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Splitting P\ into maximally many stationary sets

_— - A
MASAHIRO SHIOYA tfﬁ/\?ﬁ IAN

ABstracT. Let K > w be a regular cardinal and A > k a cardinal. We show that
Pi ) splits into A¥ stationary sets.

0. INTRODUCTION

Let k > w be a regular cardinal and A > K a‘ca,rdina,l. Solovay’s classical result
for k [So] led Menas [Me] to conjecture that a stationary subset of P, would split
into A<* stationary sets. Unfortunately his conjecture fails when 2<* > x*: While
Pkt carries 8 stationary set of size k¥ (see [BT]), the conjecture implies that the
size is (kT)<" as well.

What about splitting a stationary set S into min{|S N C| : C is club} many
sets? Gitik’s answer [G] was again negative: Relative to supercompactness, it is
corllsvistent that some stationary subset of Pk splits into at most x stationary
sets.

Now it seems natural to ask the same question as above for a canonical stationary
set. Let us concentrate on the case where the canonical set is P\ itself. When
Kk = w1, we have a satisfactory answer by the works of Baumgartner-Taylor [BT] (the
case A < 2¥) and Donder-Matet [DM] (otherwise): P, A splits into A“ stationary

sets. In fact the latter proved the diamond principle for P, A when X\ > 2<%,
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In this paper we are mainly concerned with the general type of result as follows
(see [Ka]): P splits iﬁto A stationary sets. As suggested above, we should first
measure the minimum size of a club subset of P,\. Elaborating his earlier result
[BT], Baumgartner [B] has already shown that it is at least A“. This and the
following result of Magidor [Mag] imply that A\* is the critical number for our
specific splitting problem: If there is no w;-Erdés cardinal in the Dodd-Jensen core
model, P carries a club set of size A when cfX > &, and of size max{\¥,\*}

otherwise.

Unifying three of the results above, we establish the desired splitting:
Theorem 1. P splits into A\ stationary sets.
We also realize the splitting suggested in the latter case of Magidor’s theorem:

Theorem 2. P\ splits into AT stationary sets when cf)\ < k.

1. PRELIMINARIES

Our notation should be standard. Kanamori’s book [Ka) is an excellent source
for background material. We reserve « for a regular cardinal > w, A for a cardinal
> k and p, v for a cardinal > w. When p < & is regular, S¥ (resp. S<H, SZ#)
denotes the set of limit ordinals < x of cofinality u (resp. < p, > u). For a set X
of ordinals let lim X be the set {y < sup X : sup(X N+) =~ > 0} of limit points
of X and cly X the closure of X under f : A<¥ — PiA, i.e. the minimal set Y O X
with | f“Y'<¥ C Y. Unless otherwise stated, we understand that a set of ordinals
is listed in increasing order and a splitting of a stationary set is mutually disjoint.

Thoughout the paper we freely use Soloiray’s theorem [So| mentioned earlier:
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Theorem. A stationary subset of k splits into k stationary sets.

We need of a version of Shelah’s club guessing sequence (see [Ko]). Let us sketch

a proof due to Hirata [H]:

Theorem. Let p < k < A be all regular and S C S§ Nlim Sf" stationary. Then
there is a sequence (cy : Y € S) such that ¢y C S;” is unbounded in y and of order

type u for any v € S and {y € S : ¢, C C} is stationary for any club set C C .

Proof. First for 8 € lim A fix an unbounded set dg C B of order type cf 8. For
v € S and a club set D C limA set 22 = U, ,, 22, — {0}, where £, is defined
inductively b& zly = {sup(DNa): a €dy} and «P, ., = {sup(DNa): 30 €
gl N S5%(a € dp)}. Note that gl c D since D is closed, and |22, | < & by
induction on n < w. First we find a club set D C X such that {vesS: :c,ly) ‘C C}is
stationary for any club set C' C .

Otherwise we would have inductively a descending sequence (Cg : £ < k) of club
subsets of lim A such tha;c Cer1N{yeS: m?‘ C Cey1} = 0 for any & < k. Fix
¥ € SN[, C¢- Then we have inductively {§, : n <w} C « such that 258 = 255
for any &, < £ < k, since the map § — sup(C¢ Na) is decreasing for any o < A and
|z5% | < &k by the note above. Set £ = SUPp <o, én < K. Then mgf = g5+ Cet1
by the note above. This contradicts Cer1 N{y € S: xs $C Ceyr}=0.

Now fix a club set D C X as above. Then $* = {y € SNlmD : w,’f C lim D}

is stationary by the claim above. Fix v € §*. We have x,ly) —limz? C Sf", since

B € zP, NS implies B € limaD, ,; by B € lim D. Also 2D —lim 7 is unbounded

D

in v, since z7

is unbounded in v by «v € lim D.

Finally we get the desired sequence by taking an unbounded subset of a:;? —lim x?



of order type p ascy forye §*. O

In fact we use only the sequence of the form (c, : v € 5%) and do not appeal
to the clause ¢y, C Sf”. The second result we quote from Shelah’s pcf theory is a

scale on a singular cardinal [Sh] (see also [BMag]):

Theorem. Let X be singular. Then there are an unbounded set {Ae:€<cfA}C A
of regular cardinals and {fy : v < At} C [lecea Ae such that fz <* fy for any

B <7< AT and for any g € HKCM A¢ there is v < At with g <* f,.

Here <* denotes the eventual dominance: f <* giff {£ < cfX: f(§) < g(£)} is
cobounded. The later development of the theory as presented in [Ko] yields a more

transparent proof of this deep result.

2. MAIN THEOREMS

This section is devoted to establishing Theorems 1 and 2.
Our proof of Theorem 1 consists of two major parts. For the first part we are
- strongly indebted to Todortevié [T2], who reproved Gitik’s answer [G] to Abraham’s
question [AS] and claimed that his method would yield the Baumgartner-Taylor
result as well via the following: Let (c, : v € S% ) be a club guessing sequence
with ¢y = {y, : » < w}. Then {z € Py,wp : Iy € 8% (supz = YA {n < w :
ZN (Yn+1 — Yn) # 0} =7)} is stationary for any r € [w]¥. | |
Let A be regular. We endow [A]<% with thé tree ordering < = {(a,b) : a is an
initial segment of b}. VLet T be a subtree of [A]<¥, i.e. a subset of [A]<* closed
undér initial segments. Set [T] = {B € [A\]* : V8 € B(BN B € T)}, the set of

infinite branches through T, and T% = {b € [A\]<¥ : a < a U b € T}, the tree above
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a € [N]<¥. We call T # 0 stationary if the set of immediate successors of a € T
sucr(a) = {a < X :a < aU{a} € T} is always stationary, and g : T — ) regressive
when g(a) < g(b) € minbU {0} forany a <beT.

Let us start with a tree version of the regressive function lemma:

Lemma. Let g: T — X be regressive with T a stationary subtree of [S¥]<“. Then

for some stationary subtree ik of T g“T™ is bounded in A.

Proof. For v < A set Ty = {a € T': g(a) < 7}, a subtree of T by order preservation
of g. First we find v < A with [T] N [C]*¥ # 0 for any club set C C .

Suppose to the contrary that for v < A we have a club set C, C X with [T,,] N
[Cy]¥ = 0. Take inductively B € [T] N [A,<2C,]“ by stationarity of 7. Take
o < min B with B € [T,] by cf min B = k > w and regressiveness of g. Then
B € [Cy]” by B € [AycxCy]¥. This contradicts [To] N [Co]” = @ by the choice of
Co.

Fix v < A as above. Set T* = {a € T}, : Vb < aVC C A club ([T},°] N [C]* # 0)},
a sﬁlstree of T. Note that ) € T* by the choice of yv. We claim that T is stationary
as desired.

Suppose to the contrary D Nsucrs(a) = @ for some a € T* and some club set
D C ). Then for a € D we have a club set C,, C A with [T,°*{9 0 [C,]* = 0 by
a € T* and aU{a} & T*. Thus C = DNA4epCay is club in A. Take B € [T,*|N[C]¥
by a € T*. Set 8 = minB. Then B — {8} € [I,*’¥}] by B € [T,%], and
B — {f} € [Cp]* by B € [C]“. This contradicts [T,*1PY)N[Cs* =B by B € D

and the choice of Cg. 0

For the following lemma we fix a club guessing sequence (cy : v € S%) with



cy ={Mm:n<w}

Main Lemma 1. Let S, C S§ be stationary for n < w. Then {reP):3ye

SY(supr =y AVn < w(min(z — v,) € Sp))} is stationary.

Proof. Fix f : A<* — P,A. Set T = {a : Vn < |a|(the nth elemenf of a is in
Sn)}, a stationary subtree of [S5]<¥. We build inductively a stationary subtree
Tn of T and hy, : T, N[A]® — A so that Tyyy C Ty, Tyy1 N[A® = T, 0 [A]” and
clf(aU B) Nmin B C hy(a) for any a € Tphyy N[A]™ and B € [T,,11%).

First set Ty = T. Next suppose that T, is defined. Fix a € T,, N [A]". Then
the map g, : b — sup(clf(a U b) N minbd) is regressive on T,,* by cf minb = «.
By the lemma above we have a stationary subtree T, of T},* and h,(a) < A with
90“Ta C hn(a). Then Ty = (Tn NI U{aUb:a € T,NAI"Ab € T,} is
the desired stationary subtree of Ty,: Fix a € T,,41 N[A]™ and B € [T}, 11%]. Then
clf(@UB)Nmin B = Jgepcls(aU(BNB)) Nmin B C Ugep ga(B N B) C hala).

Now set T* = (1, ., Tn, a stationary subtree of T, and h = J,, <whn :T* = A
Then C = {y < A: clyy = yAVa € T*N[y]<*(h(a) < YAy € limsucr+«(a))} contains
a club set. Fixy € SYNC With ¢y = {1 : n <w} C C. Take inductively B = {8, :
n < w} € [T*] so that v, < Bn < Ynt+1 bY Y1 € C and the inductive hypothesis
{Bi:i<n} €T*N[y]<¥. Then clfB is as desired: First we have supcl;B = v,
since sup B = and clyB C cl}'y =7 by v € C. Next min(clfB — ~y,) = 3y, since

cly BNBn C hn(BNPBr) =h(BNBp) < ¥n by 7n € C and BNG, € T*N[y]<v. O

The following lemma, is due to Foreman-Magidor [FM], who introduce the notion
of mutual stationarity and show that the club filter on P, X is not Af*-saturated

when A\ is singular.
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Let ¢fA = w and {A\n i n <w}={k;: % <w} C A an unbounded set of regular
cardinals > ' x such that A, .,< An+1 and {i < w: k; = A, } is infinite for any n < w.
Let W be the tree |J,, <, [1;<n #i ordered by inclusion. For a subtree T' of W set
[T] = {B € [1;<, & : Vm < w(B|m € T}, the set of infinite branches through T,

and sucy(s) = {a: s * (a) € T}, the set of immediate successors of s € T,

Main Lemma 2. Let S, C S§_be stationary for n < w. Then{x € PA:Vn <

w(sup(z N A,) € Sp)} is stationary.

Proof. Fix f : A<¥ — P,\. We build inductively a subtree T, of W so that
Tp+1 C Tn, sup(clgran BN Ap_1) € Sp—1 for any B € [T,,] and for any s € T,
sucr, (s) is a singleton if K|5) < An, and is unbounded in k), otherwise.

First set Tp = W. Next suppose that .Tn is defined. For v < A,, we call a subtree
U # 0 of W cobounded below « if for any s € U sucy(s) is kjs if k|5 < A,
and is cobounded in vy (resp. &) if K|s) = An (resp. Kis) > Ag). We claim that
C = {y < An : YU cobounded below v3B € [T,] N [U](clyran BN A, C )} contains
a club set.

Suppose to the contrary that we have a stationary set S C A and for vy € § a
subtree Uy of W cobounded below «y with clgran BN, ¢ vy for any B € [T,]N[U,].
Build inductively a subtree T' of T;, so that sucr(s) is sucr, (s) if k)] < Ap, and is
{a} with sx{a) € ({U : s € U, } otherwise. Note that the map s — s|{i : k; = A\p}
is injective on {s € T': K|s] = An}. Hence D = {y < Ay : Vs € T((k|s) = An As“{i:
Ku,;, = A} C ) = (clyransN A, C vy Ay € limsucr(s)))} contains a club set. Fix
v € SN D. Take inductively B € [T] N [U,] as follows: Suppose that s € TNU, is

defined. Then sucy(s) Nsucy, (s) # O, since sucy, (s) = k|5 when K|q < Ay, since



sucy, (s) is cobounded in v and sucr(s) is unbounded in ybyy€D,seT and
s“{i: Ky = An} C v when K5 = Ay, and by s € U, and the choice of sucr(s) when
Kis| > An. Thus clgran BN A, = (HclfB“% N A, : ki = Ap} C v by v € D and

Bli € T. This contradicts clgran BN A, ¢ v by v € S and the choice of U,.

Fix v € Sn F.WC. Set T* = {s € T, : Vt < sVU > t cobounded below ¥y3B ¢
[T%]N[U](t € BAclgran BN A, C v)}, a subtree of T},. Note that § € T* by v € C.
Fix s € T*. We claim that sucr=(s) is a singleton if x5 < Ap, and is unbounded
in 7 (resp. K|q) if K5 = Ap (vesp. n|;| > Ap)- "We show the case K|s| = An. The

case ks > An (resp. Kjs < Ap) is given by a similar (resp. simpler) argument.

Suppose to the contrary that A = y —sucy«(s) is cobounded. Then for o € A we
have a subtree U, 3 s * (o) of W cobounded below v such that clfran BN A, ¢ v
for any s * (@) C B € [Ty]N[Uy] by s € T* and s * (o) € T*. Fix a subtree U
of W cobounded below v with {t € U : s < t} = Uyeca{t € Uy : s* (@) < t}.
Take s C B € [T,] ﬂ‘ [U] with clfranB NAp C vy by s €T* and then o € A with
s* (@) C B € [U,] by the minimal choice of U. This contradicts clyran BN Ay, & v

by s * (o) C B € [T,] N [Uy] and the choice of U,,.

Now fix an unbounded set {7y; : 4 < w} C 7. Build inductively a subtree T},

of T* so that sucr,,,(s) is sucr«(s) if K5y # A, and is {a} with v, < a <

35

v otherwise, where m = |{i < |s| : ki = A}|. Then T, is as desired: Fix"

B € [Tn41]. Then sup(clyran BN A,) = v, since sup{B(%) : x; = Ay} = 7 and

clfran BN Ap =, cly BN A, C vy by Bli € T™.

1<w

Finally (,, .., Tn has a unique branch B and sup(clfrahB NA,) € S, for any

n < w as desired. O
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We are ready to prove the main result of this paper:
Theorem 1. P splits into A\¥ statz'ondry sets.

Proof When A\ < p¥ for some regular cardinal x < g < A, fix a club guessing
sequence (¢, : ¥ € Sj) with ¢y = {7, : n < w} and split S}; into stationary sets
{S¢ : € < p}. Then for p: w = {x € Pud: 3y € S(sup(z Np) = yAVn <
w(min(z — y,) € Sp(n)))} is stationary by Main Lemma 1 and mutually disjoint.

When cf A = w, fix an unbounded set {\, : 7 < w} C A of regular cardinals > .
Then |[],,<, An] = A¥. For n < w split S5 into stationary sets {Sne : £ < An}.
Then for p € [],, ., An {z € P : Vn < w(sup(z N An) € Sppn))} is stationary by
Main Lemma 2 and mutually disjoint.

Otherwise we have w < ¢cfA < A and o < A for any o < A, and hence A\ = A.
For completeness we provide a proof implicit in [Tl] First we claim that {z €
P i sup(z Np) € S Asup(zNv) € S’} is stationary for any regular cardinals
k < p < v < X and stationary sets S C S)) and §' C S, Fix f: A<“ — P\, Take
8 € S’ with clyB8Nv = B, and an unbounded set b C 3 of size w, and then o € S with
cly(@Ub)Np = a, and an unbounded set a C « of size w. Then sup(clf(aUb)Nu) = o
and sup(cly(a U.b) Nv) = B as desired. Now set u = max{x,cfA} < A and split S}/
into stationary sets {S¢ : £ < cfA}. Also fix an unbounded set {A¢ : § < cfA} C A of
regular cardinals > u and for & < cf )\ split Sg“’E into stationary sets {S¢¢ : ¢ < ¢}
Then for (§¢) € Decetr e {T € Pud i sup(z N p) € Se Asup(z N Ae) € Secl}is

stationary by the claim above and mutually disjoint. [

Our second result is inspired by Burke’s theorem [BMat] that the club filter on

P\ is not A\T-saturated when k > w; and cf X < &:
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Theorem 2. P, A splits into A\* stationary sets when cf )\ < k.

Proof. The case cf\ = w follows from Theorem 1.

Otherwise fix a scale {f, : 'y‘< AT} C Tle<err Ae With Ag > k. Define p: P A —
AT by p(z) = min{y < A" : (sup(z N A¢) : € < cfA) <* f,}. We show that p~19 is
stationary in P, A for any stationary set S C SY..

- Fix a club set C C P,A. Construct {xa :a € [AT]<“} C C by induction on |

80 that ran fmaxa C Za C @ for any a C b € [AT]<% by cf A < k. Take v € S with

p(xa) < v for any a € [y]<¥, and an unbounded set B C v of order type w.. Set
z =Ugep TBnp € C. We claim that p(z) = v as desired.

First we have p(z) > 7, since for any 8 € B p(z) > p(zpns) > max(B N ) by
ran fmax(Bng) C TBng. Next (sup(z N X¢) : € < cfA) = (supgep sup(zpng N Ae) :
£ <cfd) <* f,, since cf\ > w and for any 8 € B (sup(zBng NA¢) : € < cfA) <* £,
by p(xBng) < 7.

Now split SY, into stationary sets {Sq : @ < A*}. Then for a < At p~18, is

stationary in P, A by the claim above and mutually disjoint. [

3. SOME REMARKS

For the moment let us assume that y < s < A are all regular and consider
the stationary set S'l:?‘ ={z € ?EA : cfsupz = p}. Main Lemma 1 implies that
x SPlits into A“ stationary sets. On the other hand Matsubara [Mat] proved
that a stationary subset of S%, splits into X stationary sets. This is optimal when
7 > w and A < k1%, since Baumgartner [B] shows that |[{z € P\ : k < Vv <

AMcfsup(z Nv) > w)} NC| = X for some club set C C PA. In fact the map

z +— (sup(x Nv) : k < v < A) is injective on this set. Complementing a result of
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Abe [A], we remark that the map x — sup z is not injective on St NC for any club
set C' C ’Pn‘)\: Fix f : A<¥ — P, generating C. Take k <7 € S4 closed under f,
an unbounded set a C -y of size y and a € v — clya. Then clya # cly(aU {a}) and
supcl fd = supclf(a U {a}) =7 as desired.

The rest of the section is devoted to a detailed proof of the Donder-Matet theorem
mentioned earlier.

Let 4 > w be regular and dy = {y, : n < w} C 7 unbounded for v € S;.
The following lemma from [B] (see also [BT]), where it is stated in (harmlessly)

inaccurate form, is implicit in Lemma 9.1 of [DM].

Lemma 1. Let S C S; be stationary. Then {a < p : {(veS:ae€d}is

stationary} is unbounded.

Proof. Suppose to the contrary that we have 8 < p and for 8 < a < p a club set
CoCpuwithConN{yeS:aed,}=0. Take f <y € SN Ag<cacuCa. Then for
any B < a <y a¢dybyy e SNC,. This contradicts the unboundedness of dy in

~v. O

We call a subtree T' # @ of [u]<“ in the sense of Section 2 unbounded (resp.
cobounded) if sucr(a) is unbounded (resp. cobounded) in p for any a € T. The
following lemma, from [RS] (see also [BMag]) would ensure that the map £ in Lemma

9.2 of [DM] is well-defined (at least in the case we are interested in).

Lemma 2. Letg:T — v with T an unbounded subtree of [1)<“ and v < p. Then

for some unbounded subtree T* of T g is constant on T* N [u|™ for any n < w.

Proof. For h : w — v set Ty, = {a € T : Vb < a(g(b) = h(|b]))}, a subtree of T.

First we find h : w — v with [T,] N [U] # 0 for any cobounded subtree U of [u]<%.



Suppose to the contrary that for h : w — v we have a cobounded subtree Uy, of
[]<¥ with [Th] N [Us] = 0. Take inductively B € [T)N[{Ur : h : w — v}] by
VW < pi. Take h: w — v with B € [T}]. This contradicts [Th] N [Uy] = 0.

Now fix h : w — v as above. Set T* = {a € Ty, : Vb < aVU 3> b cobounded
AB € [Ty] N [U](b C B)}, a subtree of T. Note that § € T* by the choice of h. We
claim that T™ is unbounded. as desired.

Suppose to the contrary that A = p — sucy«(a) is cobounded for some a € T™*.
Then for ¢ € A we have a cobounded subtree U, > a U {a} of [u]<* such that
aU{a} ¢ B for any B € [Tp]|N[Uy] by a € T* and a U {a} &€ T*. Fix a cobounded
“subtree U of [u]<% with {b € U : a < b} = Upcafb € Ua : aU {a} < b}. Take
a C Be [Ty N[U] by a € T*, and then a € A with a U {a} C B € [U,] by the
minimal choice of U. This contradicts a U {a} ¢ B by B € [Ty N [U,] and the

choice of U,. [

We are ready to prove the main claim of Proposition 9.6 of [DM]:

Theorem. Let A > 2<¢. Then there is a sequence (v; : T € PrA) such that

{x € P : vz = X Nz} is stationary for any X C A

Proof. Set p - (2<F)* and split S into stationary sets {S* : w.€ Pxx}. For
z € Py with cfsup(z Np) = w set v, = 7(z) 'w, where sup(i Np) e S*
and 7(z) : * — otz is the increasing bijection. Fix X C A. We show that
{z € Pc): vz = X Nz} is stationary.

Fix f : A< — P, A. We build inductively an unbounded subtree T of. [u]<* and
for a € T a stationary set S, C S}, and an increasing injéction Xa : clya — K so

that for any a < b€ T Sy C S, and for any v € S, a C dy and 7(clyd,)|clfa = Xq.
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Note that these conditions imply x, C xp forany a < be T.

First set Sp = S and xg = 0. Next suppose that TN [u]" and S, for a € T'N[u]"
are defined. Fix a € TN[u]". Letsucr(a) = {a < p: maxa < an{y€ S,:a € d,}
is stationary}, which is unbounded by Lemma, 1. Fix a € sucr(a). Take a stationary
set Saufa) C {7 € Sa : @ € dy} and Xautay : clf(a U {a}) — & so that for any
7V € Saufa} T(clydy)lclf(aU{a}) = Xauga} by 2% < pu.

By Lemma 2 with v = 2<* take an unbounded subtree T* of T and {y, : n <
w}, {zn : N < W} C Pxk so that rany, = y, and x,“(X Nclya) = 2, for any
aeT*N[u]". Then C = {y < p:clpyNp =yAVa € T*N[y]<¥(y € limsucr-(a))}
contains a club set. Set w = 7(, <, ¥n)“Upcw 2n € Pk Fix v € S N C. Take
inductively B = {3, : n < w} € [T*] so that v, < B, < v by v € C and the
inductive hypothesis {f; : ¢ <n} € T* N [y]<“. Then cl;B is as des‘ire.d: First we

have sup(clyB N p) = v, since supB =y and clyBNpu CclyyNp =~ by v € C.

Next m(clyB)“(X NclgB) = w, since x = UgepXBnp : clfB — Upc, Yn is an
increasing bijection and x“(X NclyB) =, .,, 2n by the note above. [
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