representations of U(2). That is

Rctlchr;él = {Up' ®X1/2 12 (w¢ X P:,b)l}‘i | Ou € ﬁ(z)}-

We denote this representation by (7, C[z, 22]).
The action of § on C[z, 23] through wy is given infinitesimally as follows

wy(Hyy — Hyy — Hy)fi = —(1 + G2 + 2)f5, wy(Hyy — Hap)fi = = — 32) iy

w¢(Xﬂ12)fj = ““jlf:i—ex+ez, w¢(Xﬂz1)fj = "j2fj+e1~ez-

Here is a diagram explaining the above construction

R=SxN sz(}R) x H(R?) Zerhy AUt(C[Z1, 2])
prxid
R=SxN —— Spy(R) iH(R“).

The discrete series representations of G

By a theorem of Harish-Chandra, there is a one-to-one correspondence between X-regular
Xc+-dominant T-integral weight A € E and equivalence class of discrete series represen- .
tations 4 € G4 of G. The parameter set = = = {A = (A1,A2,A3) € 223 | Ay > A >
A3, AjAzA3 # 0} decomposes into four disjoint subsets ..JJ(J = I,II,I1I1I,IV) correspond
to positive root systems E, 1= Yot U{B14a, a4, B34}, 27 1= Bt U{B14, Bog, Bas}, Thyp =

Y+ U {B14yBaz, Bus}, Ty i= T U {ﬂ41,ﬂ42,ﬂ43} By the inner product induced from
the Killing form we can see

E?- = {(Al,Az,Aa) € Zeal AM>A>A3>0 },
B = {(A1,A2,A3) €293 Ay > Ap > 0> Az },

27 = {(A17A27A3) € ZQsl A1 >0> Az > A3 },
E;_V T {(A11A25A3) (S Ze3l 0> A1 > Az > A3 }

[
~
=

I

Il

Representations parameterized by ZF (resp.E},) are called the holomorphic discrete se-
ries representations (resp. the antiholomorphic discrete series representations). In the
remaining case, discrete series representations whose Harish-Chandra parameters A’s be-
long to Ef;,Ef;; are the large discrete series representations in the sense of Vogan [Vo].

<The space of generalized Whittaker functions of the discrete series >
Under the setting above, our main concern I, := Homg, (7}, Ind$n) is called the space
of the algebraic generalized Whittaker functionals. Specifying a K-type of 7

Hom(gc,K)('/rA,Ind n) 2 I~ (1) € Homg(7}, Ind§ k),

where ¢, : 7y < m, we define a function F' through next identification Homg (73, Ind$n|x) 2
(IndSn|x ® T,\)K The latter space (C°°(R\G) ®c VA) is defined by

p(rgk) = n(r)ma(k) " .0(g),

¢ is a C°°-function satisfying }
Vre R,VgeG,Vke K

O, (R\G/K) = {90 G €z ®c Vi
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We call the function F7 € CS, (R\G/K) representing ¢;(l) the algebraic generalized
Whittaker function assoczated to the discrete series representation my with K-type 7x. By
definition, I(v*)(g) = {(v*,F(g))g, v* € V;*. Here (, ), means the canonical pairing of
K-modules V* and V.

Yamashita’s fundamental result tells that the algebraic generalized Whittaker func-

tions F are characterized by a system of differential equations.

Proposition 2 ([Ya] Theorem 2.4. ) Let w5 be a discrete series representation of G
with Harish-Chandra parameter A € Z;, and A be the Blatiner pammeter A+ p;—2p. of
7a. Assume A is far from walls, then the image of Homy. i) (%, Ind§n) in C5, (R\G/K)
by the correspondence above is characterized by

(D) : DAF =0 (VBeZink,).

77"

Here the differential operators

;TA 7,75 (R\G/K) "ﬂ) n TA— p(R\G/K)
are defined by D;Pp(g) = p™P(Vr,¢(9)), Ve : 1 Rx,p ® X;. Here {X; (i =
1,...,6)} is an orthonormal basis of p with respect to the Killing form on g and Rx¢

means the right differential of function ¢ by X € g : Rxp(g) = Zo(gexptX)|=o. We
call the space

Whi(ms) = {F € Cp%, (R\G/K)li(v*) = (v*, F(")), L € Iny v* € VS}-

the generalized Whittaker model for the representation mp of G with K-type T and the
elements in this space the generalized Whittaker functions associated to the representatzon
wp with K-type 7. -

<Difference-differential equations for coefficients>
Radial part of Schmid operators
For the representation (17, C[z]) of R and for any finite dimensional K-module V', we denote
the space of the smooth C[z] ®c V-valued functions on A by

C®(A; W, ®cClz] ®c V) = {¢p: A= Wy ®cCz] @V | C™-function}.
Let

sy OO (R\G/K) = C®(4 W ®cClz] 8c V)
resg,+ CfTA@Adp (R\G/K) - COO(A Wy ®c C[Z] ®c V2 B¢ pi)

be the restriction maps to A. Then we define the radial part R(V,7 ») of VE_ on the
image of res4 by

R(VZ,,).(resap) = resy +(VE, .0).
Let us denote by ¢ and 0 the restriction to A of p € C ,, . (R\G/K) and the generator H

of a, respectively, 3¢ = (H.p)|a. We remark 0 = r : the Euler operator in variable 7.
By using the Iwasawa decomposition of root vectors, we have next proposition.



105

Proposition 3 Let ¢ be the above element in C®(A; W ®¢ C[z] ®¢ V). Then the radial
part R(VY ) of Vi is gzven by

() R(Vi,)6 = 510~ VoTru(W) — 61.(6 ® Xa,) + 5(ra @ Adp, ) (H)-(4© X)
""2'7'77(X1 - \/;—1},1)(4) ® Xﬂu) - (TA ® Adp+)(Xﬂ31)'(¢ ® Xﬂu)
‘%T"](‘XZ - \/;-1},2)(95 ® Xﬂu) — (M ® Adp+)(Xﬂ32)'(¢ ® Xﬁzg)'

Similarly for the radial part R(V,, n) of V.., we have

(i) R(Vyn)d = 3{0+VTr(W) - 6109 ® Xau) — 5(a @ Adp_)(Hiu).($ @ Xa,)
“%TTI(XI + \/‘—'—I_YI)(Q5 ® Xﬁu) - (Tz\ ® Adp‘.)(Xﬁ13)‘(¢ ® Xﬁ41)
—3PXs + VIR ® Xa) ~ (12 @ Adp ) (Xp0).(6® Xp,).
O

Compatibility of S-type and K-type
Here we note the compatibility of the action of S from left hand side and the action of
K or M from right hand side on the function ¢ =ressp, ¢ € C%, (R\G/K). If we write
¢ = la € C®°(A; Wy ®c Clz] ®c V3) as

111‘,\

o) = ¥ 5 (ar)((wk:®f])®v(Q))

K'=0 j;=0 QEGZ()\)

in terms of basis {wj |k = 0,---,dy}, {f;lj € N*} and {v(Q)|Q € GZ())} of Wy, C[z, 23]
and V), respectively, the compatlblhty of S-action and K-action implies of the vanishing
of many coefficients c #. Actually by calculating ¢(mam=1), m € S = M,a € A in two
ways, wa have next lemma

Lemma 4 (1) There is linear relations between indices of bases
Ji=—k—K—|ul/2+(M/2-1), f2=k+K +3|ul/2+(]A/2-1-|4)).

And there are relations between coefficient functions

—(+ D) e = V(= K+ ) F — )+ — ke + 1)k — p)l s,
- —(j2 + 1) sk = \/(lh — k') (k' — py + 1)cjx Y H’" + \/(/1'1 — k)(k — p2 + 1) k+1

(2) If above relations are not satisfied, then the image of res, in C™®(A; Wy ®c Clz] ®c V3)
s zero. 0

Difference-differential equations :
Because an algebraic generalized Whittaker function F is determlned by its A-radial part
¢ = F|4, and ¢ is determined by the coefficient functions c #(ay), we write down the
A-radial part R(D;%,) of the 8-shift operators D% in terms of coefficient functions of ¢.
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Proposition' 5 Let ¢ be any function in C®(A; Wy ®c Cl2] ®c Vi) which is the A-radial
part of p € C75, (R\G /K). Then for an arbitrary noncompact root 3, the action of the
A-radial part R(D ) of the (B-shift operator is given as follows:

HhTx

R )4(ar) = (-0l ((wh ® £) 8 v(@),
with '

25 Bual(er) = /O — )0+ T - {0 - 6= o+ |\ = 201+ 2 = ful e (ar)
_ IJ:1 +1- /\2)([.111 +2 - A3) 1/? -
2vs (dy + 1) (dy +2) VAL
(\/k + 1= pa(n + Ve (ar) + i + 1 — k(iz + Drefiete (a,)

= p2)(pz +1 = A3) /2 ;o
2‘/51 do(dy + 1) VL=

. k" . e
X ( — /= k(i + 1)rcj+’;:,‘§il(ar) + vk —pa(dz +1 rcf+’e‘jk’(a,))

28 ~Basl(er) = /O — ) + 1 ,\2){6 6—sr?+ |\l — 22g 4242 Ipl} H(ay)
— 1) (1 + 2 = Ag) 12
2 Y
* ‘/E’ (dy + 1)(dy +2) | T |
(\/k +1— pa(y + 1)rcf+‘;:“:f,_1(a,.) + 1/ +1 k(e +1)r f+’;:',ec‘(ar))
)\1 +1- ,U.z)(ll,z +1- )\3) 1/2
- 2\/—1 To(dy 1) I VHL+ 1=
x (= Vi — k(1 + Dref B (ar) + k= pa(ia + 1rf e (ar))

205:,;"[—/634](@) = \/( — A3 +2)(ug+1- /\3){6 6—sri+|A—2X3+44+2— ]ul} Hay
— p1)(p1 + 1= X)) /2
- 2val @Oy | VRN
(\/k + 1= (i + 1)r §+l;:r:f+1(ar) +y/#+1=k(jz2 + 1)r k+’é:;1 (a,))
AL +1 Ay — 1/2
B e R TR
X ( — Vi = k(j1 + L)re k+ﬂfii1(ar) + k= p2(ja + 1)r k+'§:i2(ar))

2ef-Pul(er) = Yl =) + 1= 0{0 = 6+ ar7 =~ N+ 220+ 2+ i e (a)

Ar+1 — A2)1/2
+ 2\/-1( 1 dm)iu;) 2)! Mz—/\a
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x (v = parcf 475t (ar) + y/u — kref 45 (ay))
(AL +2—p2)( A+ 1 — pg)y/2
2 1-A
4wy cvrs R B TR
X ( - +1- krcfﬁ‘;;,‘jil(ar) +4/k+1- uzrcfl_";;f;’ (ar))

a

<An explicit formula >
By solving the system of difference-differential equations given above for coefficient func-
tions, we can obtain an explicit form of the generalized Whittaker functions F'.
The case of holomorphic discrete series
Here we treat the holomorphic discrete series my, A € Zf. In this case &f U X, =
{B14, P24, P34} Hence the system (D) characterizing the generalized Whittaker function
F associated to 7, with the minimal K-type turns 1nto the system of difference-differential
equations for coefficient functions

S -Bula) = 0
Cf,,é”[—ﬁzzx](ar) = 0
Cf,lé”[“‘ﬁu](ar) = 0.

This reduces to an ordinary differential equation of ﬁrst order
{0 — s — |\ + 2u1}c_, Har) =0,

and we obtain
’ - 2
c§#(ar) = (const.) - A= 2e1em/2,

Theorem 6 When A € E, mp has multiplicity one property if and only if
—k =k = |ul/2+ (]Al/2 - 1) € Zyo, k+K +3Jpl/2+ (]N/2 -1~ |1]) € Zx.

Under this condition, the minimal K -type generalized Whittaker model Whi>(mp) of mp
has a basis F;* whose A-radial part is given by

Fa) = Y. T X mer (wf 91) 9u(@)),

k'=0 QeGZ()) jESK (' \)

where the indices j Tun through nonnegative z'ntégcrs satisfying the constraint condition
n lemma 4. , O

The case of large discrete series
In this case £}, U X, = {B4, B24, P43} and we have

i l~Pular) = 0
cF [~ Badl(ar)
,"[ ,843](ar) = 0

ol
o
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for characterizing system of difference-differential equationé of coefficient functions of
generalized Whittaker functions. This system can be solved when the Gel'fand-Zetlin
scheme is of the extremal form

)\1 '/\2 )\3
Q - /\2 H2 .
A2

Actually when k = py = Ag, from the first line and the second one we have a two term
relation :

(1) {0 —sr2—2=M+ X — ug}c;?:,{’;,(ar)

A 1-—- 1—-A '
_ 2\/;\] (A2 + Mz)(#z + 3)(j1 + 1)TC§J£:§§(G¢)-

(A1 +1 = p2) (A2 — p2)
On the other hand the third line turns into
[0+ 5% —4— Ay + As + pa )t (ar)

AL+ 2 — . K e
=2 G e T R o)+ e T )

Here use the relation caused by the compatibility of S-action and K-action. For k' = p
the second relation in lemma4 is of the form

—Gr+ 1= (= kD) — p)ciiy.

By this we can raise the k parameter and obtain

® {0+ 5% =3 M+ A + ) ar)
A1+1—”’2 j1+)\2—[1.2 ””
= —24/58 (g,
\/—\/(A2+1“N2)(u2+1-—/\3) Vs — iz Mz( )-

From these equations (1) and (2), we at last obtain the differential equation

[az —2(A — A3+ 3)8 — {82! + 2uasr? + (g2 — 1) — (A1 — A5 + 3) }} g‘f\’f(a,)

(Jl + A2 — #2)(.72 + 1) r? Pz»l‘
A (a'f)
2 —
After some variable changes we have an explicit form of extremal coeflicient functions.

Theorem 7 When A € Z;;, the A-radial part of the minimal K -type generalized Whit-
taker function

d,r . ,
Fa) =Y ¥ Y e (W ef)ed)

K'=0 QeGZ()\) jeSK(u' )

for large discrete series representation ma has extremal coefficient functions

;“j\’:(a,) = pMRe 20 (10) - W, u -1(37‘ Y + co2) - Mn,p_zz-_z(sﬂ)},

where kK = —E2 — (’l“f\;fz)z(”“), Wi m, Mym are the classical Whittaker functions and

c1(pz), c2(uz) are constants depending only on . Other coefficient functions are deter-
mined recursively by difference-differential relations between them. a
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