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THE EXTENT OF STRENGTH IN THE CLUB
' - FILTERS

DOUGLAS R. BURKE AND YO MATSUBARA
(Ao JB. VF)
1. INTRODUCTION

This paper gives a number of partial results towards the following
conjectures. Unless otherwise noted,  is a regular, uncountable cardi-
nal and X is an infinite cardinal (A > &).

Conjecture 1. The club filter on P, is not precipitous — unless A
is regular.

Conjecture 2. The club filter on P, is not pre-saturated — unless
Kk = Ny and )\ is regular or k = X is weakly inaccessible.

The corresponding conjecture for saturation has been established by
Foreman and Magidor:

Theorem (Foreman-Magidor). The club filter on P\ is not saturated
— unless k = A = V. :

The results of section 2 of this paper are the authors partial results
towards the above theorem. Shortly after the results of this paper were
announced, Foreman and Magidor proved the above theorem. Their
proof does not use any of the results of this paper, and in fact in the
case covered by Theorem 2.10, they establish the stronger result that
the club filter is not even A** saturated.

Remarks. 1. [She87] It is consistent that the club filter on ¥; is sat-
urated (assuming the consistency of a Woodin cardinal).

2. [Git95] It is consistent that the club filter on x, x weakly inacces-
sible, is pre-saturated (assuming the consistency of an up-repeat
point).

3. [Gol92] If § is Woodin then for every regular A (¥; < A < 4),

Y CelA<d) L «the club filter on Py, A is pre-saturated”.
4. [Gol] If & is Woodin then for every regulark < A (8; < ¥ < A < §),
Y Ca<9) = “the club filter on P, is precipitous”.
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We now give our basic definitions and conventions.
F is a normal filter on P()) if

1. F CPP(}) is a filter.

2. (fine) Vae A {aCA|a€ca}eF.

3. (nonna.l)IfCaE}'(aEA),then{aQAlVae_a(aECa)}E
F. v

Throughout this paper, filter will mean normal filter.

Ft =at { ACP()) |VC € F(CNA#@)}. F* has an associated
partial ordering: A < B iff A C B. _

A filter F on P()) is saturated if every antichain in F*+ has size <A
F is pre-saturated if given antichains A, (o < \) and S € F+, there is
aT < Ssuch that foralla <\, [{ A€ A, | ANT € F+ }| < .

Forcing with 7+ extends F to a V-normal, V-ultrafilter G—so we
get a generic embedding j: V — Ult(V,G) C V[g].

F is precipitous if this ultrapower is always well-founded. If F is
pre-saturated, then F is precipitous and the ultrapower is closed un-
der A sequences in V[G]. For more on the basic facts about generic
embeddings see [For86].

The club filter on P()) (CFp(y) or just CF) consists of all A C PN\
such that 3f: A<“ — X with cl; C A cf={aCA| fla<vCal}.
Sets in CF™* are called stationary. CF is the smallest normal filter on
P(A). '

If S € F*, then F | S =4t { A C P(A) |@CeF)CNSCA}is
a normal filter. If S € CF*, then the club filter on S, CF | S, is the
smallest normal filter on P()\) containing S.

Pl =4t { a C A | |a] <k & aNk € k }. This definition is slightly
non-standard: usually the condition “a N & € k” is dropped. The set
PrA is stationary in P()). If F is a filter on P()) and P.) € F, then
F is k-complete, and so Vs € P, {a € PeA|sCa }eF.

If a C Ord, then cof(a) is the cofinality of the order type of a. A
O\ Sequence is a set (s, C a : @ € P,A) such that for all A C ),
{a€PA|anA=s,} is stationary.

The following fact was proved in [BTW77] for filters on cardinals. A
similar proof works here.

Fact 1.1. Assume F is a filter on P(\). F is saturated iff for all
filters G 2 F, 3S € F* such thatG=F | S. '

Corollary 1.2. Suppose the club filter on S is saturated. Then every
filter on S is saturated. :
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- 2. SATURATION

One of the first results about the failure of saturation is a theorem
of Shelah ([She82], p. 440) that says, for example, if F is a saturated
filter on wy, then { o < wy | cof(a) = wy } € F. The proof of this
uses the following result (with A = w,). We also use this result to get
similar facts about saturated filters on P, ).

Theorem 2.1. ([SheB2],[Cum97]) Assume V C W are inner models
of ZFC, X is a cardinal of V, p is a cardinal of W, and X}, = pif.
Assuming (*), W = cof()) = cof(p).
(*) A is regular, or (X is singular and) there is a good scale on ), or
(A is singular and) W is @ A*-cc forcing extension of V.
See the next section for the definition of good scale.
Definition 2.2. Sy =4 { a C )| cof(a) = cof(|a]) }.
Theorem 2.3. Assume F is a saturated filter on P(\). Then Sy € F.

Proof. Suppose not. So we get j: V = M C V[G] with PA)\ S\ €aq.
Since P(A) \ Sy € G, M |= cof() # cof(|A]). Since M* C M in V|G,
VIG] |= cof(A) # cof(|A]). This contradicts Theorem 2.1 since VI[G] is
a A*-cc generic extension of V. . O

Lemma 2.4. Assume k = p*, cof()) < k, and cof(\) # cof(p). Then
Sx NPy is non-stationary. .

Proof. Let a € PcA. On a club, |a| = p and so cof(|a]) = cof(p). Since
cof(A) < k, on a club sup(a) = X and so cof(a) = cof()). Therefore
ShNPAis non—sta,tionary. O

Corollary 2.5. For &, ) as above, there is no saturated filter on P, A.

Remark. If k = p* and cof(\) = cof(p), then Sy NP, is club in P

Lemma 2.6. Assume k = p* > R, and cof(A) > k. Then SxNPAis

stationary, co-stationary in P).

Proof. Let f: A< - X. We may assume ¢ € P.,AN cly implies
cof(la]) = cof(p). For any regular § < x we can build a continu-
ous increasing chain of length 4 to find a € P\ closed under f with
cof(a) = 6. Taking 6§ = cof(p) shows that Sy N P, is stationary.
Taking & # cof(p) shows that Sy NP, is co-stationary in P, . O

Corollary 2.7. For k, )\ as above, the club filter on P\ is not satu-
rated.

Remark. If k = Ry, then for all X > k, S\, N P,\ is club in P
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Lemma 2.8. Assume & is a regular limit cardinal and cof(\) # «.
Then S\ NP\ is stationary, co-stationary in P\.

Proof. Let f: A< — X and p < k a regular cardinal. It is easy
to find @ € PeA N cly such that |a| = |aNk| and cof(jaNk|) = p
and, if cof(\) > &, cof(a) = p (if cof(\) < k, then for club many
a € PiA, cof(a) = cof())). Hence Sy N P, is stationary (take p =
cof(}A) if cof(A) < k). If cof()) < & then S\ N P\ is co-stationary
in P.A—take p # cof()). Finally, assume cof(\) > x. The idea for
the following argument is from [Bau91]. Let § = cof()). Note that
{ a € PuA | cof(a) = cof(and) } is club, so we may assume f witnesses
this. Let f: 6<“ — § be such that ¢ € cly implies cl¢(a) N = a. Define
g:8 =+ by gla) = sup(clz(a + 1)). Now choose a € P,6 such that
a € cly, a €cly, |a| = [aN &, cof(Ja N k) = Ry, cof(a) = 8, and k € a.
Let ag = aNk. Given a,, let § € a\sup(ay,), and a,;; = clg(a, U{B}).
Let a, = Upecway. Then a, Nk =an K, Gy, € clf and cof(a,) = w. Let
b = clf(a,). Then b € cly and cof([b]) = ®; and cof(b) = w. Hence
Sx NPy is co-stationary in P\ O

Corollary 2.9. For k, \ as above, the club filter on P\ is not satu-
rated.

Remark. Assume cof(\) = k (k regular limit). Then for club many
a € P, cof(a) = cof(a N k). So Sy is club in the (stationary) set
{aePr]||a =ank| } and is non-stationary in the (possibly
non-stationary) set { a € P\ | |a| = Ja N k| }.

The above method does not handle the cases: (1) Kk =Ry, (ii) kK = pt

and cof()) = cof(p), and (iii) & regular limit and cof (A) = k. Case (ii)
is handled in the following:

Theorem 2.10. Assume cof()\) < & and & 2> Ny. Then the club filter
on P, is not saturated. '

Proof. Let (f,:a € A*) be a scale on ) (see definition 3.3, so each
fa € Tlgceot(n) pe, Where the p¢’s are an increasing sequence of regular
cardinals cofinal in A with k < py). Given a € P\ define 9o € Ilpe by
9a(€) = sup(a N pg) and let m(a) = least @ € A* such that g, <* f,.
Let F be a filter on P ). Let 0 >> A, and assume J; is a filter on
P.Hy projecting to F. Let

E={b<Hy|bePHy& (fa:a€X\)ebk
cof(A) Cb& (pe: € <cof(N)) €b}.
Claim 1. If b € E then sup(bN A*) < w(bN )).
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Suppose not. Let b € E with sup(b n At) > w(b N A) =4 &
Say B € bN At with § > £ But fg*> f¢*2> gsn. Therefore
3n < cof(A) such that fs(n) > fa(n) 2 ganr(n). But cof()) C b,

B € b, and (fo: @ € A*) € b. Therefore f5(n) € bNp,. But

gira(n) = sup(b N p,). Contradiction

Let T' € Fy and define Sr(a) = sup{ sup(bNAt) |bNA=a & beT }’.
Note that St is defined on a set in F (the projection of T), if T C T
then Sr(a) < Sy (a), and if T C E then Sy(a) < 7(a).

Claim 2. Given f € A\* and TC Ewith T € Feo, on an F measure one
set we have § < Sp(a) < 7(a) < At.

We already have that St is defined on an F measure one set and

Sr(a) < 7(a) < A*t. Let €Mt andletT' = {beT|feb}.

Then T' € F; and (on the projection of T') Sp(a) > B and
Sy (a) < Sr(a). :

Claim 3. Assume f : P, A — X* is such that IFr+[f] = supj”At.
Then there is a T' € Fy such that (VT C T) T' € F on a set in F,
Sy (a) = f(a).
On an F, measure one set f(bN A) > sup(b N A*) (If not, then
there is a S € F;f such that f(bNA) < sup(b N A*), so on some
S eFS, fonr<n(ne At is fixed). Projecting to F we get
S € F* such that f(b) < on S. Contradiction.)
So let T € Fy such that T C F and (Vb€ T) f(bNA) > sup(bn

A*). Therefore, on an F measure one set, f (a) = Sr(a). Suppose -

on S € F* we have f(a) > Sr(a). Then since IF[f] = sup j"At,
there exists S C § and n < A* such that on S, St(a) < . This
contradicts Claim 2. Finally, assume 7' C T'. Then on F measure
one set Spv(a) < Sr(a) = f(a). Again by Claim 2, Sy (a) = f(a)
on an F measure one set.

Claim 4. Assume p < k is regular, p # cof()), T C P, H, is stationary,
TCE,andVa €T, aisIA (internally approachable) of length p (this
means there is an increasing, continuous sequence (ag : £ < p) where
eachas € E,Vp < p(ag: £ < p)€a,anda= Ug<pa¢ — see [FMS88]).
Let T be the projection of T' to P,\. Then for all a € T Sr(a) = n(a)
and cof(w(a)) = p.

The idea for the proof of Claim 4 comes from [FM97]. Let b € T,
and (bs : @ < p) be a witness to IA of length p. We may assume
(Va € p) by € bay1. Let @ = bN A It is enough to see that

sup(bNA*) = 7(a). (Note that cof (sup(bNA+)) = p.) Givena <p
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we have (Vf € b,) f < g5, (everywhere) and since g, € b1, there
i8 Yo € bay1 such that g5, <* fy,. By Claim 1, w(a) > sup(bNA™).
So let 8§ = sup(b N AT) and we will show g <* f5. For all a < p,
Obe <* fya <* fs5. Since p # cof(A), JA C p unbounded and
v < cof()) such that Yo € A and V€ € (v, cof(N)) g, (&) < f5(£)-
But g(¢) = sup,ea 9. () and so g,(§) < f5(£)- »

Let p < k be regular, p # cof()).

Let T={ b€ E | bis IA of length p }.

Claim 5. T is stationary

Let f: Hy® — Hy. Let by € ENcly. If £ < pis limit let b =
Ue<ebe. leen be, let bey1 € ENcly such that be U {(b. : € <€)} €
bet1- So b= Uecpb. € ENcly. To see b is 1A of length p we just
need VE < p (ba:a€§) €b. But (ba:a €E&) € bey1 Ch.

Finally, let 7y = CF [ T. F is gotten by projection. We will show that
F is not saturated, and therefore by Corollary (1.2) the club filter on
P, is not saturated.

For a contradiction, assume F is saturated. So thereisan f: P\ —
At such that IF[f] = supj”)A*, and on a set in F, cof(f(a)) > p
(otherwise we could force to have cof([f]) < p in the ultrapower—so
this collapses A*).

By Claim 3, 3R € Fj such that forany R C R (R € Fy) on a
set in F, Sy (a) = f(a). So on a set in F, Sgar(a) = f(a). But
RNT is a set as in Claim 4. Hence on a set in F (the projection of
RNT) Sgnr(a) = w(a) and cof(n(a)) = p. Therefore on a set in F,
cof(f(a)) = p. This contradiction completes the proof. O

Question. In the above proof, F is the projection of CF | T'. Is F the
club filter restricted to a stationary set?

We conclude this section with three previously known theorems.

Theorem 2.11. ([GS97]) For allk > Nl , the club filter on k is not sat-
urated. In fact, for any reqular p with p* < k, CF | { a <k | cof(a)
© p } is not saturated.

Corollary 2.12. For all reqular k and all regular X > Ry, the club
filter on P\ is not saturated.

Proof. Define g : P.A — X by g(a) = sup(a). Suppose S C A is
stationary and (Va € S) cof(a) < . Then g~1(S) is stationary (let
f:A<“ = Xand choose a € S such that a is closed under f. Now build
a € P,ANcly such that sup(a) = ). Also, if S C P, is stationary,
then ¢"S C X is stationary (if f: A<¥ — A, define h(a) = clf(a + 1).
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If a € S Ncly, then sup(a) is closed under f. The result now follows
from Theorem 2.11. ~ O

Theorem 2.13. [DM93] If A > 2<% then o) holds. Hence the club
filter on P is not saturated.

Theorem 2.14. [BT82] For any A > Ry, Py, A can be split into 2
many disjoint stationary sets.

Remark. Piecing everything together, we have the following partial re-
sults towards the theorem of Foreman and Magidor: The club filter on
P« A is not saturated unless

1. k= A = ®; (consistent).

2. Kk =Ry, A = 2% is singular.

3. « is limit and cof()\) = x and 2<% > ),

3. CARDINAL PRESERVING TO PRE-SATURATION

A filter F on P()) is weakly pre-saturated if F is precipitous and
IFx+“ At is preserved”. The filter F is called cardinal preserving if
-7+ “ At is preserved”. If |F+| = A*, then pre-saturated, weakly pre-
saturated and cardinal preserving are all equivalent. It is not known if
they are equivalent in general.

We use a number of known combinatorial principles to get that the
club filter cannot have these strong properties. For the case A regular,
the solution is complete—the club filter on P,.) is not cardinal preserv-
ing unless k = 8, or k = \ is weakly inaccessible (and both these cases
are consistent).

Definition 3.1. Shk()) means for any P € V, if VP | cof()) #
cof(|A]), then V® collapses ).

Definition 3.2. AD()) means o, : a € A*) such that each ay is an
- unbounded subset of X\ and Vo € A* 3f,: a — \ such that Bi<fBa<a
implies [ag, \ fa(B1)] N [ap, \ f2(B2)] = 0.

Definition 3.3. Suppose ) is singular. A scale on ) is an increas-
ing sequence of regular cardinal {(p¢: ¢ € cof(A)) cofinal in A\, and a
sequence (fo : @ € X*) such that for each a, f, € Heceotype, o < o
implies f, <* fo, and Vf € Heccotype Ja € A* such that f <*
fo- We will assume (pq, : a € cof(X)) s discontinuous everywhere and
Va € At V¢ € cof(A) fa(€) > sup{ pe | & < €} An ordinal vy is
good for (fo : @ € X*) if A C v unbounded and o < cof () such that
Va < o from A and v € (0,cof()) fa(v) < far (V). The scale is good
if 3 club C C A* such that Vo € C if cof(a) > cof()), then a is good
for the scale. GS(\) means there is a good scale on \.
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Remarks. 1. X regular implies AD(A).

2. AD()\) implies Sh()). [She82]

3. GS()) and ) singular implies Sh(}). [Cum97]

4. 01} implies AD()). [CFM] :

5. It is not known if IA-Sh(]) is consistent (it is consistent to have

~ 3A[-AD()) and =GS(\)]).

6. Shelah has proved that there is a scale for all singular A and that
the set of good points is stationary for all scales ([HJS86]; also see
[Cum97]). Shelah also gives an example of a model with no good
scale ([HJS86]). Another example of a model with no good scale
is given by Foreman and Magidor in [FM97], where they show
a version of Chang’s Conjecture, (R,41,R,) = (Ry,Ng), implies
there is no good scale on ¥,,. ‘

The proof of the following theorem is esséntially the same as Theorem
2.3.

Theorem 3.4. Assume Sh()\) and F is a pre-saturated filter on P(X).
Then Sy € F.

Theorem 3.5. Suppose F .z's a cardinal preserving filter on P()) and
AD(X). Then Sy € F.

Proof. We will use Shelah’s method of proof of Theorem 2.1 (page 440,
[She82]). Let (aq:a € At), (fo.: a € At) witness AD()\). Suppose
Sy € F. Let G C F* be generic with P(A) \ S» € G. So we get
Jj:V = (M,E) C V[G] with A* C M (we collapse the well-founded
part of M), and PV ()\) C M, and M |= cof(\) # cof(|A]). Work in M:
we write A = Uyeeor(a)) Ao Where the A,’s are increasing, continuous
and |A4| < |A|- Soif a C A is unbounded, then Ja < cof(|A|) such that
- N Ag is unbounded in A. Now work in V[G]: we have Va € At 38 €
cof(|A|)M such that a, N Ag is unbounded in A. So there is a fixed o
and an unbounded A C At such that (Va € A) a, N Ag, is unbounded
in A. Let a9y € A be such that AN ag has order type A. Note that
(aq : @ € ag), Ag,, and f,, are all in M. Now work in M: The set

{ (aa N Agy) \ fao(@) | @ < ag & a, N Ag, is unbounded in A }
is a family of |A\| many non-empty pairwise disjoint subsets of Ag,. But
|Ag,| < |A], contradiction. 0O
As in section 2, these two theorems have the following three corol-
lary’s:
Corollary 3.6. Assume AD()\) [Sh(\)], kK = pT, cof(\) < &, and

cof(A) # cof(p). Then there is no cardinal preserving [pre-saturated]
filter on P .
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Corollary 3.7. Assume AD()\) [Sh(\)], & = p* > Ry and cof(\) > &.
Then the club filter on P, ) is not cardinal preserving [pre-saturated].

Corollary 3.8. Assume AD(X) [SK))], k is a regular limit cardinal
and cof(X) # k. Then the club filter on P, is not cardinal preserving
[pre-saturated).

Theorem 3.9. Assume cof()\) < « and there is a good scale on ).
Then there is no weakly pre-saturated filter on P,).

Proof. Suppose not. So there is j: V —+ M C V[G] such that ) is
still a cardinal of V[G], M is well-founded, PV (\) C M, and cp(j) = &
with j(k) > X. Let (f.:a € A*) be a good scale on A. So there is a
club C' C A* such that @ € C and cof(a) > cof()\) implies a is good for
(fa : @ € X*). Let p = sup j”A* Note that p < j(A*) (see [BM97]) and
80 p € j(C). Since V[G] |= cof(p) = X*, M |= cof(p) > A+ > cof(N).
80 in M, there is an A C p such that sup(4) = p and 3o < cof()) such
that o; < a, from A and v € (o, cof(X)) implies j(f)a, (v) < J(Fag (v)-
Now work in V[G] and repeat an argument from [Cum97]. For each a
in A* choose f, < 8, from A and v, € A+ such that Ba < j(Ya) < 64.
Do this s0 a3 < @, implies 6,, < f,, and sup{ f, |a et} =p
For each a € A* 0, < cof()) such that j(f)s, < j( it < 3(F)s,
beyond o,. Since At is regular there is an unbounded B C At and
fixed oy such that Va € B 0, = 1. Let & = max(c, 01). But then if
@1 < oy are from B, then f,, (7 +1) < fveg (@ +1). Hence A+ must
be collapsed in V[G]. O

Precipitousness is ruled out under certain conditions by the following
theorem of Matsubara and Shioya.

Theorem 3.10. [MS] If A<* = 2% and 2<% < 2*, then the club filter
on P\ is nowhere precipitous.
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