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Lagrange-Good Inversion from Trace
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Absfract

We give the formula for categorical trace of normal functors, and derive the
Lagrange-Good inversion formula from it.

1 Introduction

The purpose of this paper is to give a new proof of the Lagra.nge-Godd inversion
formula. The novelty of our proof is in the use of ideas fostered in theoretical
computer science.

The Lagrange-Good inversion formula is a method to solve certain recursive
equation on formal power series in several variables. As explained in section
two, the formula gives a fixed point of certain operations on formal power series.
The formula is used to compute the coefficients of the compositional inverse of
formal power series in several variables as well as to find the generating functions
related to problems of enumerative combinatorics.

For the case of a single variable, it dates back to Lagrange’s work in the end
of the eighteenth century. Many mathematicians tried to extend Lagrange’s
formula to several variables. After several extensions to specific number of
variables, the general result for arbitrary n variables was settled in Good’s
paper [11]. The formula remains true even if the number of variables is infinite
[7]. Gessel’s paper [9] contains a short history of the formula.

~ There are many proofs of the formula. The proof by Good uses properties of
analytic functions [11] (see also [17]). From the interest in enumerative combi-
natorics, many combinatorial proofs are produced, even in these several years
[5, 7, 9, 18]. De Bruijn verified the formula by induction on the number of
variables.

We give another proof of the Lagrange-Good inversion formula from complete
different perspective. Recently Hasegawa [13, 14] provided the correspondence
between fixed point operators and categorical trace in the sense of Joyal, Street
and Verity [21] in cartesian categories. In this paper, we give a concrete formula
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of the categorical trace in the category where the morphisms are normal func-
tors [10], which are functorial generalization of formal power series. Then we
show that the formula of the trace yields the Lagrange-Good inversion formula
through the correspondence by Hasegawa.

What we want to emphasize is that the machinery needed for the proof has been
developed in theoretical computer science. One of characteristic points of pure
functional programming is that iteration of a procedure is realized by recursive
call of functions. Traditionally such recursive call is interpreted as fixed point
of an operation on programmes. This interpretation, however, endangers the
mathematical foundation of functional programming, since we need an operator,
called a fixpoint combinator, that yields the fixed point for every functional. It
is a difficult problem to find a mathematical structure satisfying the property
that every morphism has a fixed point. This implication leaded Scott to the
discovery that certain continuous lattices satisfy the property [27], and to later
development of domain theory [12] as the mathematical foundation of functional
programming.

Various systems of lambda calculus [2] are upshots of the syntactical features in
functional programming. The normal functor model [10] of lambda calculus is in
some sense a variation of the mathematical models given in domain theory. An
interesting point of normal functors is that they have the same form as formal
power series, though the former are functors into the category of all sets. In
fact, it is easy to see that normal functors are simply a special case of analytic
functors introduced by Joyal as a functorial variation of generating functions in
the context of enumerative combinatorics [18, 19]. As in usual domain theory,
we have an interpretation of the fixpoint combinator as normal functors, thus
in the form of formal power Series.

The construction of the interpretation of the fixpoint combinator is inappropri-
ate to compute the actual form of the interpretation. A more convenient form is
derived from the correspondence between fixed point operators and categorical
traces [13, 14]. Also this result is found in theoretical computer science. We
often write a recursive programme informally a graph where the output is fed
back to the input. Formally the latter is coded in syntax by what is called
the letrec-operator. Joyal, Street and Verity generalized traces in linear algebra
etc. to the context of monoidal categories [21]. One of fascinating features is
that the trace is figured as a graph with feedback, and that proofs of equalities
between formulas containing trace are depicted as intuitive graphical operation
not changing their topologies. Hasegawa proved that the fixpoint operators
satisfying so-called Beki¢’s formula in cartesian categories has a one-to-one cor-
respondence to traces. We may say that this result provides a mathematical
relation between recursive programmes and their intuitive graphic representa-
tions.

Hence, in place of computing fixpoint combinators, we may compute categorical
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traces. The latter turns out to be simpler, if we decompose the lambda calculus
into intuitionistic linear logic [3]. Normal functors give also a model of the
intuitionistic linear logic where the interpretation is quite reminiscent of linear
algebra. Hence, in this model, we may define trace as diagonal sum as usual.
Since what we want to have is a trace in the normal functor model of the
lambda calculus rather than that of intuitionistic linear logic, we must modify
the presentation of trace in an appropriate way. After the modification, we
have a formula of the trace for normal functors, from which a formula of the
fixpoint combinator is derived by Hasegawa’s correspondence. We verify that
the obtained formula yields the well-known Lagrange-Good inversion formula.

We do not claim that our proof is superior to former proofs. What we think to
be remarkable is the close connection between a purely mathematical formula
and ideas in computer science. We omit the proofs of the results. They will be
given in a forthcoming full paper [16].

2 Preliminaries

Lagrange-Good Inversion Formula

First we review the Lagrange-Good inversion formula. Let us consider n formal
power series g;(1,%2,...,2,) in n variables for ¢ = 1,2,...,n over a commu-
tative ring. With a new set of variables z;, 22,...,2,, we are interested in the
system of equations '

1 = z1- fi(x1,%2,...,20)
T2 = z2- fa(®1,%32,...,2p)
Tn = Zn-* fal(z1,22,...,20),

which we write z = 2 - g(z) simply. The Lagrange-Good inversion formula to
find the solution of this equation in z is given as follows.

2.1 Theorem (Lagrange-Good inversion formula) ’

We consider a system of equations ¢ = zg(z) where g(z) is an n-tuple of formal
power series in n variables ¢ = z3,23,...,2,. Moreover, let h(:v) be an arbitrary
formal power series in n variables.

The equations z = zg(z) has a unigue solution = = a(z) in the formal power
series ring. Moreover the formal power series a satisfies the formula

h
det(E -(ﬁrz(f,)(z), 7)) > 2"[2"]h(z)g(z)"
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where v ranges over all multi-indezes and M(z, z) is the square matriz defined
by (2:09i(z)/0zx)ix. Here the notation z7 equals z¥* 25 ... gk~ if the multi-
indez v is (k1,k2,...,k,) and the notation [27]f(z) gives the coefficient of =7
in the formal power series f.

Remark: (i) In order to compute the solution z = a(z) itself, it suffices to put -

h(z) ==z; fori =1,2,...,n.

(ii) The theorem holds for formal power series over an arbitrary commutative
ring. In fact, over an arbitrary commutative semiring, the theorem remains
to be valid. Although the formula involves a determinant that may have a

negative coefficients, the formal power series 1/ det(E — M(a(z),z)) contains

only nonnegative coefficients if we regard the coeflicients of g as indeterminates.

(iii) The theorem remains to hold if h(z) is a formal Laurent series [9], although
g(z) must be formal power series.

The form in the theorem above is not appropriate to compute the solution
z = a(z). For this purpose, we have the following equivalent formula:

h(a(2)) = Z 27[z")h(z)g(z)"” det(E — M(z,z/g(z)))

where the division z/g(z) is componentwise, that is, the i-th component is
z;/gi(z1,22,...,25). To derive this formula, it suffices to replace h(z) in the
theorem by h(z) det(E — M(zx, z)) which is a formal power series over the ring
of polynomials in z.

Remark: The determinant det(E — M(z,z/g(z))) can be written in use of Ja-
cobian as g1 (¢) - - gn(2) X (f1, . - ., fa)/8(21, .. ., zn) Where fi(z1,23,...,%n) =
z;/gi(Z1,22,. ..y Zn).

Employing the Lagrange-Good inversion, we can compute the compositional
inverse of systems z = f(z) of formal power series over a field in the following
form:

fi(z1,22,...,2,) = ' z;(a; + higher degree terms), a;#0

for i = 1,2,...,n. In fact, the inverse £ = f~!(z) should satisfy the equation
z = z-(z/f(z)). By the form of f, the formula z/f(z) turns out to be a
formal power series by the binomial theorem. So, if we put g(z) = z/f(z) in
the Lagrange-Good inversion formula, we can compute the inverse ¢ = f~!(z)
as the solution z = a(z) of the equation z = 2g(z).

PCF and Intuitionistic Linear Logic
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We define system PCF of typed lambda calculus with fixpoint combinator as
well as arithmetic and Boolean operations [25, 24]. The types o of PCF are
given by the following Backus-Naur form:

c = t|o]| o=>o0.

The type ¢ is regarded as the type of natural numbers, and the type o as thé.t
of Boolean values. The terms M are given by the following syntax:

M 2= z | MM | AX2°.M | fixM
| succM | predM | zero? M
| condMMM | t | f | n.

Here z is a variable from a fixed countable set, and n ranges over the set of
natural numbers 0,1,.... The typing rules are obvious and we omit them. We
consider the following reduction rules:

(Az.M)N — M][N/z]

fix M - M(fix M)

succn -+ n+1

predn+1 — n pred 0 - 0

zero’n+1 — t zero? ( — f

condtMN —» M condf MN — N.

We define the intuitionistic linear logic, which is given as a system of typed
calculus [3]. The types A are generated by the following form:

A= a| A®A | I | A—A |4

where a ranges over atomic types. For example, for the system to correspond to
PCF, we may let a be either ¢ or 0. The derivation rules for typing judgements
are given in Tab. 2.2, which defines the terms of intuitionistic linear logic at the
same time.

The reduction rules for the term calculus of intuitionistic linear logic are not
completely established. See [4], for example. It does not matter which ones we
take, for miscellaneous rules. The core rules are the S-reductions given by the
following six:

apply(Az4.e) to f —  e[f/=]

let* be *in f - f
letd®ebez®yin f = fld/=,e/y]
derelict(promote & for £ in f) = flé/F]
discard(promotee for Zin f)ing —+ discard€ing

copy(promoteé'for £ in f)asy,zing — copy€ as 7, in g[c/y,d/z].

In the last rule, we put c to be (promote# for Z in f) and d to be (promote 1 for
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Table 2.2 Term assignment for linear natural deduction

z:Alz:A

I'z:Ale:B
T'F(\z%.e): (A — B)

%:T

F'ke: A AFf:B
I''AF(e® f): (A®B)

'te:(1A)
T I (derelicte) : 4

I'ke:(14)

A, z:(14), y:({A)+ f: B

I'te:(A—B) AFf:A
I'At (applyeto f) : B

T'ke:I AFf:A
I'Atl (letebexin f): A

I'te:(A®B) A z:A y:BF-f:C
T'AF (letebez®yin f): C

I'Fe: (1A) A+ f:B
T, A+ (discardein f) : B

I'y Al (copyeasz,yin f): B

I'ibFei:(14) (i=1,...,n)

z1:(141), ..., 2a:(l4) - f: B

I'y, ..., T'y + (promoteey,...,

en for zy,...,2n in f) : (1B)

Z in f). Here we use shorthands

discarde;,e2,...,ening
copyei,ez,...,en as v, Wing

= discarde in (discard ez in - - - (discard e, in g) -+ )
= copy ey as v1,w; in (copy ez as vz, w2 in
-++(copyen as Vn,wn ing)---)

where in the latter the vector of variables ¥ = vy,vs,...,V, and % = wy,ws,...,

w,, are used.

There is a standard translation of simply typed lambda calculus into intuition-
istic linear logic. A type A = B of typed lambda calculus is translated into
the type !A — B of intuitionistic linear logic. We denote this translation by
A ~ A*. Accordingly, we have the translation of typing judgements as

ZliA]_,:Dz:Az, e

, TntAp, F e:A |

~ z1:1A7, 291143, ..., zn:1A;  e*:B*
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for an appropriate translation e ~+ e* of terms (to be precise, definition e*
depends also on the environment).

Normal Functors

Girard introduced normal functors for the purpose of giving models of various
systems of lambda calculi [10]. It turns out that normal functors are a special
case of analytic functors in the sense of Joyal [19]. Namely the flat species
[22] correspond to the normal functors. So they obtain the same concept from
entirely different motivations. In [10], analytic functor is used as an alias of
normal functor. To avoid confusion, we use the name of normal functors only.

2.3 Definition
Let C be a category.

A normal functor from C to Set is a coproduct ), ; Set(Xj;,-) of representable
functors where I is a small set and all X; are finitely presentable objects [1] of
C. :

Remark: In this paper, we deal with only the case where the category Cis of
the form Set” for a set A.

There are three equivalent characterizations of normal functors into Set. For
one of the characterizations, we need the following definition.

2.4 Definition

A normal form of an object A in a category C is an initial object X — A in the
slice category C/A. If every object has a normal form, the category C fulfills
the normal form property.

2.5 Theorem
For a functor f : Set? — Set, the following three conditions are equivalent:

(i) £ is a normal functor.

(ii) f preserves all filtered colimits and all pullbacks (including mﬁmte ones).

(i) The category el(f) of elements enjoys the normal form property. Moreover,
X is a finitely presentable object for every normal form (X z)

Remark: In [10], it is assumed, by definition, a normal functor preserves equal-
izers as well. This condition, however, follows from the preserva.txon of filtered
colimits and pullbacks.
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By tupling normal functors into Set, we can define also a normal functor from
Set* to Set® for sets A and B. Namelz a normal functor f from Set to Set®
is a family of normal functors f, : Set” — Set where b ranges over the set B.

2.6 Definition (of CAAccnr)
The (large) category CAAccyy has categories in the form Set# for some set
A as objects and all normal functors as morphisms.

Remark: CAAcc is an acronym of complete atomic accessible category. The
justification of this terminology will be given in the full paper [16].

A cartesian natural transformation is a natural transformation » : f — g subject
to the condition that the square diagram

fC 2+ gC

o e

D 5~ 9D

is a pullback for every morphism C %3 D. We define [Set*, Set®]n as the cat-
egory having all normal functors from Set? to Set?® as objects and all cartesian
natural transformations as morphisms.

A finitely presentable object of Set# is identified with a finite multiset of mem-
bers of A. If A is a finite set n, a presheaf Z in Set™ is regarded as a tuple
(Zoy Z1y. ..y Zp—-1) of sets.. If a finitely presentable object of Set™ is given as a
multiset v containing 0, 1,...,n — 1 with multiplicity m¢,m1,...,m,—-1 respec-
tively, then the value Set™(v, Z) is exactly a monomial Z,™°Z,™* ... Z, ™.
For a general set A, in the same way, we obtain monomials of card 4 variables.
So, as a sum of these monomials, a normal functor from Set to Set is a formal
power series in card A variables.

2.7 Theorem ,

Category CAAccnr is cartesian closed by equivalence [SetAt? SetClyp =
[SetA, Setexprc]NF where exp B denotes the set of all finite multisets of mem-
bers of B. :

2.8 Proposition

Let f : Set? x Set®? — Set? be a binary normal functor, that is, @ normal
functor on SetAt?

There is a normal functor pf : Set® — Set® where (uf)(v) is the object part
of an initial algebra of the endofunctor f(v,-) for each presheaf v € Set4.



We may write the object part of an initial algebra uz. f(z) in place of uf.

3 Fixpoint, Trace, and Inversion

Normal Functor Model

We give a model of PCF in the category CA Accyr. Types are interpreted as
sets by the following definition:

[ = w
fol = 2
[0 = 7] = explo] x [7]

where w is the set of natural numbers and 2 is the set {0,1}.

For the interpretation of a term, we define it as a function of the pairs of
environments I' = #;:04, ®2:03, ..., Tp:0, and a term M : 7 such that
I' M : 7 is a correct typing judgement. The interpretation [M]; is a normal
functor from Set#1*42++4n 44 Set? where 4; = [0;] and B = [r]- The
definition of [M]z is by induction on construction of terms. What is the most
interesting is the interpretation of the fixpoint combinator. But we start with
easy ones.

The interpretation of the fragment of ordinary typed lambda calculus is induced
from the structure of CA Accny as a cartesian closed category. The numerals
of type ¢ are interpreted as the singletons of the corresponding numerals in w.
Namely, [n] for each numeral n is the singleton multiset {n}, which means the
presheaf in Set“ carrying n to 1 and all other members of w to §. The operation
succ is interpreted as presheaves in Set*™“*“ taking the value 1 for [{n},n+1]
and taking the value @ for all other members. In other words, [succ] is the
normal functor from Set“ to Set” (so w-indexed family of formal power series)
satisfying that the n-th component is simply monomial z™*!. Likewise we can
define the interpretation of all Boolean and arithmetic operators.

What remains is the interpretation of the fixpoint combinator. It is given by
initial algebra construction. Applying Prop. ??? to the evaluation, for each
set X, we have a normal functor x from Set®™PX*X into Set® carrying each
normal functor f : Set® — Set* to the object part of an initial algebra uf.

3.1 Theorem ' , ’
The model of PCF in category CA Accnr is sound. Namely, if M — N, then
[M]z = [N]z as normal functors.
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Trace

Categorical trace is introduced by Joyal, Street, and Verity as a generalization of
several concepts including the usual trace in linear algebra [21]. It is given as an
operation satisfying natural axioms of trace in a balanced monoidal categories
[20]. We need only symmetric monoidal categories and, indeed, our main interest
is in the case that the monoidal structure is given by the cartesian product.

3.2 Definition ‘
A traced monoidal category is a symmetric monoidal category endowed with the
family of operations

Aex -LhyBoXx
AY 4B

subject to the following conditions:

(vanishing)  trff = f for AQI L3 BoI
Xt f) = r¥®Y f  for A®X®Y -LBeXQY

(superposing) trX(1®f) = 1@trXf for A®X 4yBeoXx

(yanking) tr¥c = 1 - for XX -5 XX

(left- trX(f(g® 1)) frAoX -LHrBoX
tightening) = (tr*X f)g and A' -5 A

(right- trX((g ® 1)f) CforA®X -LHrBe X
tightening) = g(te* f) and B -2 B’

(sliding) trX (1 ® 9)§) for A X L3 BoY
= tr¥ (f(1®g)) andY -43 X

where ¢ = cx,x is the symmetry. We onﬁtted canonical isomorphisms, which
should be clear from the context. For instance, the right hand side of the first
rule of vanishing should be pgl o fopa with canonical isomorphisms p4 : A®I —
A and PB-

The axioms of traced monoidal category are simulated by graphs. A morphism is
drawn as a directed graph where the vertices are labeled by primitive morphisms
and the edges are labeled by objects. For example, the sliding rule and the
yanking rule amount to the following equalities between graphs:

A B A B

f 7y - f

X: 71 : = Cg—i— :Y
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3
We consider the traced monoidal categories where the monoidal structures are
cartesian products. For cartesian product, there are diagonal maps Ay : A —

A x A and unique morphisms !4 : 4 — 1 to the terminal object. We denote A4
diagrammatically by

A
e
A

3.3 Definition
A fizpoint operator in a cartesian category is an operation ( )

Axx-Lix
e i
AL x
of morphisms, natural in A and dinatural in X this operat*on subject to the
condition that f1 is equal to the composite 4 24 A x A Xh Axx -4y x

3.4 Definition

We consider a ca.rte51an category with fixpoint operator (-)f. Given two mor-
phlsmsAxXxY—-)XandAx.XxY——>Y weputh AxX - X as
A x X Baxx, AxXxAxXM_"L;AxXxY—-—}thereAlsthe
diagonal

- Beki¢’s formula is the equality ( f, g)t = (ht,gt(14,h")) between morphisms
from Ato X xY.

Remark It would be easier to understand, if we informally write h as h(a,z) =
f(a,z,g%(a,z)) where a and z are parameters from 4 and X.

M. Hasegawa proved that, in a cartesian category, giving a trace is equivalent
to giving a fixpoint operator satisfying Beki&’s formula [13, 14].

3. 5 Theorem
Let C be a cartesian category

The category C is a traced cartesian category iff C has a ﬁ:cpomt operator sat-
isfying Bekié’s formula.

Model of Intuitionistic Linear Logic
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A model of intuitionistic linear logic is given by the category C fulfilling the
following structures: The multiplicative fragment ®, I and —o are interpreted by
a symmetric monoidal closed category [23]. The exponential ! is interpreted as a
~ symmetric monoidal functor [8], which is given as a triple (!, $, ¢o) where!: C —
C is a functor, !4 ® !B 4% !(A ® B) is a natural transformation, and I £% II
is a morphism. To interpret discard and copy, we assume that each object of the
form !A is endowed with a commutative comonoid structure (!4, e4,d4) where
14 24y T and !4 24 14 ®!4 are monoidal natural transformations. To interpret
derelict and promote, we assume that the functor ! takes part of the comonad
(!,€,6) where !A =4 4 and !4 24, 14 are monoidal natural transformations.
Moreover, we need several coherence conditions to make this model sound. See,
for example, [4].

We modify the model of PCF in the category CAAccyr to construct a model
of intuitionistic linear logic. In this model, morphisms should interpret linear
terms. So we need the following definition:

3.6 Definition :

A linear normal functor from Set? to Set? is a functor preserving all pull-
backs and all colimits. The category CA Accrnr of complete atomic accessible
categories and linear normal functors is induced as a subcategory of CA Accyr.

Alternatively, linear normal functors are those normal functors Set4 -L+ Set?
where, for every normal form (X,a) in el(f;) for a member b € B, the under-
lying finitely presentable object X € Set“ corresponds to a singleton in exp A.
Hence, if we denote by [Set;A,SetB Junr the category of linear normal func-
tors and cartesian natural transformations, we have the categorical equivalence
[Set4, Set®|Lnr = SetA*5.

A presheaf in Set4*® is regarded as a matrix with the columns indexed by
the members of A and the rows indexed by the members of B such that each
entry is a set. If we have two matrices M € SetA*® and N € Set®*C, the
composite of the corresponding linear normal functors is represented by mul-
tiplication of matrices NM where the entry of index (a,c) € A x C is the set
> e N[b,c|M[a,b]. Here coproduct in Set4*C is denoted by Y and cartesian
product by concatenation.

We show that the category CAAccynr forms a model of intuitionistic linear
logic. First we define the symmetric monoidal closed structure. Tensor of Set4
and Set? is given by Set4*®2 and unit I by Set! where 1 is a singleton. The
right adjoint of tensor is given also by product as Set? —o Set? = Set4*5,

The monoidal functor to interpret the exponential ! is defined as follows: On ob-
jects, 14 is the set exp A of all finite multisets of members of A. On morphisms,
we define the following operation associating the matrix pM € Set®*? AxexpB
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a matrix M € Set?*®, First we note the categorical equivalence [Set*, Set]xp
= Set**P4. The mapping g — g o tM defines a functor from [Set4, Set]nr to
[Set®,Setlnr where *M is the usual transpose of the matrix M. This func-
tor is linear, so it determines a linear normal functor pM from Set**P4 to
Set™®®. By definition, it is obvious that p is functorial, preserving identities
and composition. This construction pM appears in the tensor representation
in a polynomial ring [26].

The natural transformations involved in linear category are given as the inverse
image f* of appropriate function f. The inverse image f* : Set® — Set4 is a
linear normal functor, and its matrix M € SetP*4 gsatisfies the condition that
M{b, a] equals 1 if f(a) = b; otherwise equals 0. For instance, the morphism @ :
1A®!B — !(A® B) is the functor f* in [Set®™P4XexPB getexp(4xB)) 0 corre-
sponding to the function exp(4x B) —L+ exp Axexp B carrying {(a1, b1), (a2, b2)
y++-5{(@n,bn)} to the pair of {a;,az,...,a,} and {b1,bs,...,b,}.

Trace of Normal Functors

As observed above, the model of intuitionistic linear logic has similarity to linear
algebras, although the entries of matrices are sets rather than numbers. So we
can define the trace of a linear normal functor Set? -£; Set4 by the diagonal
sum Y, 4 M|[a, a] where M is the matrix in Set“*# associated to f. With this
definition, the category CAAccinry of linear normal functors turns out to be a
traced monoidal category.

However, what we want to have is the trace in the category CAAccyr of
normal functors. A normal functor Set? — Set4 corresponds to a matrix
in Set®*®4*4, We cannot take the diagonal sum, since this is not a square
matrix. In the following, we show how to modify the trace of linear normal
functors to the trace of normal functors.

A straightforward idea is the followin§. If we have a normal functor 4 L5 4,
that is, a linear normal functor !A Zo A, we have the promotion !4 25 14,
corresponding to a square matrix in Set*P4***P4_ Hence we can take the
diagonal sum.

More generally, if a normal functor in [SetA"',X ,SetB+X |nF is given, we may
write it a pair of 1A ® !X % B and !4 ® !X % X, employing the terminology
of intuitionistic linear logic. Promoting the latter, we have pf : 14 ® !X —o 1X.
Hence h®pf preceded by canonical morphism from !A®!X t0 !AQ! X ®!4A®!X
yields a linear map from !4 ® !X to B ® !X. We define o (f) as the diagonal
sum of this linear map with respect to !X. In the formal power series notation,
this amounts to the following definition.
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3.7 Definition (of a‘h( )
Let Set4tX L3 Set*X and Set4*X -, Set® be normal functors.

The normal functor o (f) from Set to Set? is defined by Y [z7]h(a, z) f(a, z)”
where the summation is over all vy € exp X.

Unfortunately, this o (f) does not satisfy the axioms of traced monoidal cate-
gories. So we “normalize” it as in the following definition. We verify that, with
this 75, (f), the category CA Accyr turns out to be a traced cartesian category.

3.8 Deﬁmtlon (of 7 (£))
Let Set4tX —b; Set® and Set4t* L) Set* be normal functors.

The formal power series 7, (f)(a) is defined by on(f)(a)/a1(f)(a).

Let R = Z[f] be the ring of all polynomials over integers where the mdeterm1-
nates are all coefficients of f. If g is of the form z - f(a,z) with z € SetX, the
denominator

51(9)(a,z) = ), 2"[8"1f(a,2)"

yEexp X

of 7h(g)(a, z) is of the shape 1 + P(a,z) where P(a, 2) is a formal power series
in the ring R[[a, z]] with no constant term. Noticing the formal power series of
~ this form is invertible for multiplication, the expression 7,(g)(a, 2) makes sense
as an element of the ring R[[a, z]] (supposed the coefficients of h(a, z) are finite).
We postpone the verification that 7,,(g)(a) is meaningful for all g. This will be
proved by observing that only the polynomials of non-negative coeflicients in R
are involved. For the moment, we deal with only the case where g is of the form

zf (a,'z)

Notation: We write 7. f(a,z) = m(f)(a,z) in case that Set?™* -2, Set”

is the projection. This operator 7 binds the variable succeedmg, so the a- -

convertible expressions are identified.

3.9 Lemma
Let SetA+tX b, Set® and Set4tX L3 Set* be normal functors.

The equality 4(f)(a,2) = h(a, T2. f(a,z)) holds.

Employing the new notation, the axiom of traced monoidal category translates
into the following equations: First of all, tightening and superposing are direct
consequences of Lemma 3.10. The rest turns out to be
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(vanishing)  7(z,9). (f(2,4), F(z,3))
' = (rz. f'(z), y. F(rz. f'(z), y))

where f'(z) £ f(z, 'ry F(z,y))
(sliding) 9(7y. f(g(y))) = 72.9(f(z))
(yankmg) TY. T =

3.10 Theorem

Let f : SetAt* 5 Set* be a normal functor.

7. f(a,z) coincides the initial algebra pz. f(a,z). In particular, Tz. f(a,z) is
a normal functor.

As a consequence of this theorem, we see that 73, (g) is well-defined for all normal
functors h and g.

3.11 Theorem
The category CA Accnr is a traced cartesian category where the trace is given

by m(f)-

Lagrange-Good Inversion

As explained in the second section, the Lagrange-Good inversion is the formula
to compute the fixed point £ = a(z) of the operation of the form zg(z).” By
Thm. 3.11, the fixpoint a(z) = fY(z) of f(z,2) is given by rz. f(z,z). By
computing h( f1(2)) = T (f)(2) for f(z,z) defined by zg(z), we have the formula

2, 27[a7h(2)g()"
3, @ g(z)

This formula can be regarded as an alternatwe form of the Lagrange-Good
inversion.

h(fi(z)) =

Applying Jacobi’s residue formula, we can verify this formula is equal to the
standard Lagrange-Good inversion formula. We recall Jacobi’s residue for-
mula. Let F;, F3,...,F, be formal Laurent series in n variables of the shape
Fi(@1,22,...,Zp) = @iy b1zab3 .. g Yin 4 (higher degree terms). Then, for an
arbitrary Laurent series h(z;,23,...,2,), the formula

B(FI:F:!, n))
3(:«71,2:2,...,:5,,)

hoids, where the residue Res(f(z1,%2,...,%5)) is defined as the coefficient of
(z1z2---2")~" in Laurent series f. Following (9], the equality 3. z7[z"]g(z)” =

det(b;j) Resh(z) = Res (h(F(m))
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det(E — M(z, f1(2)))~" is derived from Jacobi’s residue formula. See the full
paper for the detail. Therefore the standard Lagrange-Good inversion formula

h(f!(2) e
det(E——M(z, i) Z’:z"'[m"]h(m)g(w) :
is derived. '
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