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Abstract

M. Magidor [9] showed that if part*(«, A) holds then « is M-ineffable. In.[6],
we showed that, under some additional assumption, the reverse implication also
holds. The main purpose of this paper is to improve this result. We will prove
that if & is A<*-ineffable then part*(x,)) holds. Also, using a similar technic in
the proof of the above result, we prove that if x is A-supercompact then there

is a normal ultrafilter on P, A with the partition property. This result is some

_ . < A<~
variation of a Menas’s result: If x is 2*~"-supercompact, then there are 22

normal ultrafilters on PcA with the partition property.

1 Introduction

There are several combinatorial properties related with supercompactness. Partition

properties and ineffabilities are some of these properties. In fact, Menas [11, Theorem

3] proved that if « is 2’\<K—supercompact then there are 22 many normal ultrafilters
on P\ with the partition property, and Magidor [9] proved that if part*(x, ) holds
then « is A-ineffable and that if « is A-ineffable, for all A > « then & is supercompact.

In the above results, it is natural to ask whether M\-ineffability imply the partition
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property. In [6], we proved that, under some additional assumption of «, if & is A<"-
ineffable thén part*(k,A) holds. The main purpose of this paper is to improve this
result. We prove

Theorem 4.3 If x is A<*-ineffable, then part*(x, A) holds.

In the proof of Theorem 4.3, we bollow an idea of how to use the notion of presubtlity
which is appeared in Kunen and Pelletier’s paper [8]. (The notion of presubtlity does

not appear in this paper.) Alsb, using a similar technic in the proof of Theorem 4.3,
we prove

Theorem 5.1 [f x is A-supercompact then there is a normal ultrafilter on P\ with
the partition property.

This is a variation of the above Menas’s result.

The paper consists five sections. In the next section, we give some notations and
definitions which we will be used the following sections. Section 3 will be devoted
to give some lemmas which will be used to prove Theorem 4.3. Theorem 4.3 will be

proved in section 4. Theorem 5.1 will be proved in section 5.

2 Notations and definitions

We use standard P, A-combinatorial terminologies (e.g., see [7]). Throughout this
paper, k denotes a regular uncountable cardinal. Let Z be an ideal on a set S. I*
denotes the dual filter and Z% denotes the set P(S)\ Z. For any subset S’ C S, Z1S’
denotes T N P(S’). For any function f : S — T, f.(Z) denotes the ideal { X C T |
ff'XeZ}lonT.

Let A be a set such that /c C A. P.A denotes the set {z C A||z| < s }. For each
z € P.A, Q, denotes the set ’le_,da:. For any z,y € P.A, ¢ < y means that 2 € Q,.
Let Y be a subset of P,A. Y is said to be unbounded, if for any x € P, A there exists

ay €Y such that z C y. Y is called a club, if Y is unbounded and closed under



C-increasing chains with length < x. Y is said to be stationary, if X N C # ¢, for any
club C C P.A. Let us denote by NS, 4 the set of all non-stationary subsets of P, A.
A function f:Y — A is said to be regressive, if f(z) € z holds, forallz € Y. An

ideal 7 on P, A is normal, if it contains all bounded subsets and, for any X € 7%, and

any regressive function f : X — A, there exists an a € A such that f“l{d} eIt It
is known [11] that NS, 4 is the smallest normal ideal on P, A.

For each function 7 : P,A — P4, cl(7) denotes the set {z € P.A | Vt €
Qs ( 7(t) € Qz ) }. Foreach 7 : A x A — PLA, cl(r) denotes the set {z € P.A |
Vo, B €z ( 7(o, ) C = )}. It is known [10] that, for any X C P.A , X contains
a club if and only if there. exists a 7 : A x A — P.A such that cl(r) C X. For any
B O A, the function p : P.B — P.A which is defined by p(z) = z N A is called the
projection.

Let Y C P.A. [Y]? denotes the set {(z,y) € Y XY |z C yandz # y}. For

any function f : [Y]? — 2, a subset H of Y is said to be homogeneous for f, if

|f“[H]*| = 1. We say that ¥ has the partition property, if for any f : [Y]* — 2, there
exists a stationary subset H of Y such that H is homogeneous for f. Y is said to be

ineffable (almost ineffable), if for any s, C z (for € Y), there exists an S C A such

that {z € Y | s, = SNz} is stationary (unbounded). Set
NP, 4 = {X C P.A| X does not have the partition property },
NIn. 4 = { X C P.A| X is not ineffable }, and
NAln, 4 = { X C P.A| X is not almost ineffable }.
It is known [3] that NP, 4, NIn, 4, and NAln, 4 are normal ideals on P, A.
We say that part*(x, A) holds, if NP, 4 is a proper ideal and that « is A-ineffable, if

NIn, 4 is a proper ideal, and that « is almost A-ineffable, if NAIn, 4 is a proper ideal.

It is known that, for any B D A, NIn, 4 C p«(Nln, 5), where p denotes the projection



from P, B to P, A.
Let U be an ultrafilter on P,A. We say that U is normal, if the dual ideal of U is

a normal ideal. U has the partition property, if for any X € U and any f : [X]* — 2,

there exists Y € U such that Y C X and Y is homogeneous for f.

3 Several Lemmas

In this section, we will state some lemmas which will be used in the next section.

From now on, A denotes a cardinal greater than or equal to «.

3.1 The A-Shelah property

The A-Shelah property was first introduced by Carr [3]. A subset X C P, A has the

Shelah property, if for any f, : ¢ — z (for z € X), there exists a function f: A — A

such that

VeePAIye X (zCyand f, = flz).
Set NShn,,{ = {X C P.A | X does not have the Shelah property }. .It is known that
"NShy,» is a normal ideal on P, A ‘and NSh,, C NAlIn, ). We say that « is A-Shelah, if
NShﬁyA is a proper ideal.

The following two lemmas are due to Carr [2, 3].

Lemma 3.1 (Carr [2]) {z € P\ |z Nk is an inaccesible cardinal} € NShy,. O

Lemma 3.2 (Carr [3]) If & is 2*"-Shelah, then k is A-supercompact. ]

Let S be an infinite set. A function F from S to .S is called an w-Jonsson function

for S, if for any T C S with cardinality |.S|, it holds that F“T“ = S. Concerning this,

Erdés-Hajnal (e.g., see [7, Theorem 23.13]) proved

Lemma 3.3 (Erdds-Hajnal) For any infinite set S, there exists an w-Jonsson func-

tion for S. . ' O



Furthermore, we need

Lemma 3.4 (Johnson [4]) Let § < A and F an w-Jonsson function for §. Then, it

holds that

{z € PA| Fi(z N 6)” is an w-Jonsson function for t N6} € NShY ,. o

3.2 How reflects cardinals on a certain set in NIn, )

In this subsection, we begin with an easy lemma. We left a proof to the reader.

Lemma 3.5 Ifd is a cardinal < A, then it holds that

{z € PA|ot(z N ) is a cardinal} € NInj, ;. | O

Lemma 3.6 Ify is a strong limit cardinal < A, then it holds that

{z € P ||z0 4| is a strong limit cardinal} € NIny .

Proof To get a contradiction, assume that
X ={z € P.A||zN~|is not a limit cardinal } € NIn},.
For each z € X, take o, € z N~ such that |z Ny| < 2=l Since NIn, , is normal,
there is an a < v such that
X' ={zeX|a,=a}eNnf,.
For each z € X', take an injection f,: z N~y — P(z N «) and set
a={(nezxa|{<yand fr(£) =n}
Since X' € NIn:,A, there exists an A C v X « such that
Y={zeX'|a,=ANz xz}e NS},
Define f : v — P(a) by
f@)={n<al(n) Al
Since Y is unbounded, it holds that f is an injection. This contradicts that v is a
strong limit cardinal. . 0

The following lemma is due to Abe [1].



Lemma 3.7 (Abe [1]) Let v, § be cardinals such that 27 = § < A. Then, it holds that

{z € P |2kM = |z} € NSh;,.
A similar argment gives a proof of the next lemma. We left a proof to the reader.

Lemma 3.8 Ify <\ <27, then it holds that

{z € PA||z| < 2™} € NInj, ,. O

3.3 P\ vasus P A<F

Let § = A<* and p : P.6 — P, A the projection. Take a bijection h : P.A — 0 and
define q : P.6 — P\ by
q(y) =Uhr 1y, for all y € P.H.

The lemmas of this subsection were appeared in [5, 6] implicitly. Set

Yo={y€Pdh|p(y) =4q(y) and h“Qu) =y }.

Lemma 3.9 Y; € NIng,.

Proof It suffices to show that
(1) {yePd|p(y) Caly)} € NIngy,
(2) {yeP:f]q(y) Cply)} € Nngy,
(3) {y€Puf| h“Qpy) Cy} € Ning,
(4) {y€Pub|y Ch“Qpy)} € NIng,.
These are proved by similar argments. We only deal (3). To get a contradiction,
assume that _
Y = {y € Pub | hQpiy) € ¥} € NIn.
For each y € Y, Take t, € Qpy) such that h(t,) € y. Since Y € NIn},, there exists

T C X such that
Z={yeY|Tny=t,}eNS},



Claim1 |T| < .

Proof of Claim 1 Suppose not. Take an injection f: x — T and set
C={yePd|fynr)Cy}.
Since C is a club of P,f, there exists a y € CN Z. Since y € C, we have that
lynkl <lyn T’. Since y € Z, we have that |y N T| = |t,| < |y N &|. This is a desired
contradiction. QED of Claim 1
By Claim 1, set o = A(T). Since Z is unbounded, we can take a y € Z such that

TU{a} Cy. Then, t, =T and h(ty) = o € y. This contradicts the choise of ,. O

Lemma 3.10 Let X € p.(Nln,g)t. Then, for any a, C Q. (z € X), there exists
an A C P.A such that
VriPA—PAIzeXnd(r) (as=ANQ, ).

Proof SetY = p7'X NY, By Lemma 3.9, Y € NIn},. For each y € Y, set
by = h“ap(y). Then, since y € Yg, it holds that -

by, Cy,forally €Y,
So, there exists a B C 0 such that

Y'={yeY|b=Bny}eNS,
Set A = h™'B. We claim that A is as required. To show this, let 7 : P.X — P,
Define 7/ = h7h™ : § — 4. Since Y’ € NS}, there exists a y € Y’ N cl(7'). Then, it

is easy to check that p(y) € X Ncl(7) and apy) = AN Qp(y)- . O

Lemma 3.11  Suppose that part*(k, A) fails. Then, it holds that

{z € P\ | part*(z N k,z) fails} € p.(NIn,g)*.

Proof To get a contradiction, assume that
X ={z € P |part*(z N&,z) holds } € p.(NIn,g)*..

Tet X' = {z € X | 2N« is inaccesible }. By Lemma 3.1, X’ € p.(NIn,)*. Since



part*(k, A) fails, there exists a function f : [PcA]* — 2 such that

V H € NS}, ( H is not homogeneous for f ).

For each z € X/, take H, € NS{, and ez < 2 such that f“[H;]* = {e,; }. By Lemma
3.‘10, there exists an H C P, and e < 2 such that

*)y Vr:PA—=PArJzeX'ncl(r)(H,=HNQ, a,nd>ex =e).

It is easy to check that H ié homogeneous for f. It suffices to complete the proof to show
that H is stationary. So, let C be a club of P,A. Take a function 7 : P,A — C such that
z C 7(z). Then, by (*), there exists an z € X’ N cl(r) such that H, = H N Q,. Since

z € cl(7), it holds that CNQ; is club in Q. So, it holds that ¢ # H,NCNQ, C HNC.
(e}

4 Proof of Main Theorem

In this section, we prove the main theorem. In the proof, we will use some known

results. The next lemma is well-known. But, I don’t know who established it.

Lemma 4.1 (folklore) If & is <A-supercompact and A is 0-supercompact, then k is

0-supercompact. a
The next lemma was appeared in [5].

Lemma 4.2 {z € P\ | zN k& is almost z-ineffable } € p.(Nln, r<<)*,

where p denotes the projection from P A<" to P, ). a
Theorem 4.3  If & is A<"-ineffable, then part*(x,\) holds.

Proof To get a contradiction, assume that x is A<*-ineffable and part*(k, A) fails.
Let 8 = A<%, p : P.f§ — P\ the projection, and § the largest strong limit cardinal < A.
Define §; (for ¢ < w) by & = § and &;4; = 2%. Let n < w be such that 6, < A < §,41.

Take w-Jonsson functions F and F; (for 1 < n) for A and §; (for ¢ < n), respectively. .



Let X be the set of all z € P\ which satisfies

(1) Nk is an inaccessible cardinal,
(2) zN§¢is astrong limit cardinal cardinal,
-~ (3)  ot(z N &ipq) = 2°4=N) for all 1 < n and ot(z) < 204=N6n),
(4) Ftz and F;I(z N ;) are w-Jonsson functions for  and z N §;, for 4 < n, respec-
ti%rely,
(5) =z Nk is almost z-ineffable,
(6) part*(z N k,z) fails.

By Lemmas 3.1, 3.4, 3.6, 3.7, 3.8, 3.11, and 4.2, it holds that X € p,(NIn,4)*. By
this, since « is 6-ineffable, we have that X € p,(NIn.4)*. Note that, by Lemma 3.2
and (5), it holds that

(7) =z Nk is zN a-supercompact, for all @ € zN [x, ), for all z € X.
Claim 2 V(z,y) e [XP*(ifzné,#yN§é, thenz <y).

Proof of Claim 2 To get a contradiction, assume that there exists (z,y) € [X]?

such that

zNd, #yNb, andnota:%y.,
By (3), it holds that z N § # yNé. Since Fi(y N §)¥ is w-Jonsson, it holds that
|z Né| < |yné|. Since |y N «&|and |y N 6| is strong limit cardinals, we have that
8) 2l <lynéland ynk < |znél
By this, and (7), and‘Lemma, 4.1, it holds that
z N k is z-supercompact.
But this contradicts that part*(z N «, z) fails. QED of Claim 2

We cvom'plete the proof by proving that X € NP:',,\. The proof is divided into two

cases.

Case 1. A =6,.
By Claim 2, it holds that
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V(z,y) € (X (z=<y).

In order t(; show that X € NP}, let fr [X]* — 2. Define a, C Q, (for z € X) by
a; ={t€Q; |t € X and f(t,z) =0}.

Then, by Lemma 3.10, there exists an A C P, such that
VriPA—=PAIze Xnc(r) (a,=ANQ, ). |

Set X' ={z € X |a; = ANQ, }. Note that X’ € NS} ,. It is easy to check that
Viz,y) € [X'0 AP (f(z,9) =0) and V(z,y) € [X"\ AP ( f(z,y) =1).

So, X'N Aor X'\ A is as required.

Case 2 b < A.

Define g, fi: 6 — & (for: <n +1) by

() = the smallest 8 > a such that o is not S-supercompact, if such § exists
)= 0, ‘ otherwise,

fo(a) =the iargést strong limit cardinal < g(«),
firr(a) =25 forall a < k anci i < n.
For any = € X, since ot(:r'ﬂ 6) < g(z N k) < ot(z), it holds that
fo(zN &) = ot(x N 6) and fo(z N k) =ot(z N 6,) < ot(z) < fapr(z N k).
For each a < &, take wf C fu(a) (for ¢ < fu41()) such that
VE <V < funa(a) (w # ).
For each = € X, define 7, and s, by
T iot(zNé,) — z n 6, is the order isomorphism, and
8; = m“wiis (Czn §a). |
To show that X € NP:’A, let f:[X]* — 2. As in the case 1, set
a; = {t e Q;l te X and f(t,z) =0}, for z € X.
Siﬁce X € p.(NIn,p)*, there exiét S C 6, and A C P, such that

X’={a:€X|3$=Sﬂxandax;AﬂQx}eNS:A.
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Claim 3 V(z,y) € [XP (zNé, #yN&, ).

Proof of Claim 3 To get a contradiction, assume that

(z,y) € [X']?and 2N 6, =y N4,.
Note that s, = s,. Set a =z Nk (= yNk), £ = ot(z), ‘77 = ot(y). Since |z| < [y], it
holds that £ < 7. Since N6, = yN,, it holds that =, = m,. By this, since wg # wy,

we have that

- «,,a {3, .
Sp = Mg WG F Ty Wy = 5y

This is a contradiction. | QED of Claim 3
By Claims 2 and 3, it holds that
V(z,y) € [XT (= <y).

So, XN Aor X'\ Ais as a desired homogeneous set for f. a
Corollary 4.4 Let « < A < u. If part*(k, u) holds, then part*(x, ) holds.

Proof Assume that part*(k,u) holds. The case A = y is trivial. We assume that
A < p. By a result of Magidor [9], it holds that & is u-ineffable. Then, by a result of

Johnson [4], it holds that A<* < A+ < u. So, & is A<*-ineffable. So, part*(x, A) holds.

0
5 Normal ultrafilters with the partition property

Concerning the partition property of a normal ultrafilter on P\, Solovay (see Menas
[11]) proved the existence of a normal ultfaﬁlter without the partition property under
the assumption of that the existence of a certain large cardinal greater than x. After
Solovay established this result, Kunen (see Kunen-Pelletier [8]) improved his results,
and proved that the existence of a normal ultrafilter Witﬂout the partition property

implies the existence of a certain large cardinal above «. Ovn'the other hand, Menas

[11] proved that there exist 92" normal ultrafilters with the partition property, under
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the assumption that  is 2**" supercompact. In this section, we prove

Theorem 5.1  If k is A-supercompact, then there exists a normal‘ultarﬁlter on P

with the partition property.

The proof will be done by a similar, but different argment as in the proof of Menas.
We first reduce this theorem to a certain lemma (Lemma 5.4, below). Let U be a
normal ultrafilter on P.\. Denote by My the ultrapower of the universe by U. The

following two lemmas are due to Menas [10, 11].

Lemma 5.2 If & is A-supercompact, then there exists a normal ultrafilter U on P\

such that

My E & is not A-supercompact.

Lemma 5.3 Let U be a normal ultrafilter on P.A. Then, the following (a) and (b)
are equivalent.
(a) U has the partition property.

(b)  There ezists an X € U such that V (z,y) € [X]* (z <y ).

By these results, the next lemma directly follows Theorem 5.1.

Lemma 5.4 Suppose that
(1) My [k & is not A-supercompact.
Then, there exists an X € U such that

(2) =z <y, forall (z,y) € [X]*.

Proof Suppose that U is a normal ultrafilter on P.A which satisfies (1). Let 6 be the
largest strong limit cardinal < A. Define §; (for i < w) by & = 4, and 6;41 = 2%, Let
n < w be such that §, < A < 5n+;. Let F and F; (for i < n) be w-Jonnson functions
for A and é;’s, respectively. Define Xy C P, by, for any = € P4,

z € Xo if and only if
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(3) =« Nk isinaccesible and z N & is not z-supercompact,

(4) ot(zné;)is a cardinal, for ¢ < n,

(5) 2FN&l = |z N 64y, for i < n and |z| < 2I°NAl,

(6) Fit(zné;)* is an w-Jonnson function for x N §;, for 2 <n,

(7) Ftz“ is an w-Jonnson function for z.

Note that X, € U.

Claim 4 V(z,y) € [Xo]* (ifzN 6y FyNé, thenz <y ).

Proof of Claim 4 To get a contradiction, assume that
(z,y) € [Xo]? and N 6, # y N &, and not = < y.
Since y N & is a strong limit cardinal, it holds that y Nk < |z N g|. Since z N & is
z N a-supercompact, for all o € z N [k, §), we have that
z N & is y N a-supercompact, for all a € [z N &,y N k).
By this and Lemma 4.1, since y N & is y N a-supercompact, for all a € y N [x, ), we

have that
z N & is a-supercompact, for all @ € [z N &, 0t(y N §)).

By this, since N & is not z-supercompact, it holds that |y N é] < |z|. Since |y N §] is
a strong limit cardinal, we have that |y N é| < |z N §|. By this and (6), zNé=ynNé.
This implies that z N 8§, =y N §,. This contradicts the assumption. QED of Claim 4

By Claim 4, in the case A = §,, X = X, satisfies (2). So, henceforth, we assume
that 6, < A\. Defineg:k = kand fi: k = s (fori <n+1) by

(o) = the least 8 > o such that o is not S-supercompact, if such § < & exists,
Y=o, otherwise,

fo(e) = the largest strongly limit cardinal < g(«),
fir1(a) = 2file) for ¢ < n.
For each o < &, take (8§ | £ < fop1(@)) such that
5§ C fo(a) and s§ # 57, it £ # 1.
For each ¢ € Xy, define 7, and a, by
7z :ot(x N é,) — &N b, is the order isomorphism,
ay = Ty “s”gf(';). '

Since a, C z N6, for all z € X, there exists an A C 6, such that
X={zeXo|ar=ANnz}eU.
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We claim that X satisfies (2). To get a contradiction, assume that there exists
(z,y) € [X]? such that not z < y. By Claim 4, it holds that z N &, = y N &,.
So, we have that 7, = 7. Set a =zNk (=yNk), £ =ot(z), n = ot(y). Since £ # 1,
we have that s§ # s5. So, ap = 7,“sf = m,“s§ # m,“sy = a,. But, this contradicts
the fact a, = ANz =ANy=a,. I
Define the Mitchell ordering <1 on the set of normal ultrafilters on P\ by
F U if and only if F € My.
Similar to measurable cardinals (see Mitchell [12]), < is well-founded ordering and it

can be defined
o(U) =sup{o(F)+ 1| F U}, for all normal ultrafilter U on P.A.

Using this, Theorem 5.1 can be restated as:
If o(U) = 0, then U has the partition property.
So, the following question is natural.

Question Suppose that U is a normal ultrafilter which does not have the partition
property. How small the value o(U) is?
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