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1. INTRODUCTION

In this note we will give a survey of complexity theory and bounded arithmetic
for computations within polynomial time. Nowadays, complexity theory has a lot
of branches and it is almost impossible to cover all of them in this

$\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{v}\mathrm{e}.\cdot \mathrm{y},\mathrm{s}\mathrm{o};|!\mathrm{W}\mathrm{e}.\mathrm{w}\text{・}$

ill
concentrate on the following topics.

(1) Basic notions and results of $\mathrm{A}\mathrm{C}/\mathrm{N}\mathrm{C}$ hierarchy and other circuit classes.
(2) Recursion theoretic characterization of complexity classes
(3) Bounded arithmetic for classes between constant depth and logarithmic

depth circuits
The $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ below PTIME are often called truly feasible, and most works

in this area are done extensibly on classes $AC^{0}\subset TC^{0}\subseteq NC^{1}\subseteq L\subseteq NL\subseteq AC^{1}$

and related classes. These classes are located on the lowest level of the $\mathrm{A}\mathrm{C}/\mathrm{N}\mathrm{C}$

hierarchy. Despite a lot of efforts, none of these classes are known to be distinct
(though widely believed so) except that the lowest inclusion is proper. These two
classes are separated by the parity function and the result, which is due to Furst
Saxe and Sipser [9], is one of the most important result in the complexity theory.

2. OVERVIEW OF COMPLEXITY CLASSES BELOW $\mathrm{P}$

2.1. Definitions and basic notions. First we give basic notions. We treat func-
tions and sets of both natural nunbers and binary strings. Numbers are often iden-
tified with binary strings by considering their binary expansions and conversely,
binary strings are identified with corresponding natural numbers. The set of binary
strings is denoted by $\{0,1\}^{+}$ and binary strings with length $n$ by $\{0,1\}^{n}$ . For a
natural number $x$ let $|x|$ be its length in binary. For any complexity class $C$ we
mean a class of functions and sets (predicates) are identified with their characteristic
functions.

A circuit is a directed acyclic graph with each node labeled by either $x_{1},$ $x_{2},$ $\ldots$ , $x_{n}$ ,
$\wedge,$ $\vee,$ $\neg$ . Internal nodes are called gates and labeled by either $\wedge,$ $,$ $\neg$ . Nodes with-
out input edges are called input and labeled by one of $x_{1},$ $x_{2},$ $\ldots$ , $x_{n}$ . The size of a
circuit is the number of gates and the depth is the length of the longest path in it.
The fan-in of a gate is the number of input edges and the fan-in of the circuit is the
maximum of fan-in of gates in it.

We assume that every circuit has only one output so that it computes a predicate.
We say that a circuit family $C_{1},$

$\ldots$ , $C_{m}$ computes a function $f:\{0,1\}^{n}arrow\{0,1\}^{m}$

if its bitgraph is computed by each circuit $C_{i}$ . Or equivalently, putting all $C_{i}’ \mathrm{s}$

altogether yields a multi-output circuit that computes $f$ . Hence we can assume
that any finite function $f:\{0,1\}^{n}arrow\{0,1\}^{m}$ is computed by a single circuit.

Deflnition 2.1. A function $f$ : $\{0,1\}^{+}arrow\{0,1\}^{+}$ is computed by a circuit family
$\{C_{n}\}_{n\epsilon\omega}$ if for all $n\in\omega,$ $f\lceil_{n}$ ($f$ restricted to the set $\{0,1\}^{n}$) is computed by $C_{n}$ .

Definition 2.2. Let $i\geq 0$ . $AC^{:}$ is the set of functions which are computed by some
circuit family of $o((\log n)^{i})$ depth, $n^{O(1)}$ circuit of unbounded fan-in. $NC^{i}$ is defined
in the same way except that fan-in is limited to 2.
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The following is readily proved.

Proposition 2.1. For all $i\geq 0_{f}NC^{i}\subseteq AC^{i}\subseteq NC^{i+1}$ .
Proof. The first inclusion is trivial. For the second one note that unbounded fan-in
and (or) gates with $n$ inputs can be simulated by a fan-in 2 circuit with depth
$\log n$ . $\square$

The above definition of circuits, however, brings us to an unwanted situation,
namely, there exists a predicate in $AC^{0}$ which is non-recursive. This is seen as
follows: let $A\subset\omega$ be a non-recursive set and define a function $f$ : $\{0,1\}^{+}arrow\{0,1\}^{+}$

by
$f(x)=1\Leftrightarrow|x|\in A$ .

Then each $f\lceil_{n}$ is computed by either $0$ or 1. But $f$ is non-recursive since otherwise
$A$ can be decided using the algorithm for $f$ .

To avoid such a situation we introduce a notion of uniformity.

Definition 2.3. Let $\{C_{n}\}_{n\epsilon}\omega$ be a circuit family. Direct Connection Language
$(DCL)$ of $\{C_{n}\}_{n\epsilon\omega}$ is the set

{ $(a,$ $b,$ $l,$ $\mathrm{o}^{n})$ : $a$ is the parent of $b$ in $C_{n}$ and $l$ is the label of a}.
$\{C_{n}\}_{n\epsilon\omega}$ is $U_{B}$ . -uniform if its $DCL$ is in DLOGTIME.

Intuitively, a circuit family is $U_{E}$ .-uniform if there exists a DLOGTIME algorithm
that given a circuit $C$ , determines whether $C$ is in the circuit family. In the following,
we assume that all circuit classes are $U_{E}$ .-uniform.

There are various versions of uniformity, e.g. logspace uniformity, P-uniformity
and so on. Further discussion on this matter can be found in Johnson [16].

As stated in the introduction the lowest level of inclusion in $\mathrm{A}\mathrm{C}/\mathrm{N}\mathrm{C}$ hierarchy is
proper:

Theorem 2.2 ( $\mathrm{F}\mathrm{u}\mathrm{r}\mathrm{s}\mathrm{t},\mathrm{s}_{\mathrm{a}}\mathrm{X}\mathrm{e}$ and Sipser [9]). $Parity\not\in AC^{0}$ . Hence $AC^{0}\subset NC^{1}$ .
Chandra, Stockmeyer and Vishkin [3] introduced the notion of constant depth

reducibility and classified various functions under this reduction.

Deflnition 2.4. Let $f$ and $g$ be functions. $f$ is $AC^{0}$ reducible to $g(f\leq_{AC^{0}}g)$ if
there exists a $AC^{0}$ circuit family with additional gates computing $g$ that computes
$f$ .

$f\equiv_{AC}0g\Leftrightarrow f\leq_{A}c^{\circ}g\wedge g\leq AC^{0}f$ .
Deflnition 2.5.

BinaryCount $(x1, \ldots , x_{n})$ $=x_{1}+\cdots x_{n}$

$Threshold_{n}^{\mathrm{t}}(x_{1}, \ldots , x_{n})$ $=1$ iff $x_{1}+\cdots x_{n}\geq k$

Theorem 2.3 (Chandra, Stockmeyer and Vishkin [3]).

Parity $\leq_{AC^{\mathrm{O}}}$ BinarCout $\equiv_{AC^{\mathrm{O}}}$ Threshold $\equiv_{AC^{\mathrm{O}}}$ Multiplication.

The latter three functions give a characterization of an important class.

37



Definition 2.6. $TC^{0}$ is the class of functions which are computable by some con-
stant depth polynomial size circuits with additional threshold gates.

Corollary 2.4. BinaryCounb, Threshold and Multiplication are complete for $TC^{0}$

under $AC^{0}$ reduction.

We will concentrate on classes between $AC^{0}$ and $AC^{1}$ .
2.2. Some results on logspace classes.

Definition 2.7. Let $L$ (resp. $NL$) be the class of functions which are computed
by some logarithmic space bounded deterministic (resp. nondeterministic) Turing
machine.

Remark 2.1. A function is computed by a nondeterministic Turing machine if its
bitgraph is computed by the machine.

Proposition 2.5. $NC^{1}\subseteq L\subseteq NL\subseteq AC^{1}$ .
We will state two theorems on the classes which was defined above (and also some

relating classes). The first one is by N. Immerman.

Theorem 2.6 (Immerman [10]). $NL$ is closed under complement; $i.e$ . if $A\in NL$

then $A^{\mathrm{c}}\in NL$ .
So co-NL $=NL$ and even the logarithmic hierarchy collapses to $\mathrm{N}\mathrm{L}$ .
To state the second result, we give some additional definitions. Let RL be the

class of functions computed by some logspace bounded probabilistic Turing machine.
SC is the class of functions which are computed by a $n^{O(1)}$ time and $(\log n)o(1)$ space
bounded Turing machine. Then N. Nisan showed

Theorem 2.7 (Nisan [21]). $RL\subseteq SC.$

2.3. A new hierarchy inside logarithmic depth. In this subsection, we provide
a framework for the investigation of the fine structure of computations between $AC^{0}$

and $AC^{1}$ by considering circuits with $\log^{\{i)}n=\log(\cdots(\log n))$ depth.
Define the iterated logarithmic function $\log^{(i)}n$ by $\log^{(1)}n=\log n$ and $\log^{(i1)}n+=$

$\log(\log(i)n)$ .
Definition 2.8. For $i\geq 1$ . $LD^{i}$ is the class of functions which are computable by
$n^{O(1)}$ size, $(\log^{(i1}n)+)\mathit{0}_{(1})$ depth unbounded fan-in circuits. $MD^{i}$ is defined as $LD^{i}$

but with the additional threshold gates.

We can also define similar classes using fan-in 2 gates. However, in defining these
classes, we should be more careful since merely replacing unbounded fan-in with
fan-in two would yield classes which do not (known to) include $AC^{0}$ . Hence we
avoid such an inconvenience by defining as follows:

Definition 2.9. $ND^{i}$ is the class offunctions defined as $LD^{i}$ but with the additional
assumption that every path from input to output contains only constantly many
unbounded fan-in gates (and other $gate\mathit{8}$ are all fan-in two).
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We have a natural analogy between $AC^{i}/NC^{i}$ and $LD^{i}/ND^{\mathfrak{i}}$ , however it might
not be the case (or at least hard to show) that $LD^{\mathfrak{i}}\subseteq ND^{j}$ or $ND^{i}\subseteq LD^{j}$ for any
$i,$ $j\in\omega$ .

By the definition the following inclusions trivially holds.

Proposition 2.8. For all $i\geq 1$ ,
(1) $LD^{:}\subseteq MD^{i}$

(2) $AC^{0}\subseteq LD^{i},$ $ND^{i}\subseteq AC^{1}$ and $AC^{0}\subset MD^{i}\subseteq AC^{2}$ .
Proof. (1) Trivial.

(2) The first one is trivial. For the second one, Note that threshold gates can
be realized by $NC^{1}$ circuits. This implies $MD^{i}\subseteq AC^{2}$ . $AC^{0}\subset MD^{i}$ is
implied by the fact that the parity function is not in $AC^{0}$ (cf. Furst Saxe
and Sipser [9].)

$\square$

Remark 2.2. Since $AC^{0}\neq AC^{1}$ , either $AC^{0}\neq LD^{i}$ or $LD^{i}\neq AC^{1}$ holds for some
$i\in\omega$ . The same thing also holds for the class $ND^{i}$ .

Immerman [11] showed the following alternative characterization of circuit classes
which is readily applied to our case:

Definition 2.10. A Concurrent Random Access Machine (CRAM) is a parallel
machine model which has processors each of which has a local memory. CRAM also
has a global memory which can be accessed from any $proce\mathit{8}sor\mathit{8}$ . There are several
methods in writing to the global memory in order to avoid write conflicts. Here we
choose the PRIORITY model: there is a linear ordering on the processors, and the
minimum numbered processor writes its value in a concurrent write.

There are two sources to measure the complexity of CRAMs, time and number
of processors. In the following we treat only CRAMs with polynomially number of
$proce\mathit{8}sorS$ . Let

$CRAM[t(n)]=$ { $A\subseteq\{0,1\}^{+};$ $A$ is determined by some CRAM with time $t(n)$ }.
Theorem 2.9 (Immerman). For all polynomially bounded and first order con-
structible $t(n)$ ,

$CRAM[t(n)]=AC[t(n)]$ .
Corollary 2.10. For $i\geq 1,$ $LD^{i}=CRAM[(\log^{(+)}n)i1O(1)]$ .

On the other hand, the class $ND^{i}$ is ch$\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{C}\mathrm{t}$

-

$\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{e}\mathrm{d}$ using the following modification
of alternating Turing machines.

Definition 2.11. An oracle alternating Turing machine (OATM) $M$ is the alter-
nating $TM$ which has three kinds of states: universal, existential and query states,
and has an additional oracle tape. The behavior of $M$ is just as that of $ATM$ in
either universal or existential states. On query states $M$ asks query to an oracle on
the string which $i_{\mathit{8}}$ written on the oracle tape.
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The computation of an OATM is expressed as a tree. A computation of an OATM
is a path in its computation tree.

Let $Q(n),$ $S(n)$ and $T(n)$ be functions and let $\mathbb{C}$ be some complexity class.
$OATM[s(n), \tau(n), Q(n), \mathrm{C}]$ is the class of functions which are computed by some

OATM $M$ with time $T(n)$ , space $S(n)$ and in each computation asks queries at most
$Q(n)$ times to some oracle $A\in \mathrm{C}^{\backslash }$ .

The following is proved in a similar manner as in Ruzzo [23].

Theorem 2.11 (Kuroda). For $i\geq 1$ ,

$ND^{i}=OATM[o(\log n), (\log^{i+1}n)o(1), o(1), Ac^{0}]$ .

$AC^{0}-TC^{0}-NC^{1}-L$ $-NL$ $-AC^{1}-AC^{2}$

$\backslash$

FIGURE 1. Hierarchy inside logarithmic depth

3. WEAK RECURSION AND COMPLEXITY

A. Cobham characterized the class $\mathrm{P}$ using a weak form of recursion scheme called
bounded recursion on notation (cf. [22]). This characterization (a.k.a. function al-
$\mathrm{g}\mathrm{e}\mathrm{b}\mathrm{r}\mathrm{a})\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{n}\mathrm{e}\mathrm{d}$ out to be useful in defining a formal proof system whose derivations
corresponds to polynomial time computations when S. Cook [7] defined the equa-
tional system $PV$ by utilizing it. Afterward, this issue became one of the main
areas in complexity theory. Among all, P. Clote studied extensively on this subject
and gave characterizations for classes such as $AC^{0},$ $AC^{i}$

)
$NC^{i}$ and so on.

3.1. Definitions and known results. In general, a function algebra are define
as the closure of small number of functions (initial functions) over several functional
operations which produce new functions from the previously defined ones. To illus-
trate this let us first recall the definition of primitive recursive functions. That is,
a function is primitive recursive if it is in the smallest class containing $Z(x)=0$ ,
$S(x)=x+1,$ $P_{n}^{\mathrm{k}}(x_{1}, \ldots , x_{n})=x_{k}$. and closed under composition and the following
primitive recursion scheme:

$f(0,\vec{y})$ $=g(\vec{y})$

$f(x+1, yarrow)$ $=h(x,\vec{y}, f(x,\vec{y}))$ .
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The choice of initial functions, as well as recursion schemes, varies according to the
class in concern. To define weak classes below $\mathrm{P}$ , we need to add more functions since
the recursion scheme we take is much weaker than primitive recursion. Throughout
the note we shall use the following initial functions:

Deflnition 3.1. INITIAL is the set of functions which consists of:
$Z(x)=0,$ $P_{k}^{n}$. $(x1, \ldots , x_{n})=X_{k},$ $S_{0}(X)=2x,$ $s_{1}(X)=2x+1$ ,
$|x|=\lceil\log_{2}(X+1)\rceil,$ $Bit(X, i)=\lfloor x/2^{i}\rfloor mod2,$ $X\neq y=2^{\}x|\cdot|y|}$ .

Some of these functions are unnatural as a number-theoretic functions. Never-
theless, these functions seems more natural if we identify numbers with those binary
representations. For example, $s_{0}$ and $s_{1}$ are the operation of concatenation of $0$ or
1 to $x$ .

The definition of PTIME functions by Cobham is as follows:

Definition 3.2. A function $f$ is defined by bounded recursion on notation $(BRN)$

from $g,$ $h_{0},$ $h_{1}$ and $kif$

$f(0,\vec{y})$ $=g(y)arrow$ ,
$f(2x,\vec{y})$ $=h_{0}(x,\vec{y}, f(x, yarrow))$ , if $x\neq 0$

$f(2x+1,\tilde{y})$ $=h_{1}(x, yfarrow,(x, y)arrow)$ .
provided that $f(x, y)\sim\leq k(x,\vec{y})$ for all $x,$ $yarrow$.
Theorem 3.1 (Cobham). The class of polynomial time computable functions are
the smallest class containing INITIAL and closed under composition and $ERN$ op-
erations.

let us turn to weaker classes. To begin with, we state the function algebra for
$AC^{0}$ .
Definition 3.3. A function $f$ is defined by concatenation recursion on notation
$(CRN)$ from $g,$ $h_{0},$ $h_{1}$ if

$f(0, y)\wedge$ $=g(\vec{y})$ ,
$h(2x, y)\sim$ $=s_{h_{\mathrm{o}(}})(\infty,\vec{y}f(x,\overline{y}))$ , if $x\neq 0$ ,

$h(2x+1,\vec{y})$ $=s_{h_{1}(}\alpha,\vec{y})(f(x, y\gamma)$ .
Theorem 3.2 (Clote [4]). $AC^{0}$ is the smallest class containing INITIAL and closed
under composition and $CRN$ operations.

Combining Corollary 2.4 and Theorem 3.2 we also obtain the characterization
for $TC^{0}$ .
Corollary 3.3. $TC^{0}$ is the smallest $clas\mathit{8}$ containing INITIAL and multiplication
and closed under composition and $CRN$ operations.

J. Johannsen [14] gave a function algebra for Constable’s class $K$ based on Theo-
rem 3.2 and proof theoretical argument which will be discussed in the next section.
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Deflnition 3.4. A $hnCti_{\mathit{0}}nf$ is defined by weak sum (resp. product) if

$f(x, \vec{y})=\sum_{0i=}^{|x|}g(i, y)arrow$ ( resp $i= \prod_{0}^{|x|}g(i,\vec{y})$ ).

Definition 3.5 (Constable). The $cla\mathit{8}sK$ is the smallest class of functions con-
taining INITIAL, addition, subtraction and multiplication and closed under compo-
sition, weak sum and weak product.

Theorem 3.4 (Johannsen). The $cla\mathit{8}SK$ is the smallest class containing INI-
TIAL, multiplication and integer division and closed under composition and $CRN$

opemtions.

The computational complexity of the class $K$ was quite unknown, and Theorem
3.4 revealed it to some extent as integer division is in $NC^{2}$ .
Corollary 3.5. $K\subseteq NC^{2}$ .

Various other complexity class are characterized in a similar way. For further
discussion the reader should refer to an excellent survey by Clote [5].

3.2. Characterization of $LD^{i}$ . Now let us define the class $LD^{i}$ in a recursion
theoretic manner. Let $|x|_{i}$ be defined as $|x|_{1}=|x|$ and $|X|_{i+1}=||x|_{i}|$ .
Definition 3.6. Let $i\in\omega.$ A function $f$ is defined by $i$ -Weak Bounded Recursion
on Notation $W^{i}BRN$) from $g,$ $h_{0},$ $h_{1}$ and $k$ if

$F(0,\overline{y})$ $=g(\overline{y})$ ,
$F(s_{0}(X),\overline{y})$ $=h_{0}(x,\overline{y}, f(X,\overline{y}))$ , if $x\neq 0$

$F(s_{1}(_{X}),\overline{y})$ $=h_{1}(x,\overline{y}, f(x,\overline{y}))$

$f(x,\overline{y})$ $=F(|X|_{i},\overline{y})$ ,

provided that $F(x,\overline{y})\leq k(x,\overline{y})$ for all $x,\overline{y}$ . We call $k(x,\overline{y})$ the bounding term of the
$W^{i}BRN$ operation.

Theorem 3.6 (Kuroda). For $i\geq 1,$ $LD^{i}$ is the smallest class of functions con-
taining INITIAL and closed under composition, $CRN$ and $W^{i+1}BRN$ operations.

Proof. Let $K$ be the closure of INITIAL under composition, CRN and $W^{i+1}BRN$ .
To show that $K\subseteq LD^{i}$ , it suffices to show that $LD^{i}$ is closed under $W^{i+1}BRN$ since
other cases are identical to the proof of Clote and Takeuti’s result stating that $AC^{0}$

is the closure of INITIAL under composition and CRN. By Corollary 2.10 we shall
show that $CRAM[\log n(i+1)]$ is closed $W^{i+1}BRN$ . Let $f$ be defined by $W^{i+1}BRN$

from $g,$ $h_{0},$ $h_{1}$ and $k$ which are computable by some CRAM’s in time $(\log^{(i1}n)^{lff}+)$ ,
$(\log^{(i1)}n)^{l_{g0}}+,$ $(\log^{(+1)}n)^{l_{h_{1}}}i$ and $(\log^{\mathrm{t}^{i+1}}n)):_{\mathrm{k}}$ , respectively. On input $x$ , the CRAM
$M$ for $f$ computes as follows: in stage $t$ simulate $h_{0}$ or $h_{1}$ according to the $t\mathrm{t}\mathrm{h}$ bit of
$|x|_{i+1}$ and finally simulate $g$ . By the inductive hypothesis each step requires at most
$(\log^{()}n)i+1\iota$ steps where $l= \max l_{g},$ $l_{h_{0}},$ $l_{h}1$

’ so $M$ also terminates in $(\log^{()}n)^{l+1}\mathfrak{i}+1$ .
It is also easy to see that the number of processors required by $M$ is polynomial in
$|x|$ .
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For the opposite direction we shall give a proof that utilizes a direct construction
of $LD^{i}$ circuits by weak recursion operations. Let $C_{n}$ be a circuit family which
computes a set $A\in LD^{i}$ of binary strings. (We assume the usual convention that a
set $A\subseteq\{0,1\}^{+_{\mathrm{i}_{\mathrm{S}}}}$ identified with its characteristic function.) Then $C_{n}$ has size $n^{O(1)}$

and depth $(\log^{(:}+1$
) $n)^{k}$ for some $k\in\omega$ . Let $p(n)$ be the polynomial which bounds

the number of gates in $C_{n}$ . We proceed by induction on $k$ . First let $k=1$ . By
choosing a suitable encoding it is straightforward to see that the following functions
are in $AC^{0}$ :

$EncodeInput(x)$ $=$ code of the input bit $x\in\{0,1\}^{+}$

$Eval_{C}^{j}(X)$ $=$ code of the output of the $(j+1)$-th level of $C$

resulting from the application of $x$ to the gates
in the i-th level of $C$ ,
if $x$ is a valid code of an output from the i-th level

Now, starting from EncodeInput $(X)$ and iterating $\log^{(i+1)}n$ times the evaluation of
the function $Eval_{C}$ , we obtain the output $\mathrm{o}\mathrm{f}C_{n}$ on input $x$ . This iteration procedure
can be expressed by $W^{i+1}BRN$ operation since each level of output cannot exceed
$p(n)$ and hence the bounding term of $W^{i+1}BRN$ is of the form $|t^{p(n)}|$ for some term
$t$ .

If $k\geq 2$ , then by the induction hypothesis depth $(\log^{()}ni+1)^{k1}-$ sub-circuits of
$C_{n}$ can be evaluated by functions in $K$ . Furthermore, gathering these outputs can
be done by some $AC^{0}$ function. So applying $W^{i+1}BRN$ one more time yields the
output of $C_{n}$ .
Corollary 3.7. $MD^{i}$ is the smallest class containing INITIAL and multiplication
and closed under composition $CRN$ and $W^{i+1}BRN$ .

4. BOUNDED ARITHMETIC FOR WEAK COMPLEXITY CLASSES

Bounded arithmetic theories for complexity classes below $\mathrm{P}$ were first defined by
Clote and Takeuti [6], and Allen [1]. Recently, J. Johannsen [?], and C. Pollet [15]
studied such theories for $TC^{0}$ and the author [18], [?] studies theories for classes
below $NC^{1}$ . Here we survey the latter two results.

First let us give basic notions on bounded arithmetic. The language of bounded
arithmetic $\mathcal{L}_{1}$ consists of function symbols, $Z(x)=0,$ $P_{k}n$. $(X_{1}, \ldots, x_{n})=x_{k},$ $s_{0}(X)=$

$2x,$ $s_{1}(X)=2x+1,$ $|x|=\lceil\log_{2}(X+1)\rceil,$ $X\# y=2\}x|\cdot|y\mathrm{I}$ , and Bit $(x, i)=\lfloor x/2^{i}\rfloor$ mod 2
and a predicate symbol $\leq$ .

A quantifier is called bounded if it is either of the form $\forall x\leq t$ or $\exists x\leq t$ and
sharply bounded if it is either of the form $\forall x\leq|t|$ or $\exists x\leq|t|$ . A formula is bounded
if all quantifiers are bounded and sharply bounded if all quantifiers are sharply
bounded. $\Sigma_{0}^{b}$ is the set of sharply bounded formulae. $\Sigma_{1}^{b}$ is the set of formulae in
which all non-sharply bounded quantifiers are positive appearances of existential
quantifiers. $\Pi_{1}^{b}$ is defined in the same way by replacing existential to universal. $\Sigma_{i}^{b}$

and $\Pi^{b}.\cdot(i\geq 2)$ are define in an analogous manner.
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BASIC is a finite set of axioms which define symbols in $L_{1}$ . Let $\Phi$ be a set of
formulae.

$\bullet$
$\Phi$-Bit-Comprehension:

$\exists y<2^{|t|}\forall i<|t|[Bit(i, x)=1\mapsto\varphi(i)]$ ,

$\bullet$
$\Phi$-replacement:

$\forall x\leq|s|\exists y\leq t(X)\varphi(x, y)$

$arrow\exists w<SqBd(S,t(|s|))\forall x\leq|s|[\mathcal{B}(w, X+1)\leq t(x)\wedge\varphi(X, \beta(w, X+1))]$ ,

$\bullet$
$\Phi$-LIND:

$\varphi(0)\wedge\forall x(\varphi(x)arrow\varphi(x+1))arrow\forall x\varphi(|x|)$ ,
$\bullet\Phi-L^{i}IND$ :

$\varphi(0)\wedge\forall x(\varphi(x)arrow\varphi(x+1))arrow\forall x\varphi(|x|_{i})$ ,

where $\varphi\in\Phi$ .
We shall be interested in a provably total functions of a given bounded arithmetic

theory whose defining formula has some specific logical complexity.

Definition 4.1. Let $T$ be a theory of bounded arithmetic. A function $f$ is $\Sigma_{i}^{b}$ de-

finable in $T$ if there exists a formula $\varphi\in\Sigma_{i}^{b}$ such that

$T\vdash\forall X\exists y\varphi(X, y)$ ,
$\tau\vdash\forall x,$ $y,$ $Z(\varphi(_{X,z)\wedge(z}\varphi y,)arrow x=y)$ ,
$N\models\forall x\varphi(X, f(x))$ .

4.1. Some weak theories for circuit classes. Our weakest theory should be
that for the class $AC^{0}$ . Such theories are defined by Clote and Takeuti $[]$ , F.
Ferreira $[]$ , and the author. Here we choose the one by the author.

Let $\mathcal{L}_{AG}$ be the language which consists of symbols in $\mathcal{L}_{1}$ plus function symbols
for each $AC^{0}$ functions.

Definition 4.2. $AC^{0}CA$ is the $L_{AC}$ theory which consists of the following $axiom\mathit{8}$ :
$\bullet$ defining axioms for all $f\in AC^{0}$ given by the recursion theooetic characteri-

zation of $AC^{0}$ (Theorem 3.2).
$\bullet$ $\Sigma_{0}^{b}$ -LIND.

Theorem 4.1. A function $f$ is in $AC^{0}$ if and only if it is $\Sigma_{0}^{b}$ definable in $AC^{0}CA$ .

Here we shall present a model theoretical proof of Theorem 4.1. First we use the
following fact by Los and Tarski.

Lemma 4.2. A theory $T$ is $\mathrm{I}\mathrm{I}_{0}^{1}$ ax\’iomatizable if and only if it is preserved under
$subStructure\mathit{8},$ $i.e$ . if $M\models T$ and $N$ is a substructure of $M$ then $N\models T$ .

Then using a witnessing argument in an arbitrary model of $AC^{0}CA$ we conclude
that $AC^{0}CA$ is preserved under substructures. Hence we have that

Lemma 4.3. $AC^{0}CA$ is $\Pi_{0}^{1}$ axiomatizable.

Now recall Herbrand’s theorem for $\Pi_{0}^{1}$ axiomatizable theories.
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Theorem 4.4 (Herbrand). Let $T$ be a $\Pi_{0}^{1}$ axiomatizable theory and $\mathit{8}uppose$ that
$T\vdash\forall x\exists y\varphi(x, y)$ for an open formula $\varphi$ . Then there exists a term $t$ such that
$T\vdash\forall x\varphi(x, f(x))$ .

Again by a witnessing argument it is shown that any $\Sigma_{0}^{b}$ formula is equivalent to
some open formula in $AC^{0}CA$ . So Theorem 4.1 is proved.

Johannsen studied systems for the class $TC^{0}$ and related classe. $\mathrm{s}$ . Here we survey
his result (partly joint work with C. Pollet) without proofs.

Definition 4.3. The $\Delta_{1}^{b}$ -comprehension rule, $\Delta_{1}^{b}$ -COMPf is the following inference
rule

$\frac{\varphi(x)\Leftrightarrow\psi(X)}{COMP_{\Psi}(t)}$

,

where $COMP_{A}$ is the bit comprehension for $\varphi,$
$\varphi\in\Sigma_{1\prime}^{b}\psi\in\Pi_{1}^{b}$ and $t$ is an arbitrary

.term.

Definition 4.4. Let $\Delta_{1}^{b}$ -CR be the theory whose axioms are BASIC, LIND for open
formulae and $\Delta_{1}^{b}$ -COMP rule.

Theorem 4.5 (Johannsen and Pollet). The $\Sigma_{1}^{b}$ definable functions of $\Delta_{1}^{b}$ -CR
are precisely $TC^{0}$ .

They also used so called KPT witnessing theorem to show

Theorem 4.6 (Johannsen and Pollet). if $S_{2}^{i}=\Delta_{1}^{b}$ -CR then $NP$ is contained in
nonuniform $TC^{0}$ .

Johannsen found that $\Delta_{1}^{b}- \mathrm{c}\mathrm{R}$ extended by a single function exactly defines Con-
stable’s class $K$ .

Definition 4.5. Integer division $\mathrm{L}\frac{l}{y}\rfloor$ is define by

$\mathrm{L}\frac{l}{0}\rfloor=0$ ,
$y>0 arrow y\cdot\lfloor\frac{l}{y}\rfloor\leq x<y\cdot \mathrm{L}\frac{l}{y}\rfloor+y$ .

The $theory.\Delta_{1}b_{-}cR[div]$ is the theory $\Delta_{1}^{b}$ -CR extended by the function integer divi-
sion. .

Theorem 4.7 (Johannsen). Constable’s class $K$ is exactly the class of functions
which are $\Sigma_{1}^{b}$ definable in $\Delta_{1^{-}}^{b}CR[div]$ .
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4.2. The theory $L_{2}^{i}$ . Defining a formal theory for the class $LD^{i}$ might be a little
messy compared to other systems like $S_{2}^{i}$ . First we shall introduce the notion of
essentially sharply boundedness.

Definition 4.6. Let $T$ be a theory. A formula $\varphi$ is $esb$ in $T$ if it belongs to the
smallest class ff satisfying the following conditions:

$\bullet$ every atomic formula is in $\mathfrak{F}$ .
$\bullet$ $\mathfrak{F}$ is $clo\mathit{8}ed$ under boolean connectives and sharply bounded $quantifiCation\mathit{8}$ .
$\bullet$ If $\varphi_{0},$

$\varphi_{1}\in \mathrm{f}\mathrm{f}$ and
$T\vdash\exists x\leq \mathit{8}(\vec{a})\varphi_{0}(\vec{a}, x)$

$T\vdash\forall x,$ $y\leq s(a)arrow(\varphi 0(\vec{a}, X)\wedge\varphi_{0}(\tilde{a}, y)arrow x=y)$

then $\exists x\leq s(a)arrow(\varphi \mathrm{o}(^{arrow}a, X)\wedge\varphi_{1}(\vec{a}, x))$ and $\forall x\leq s(\vec{a})(\varphi \mathrm{o}(\vec{a}, X)arrow\varphi_{1}(\vec{a}, x))$ are
in $\mathfrak{F}$ .

A formula is $ep\Sigma_{1}^{b}$ in $T$ if it is of the form $\exists x_{1}\leq t_{1}\cdots\exists x_{k}\leq t_{k}\varphi(x_{1}, \ldots , x_{k})$ where
$\varphi$ is $esb$ in $T$ .
Definition 4.7. A function $f$ is $esb$ definable in a theory $T$ if there exist an $esb$

formula $\varphi$ in $T$ that defines $f$ .
The following immediately holds by the definition.

Proposition 4.8. Let $\varphi(\vec{x}, y)esb$-define a function $f$ in a theory T. Then the
following formulae are equivalent in $T(f)$

$\bullet$ $\exists x\leq s(\vec{a})(\varphi(\vec{a}, x)\wedge\psi(\vec{a}, X))$

$\bullet$ $\forall x\leq s(\vec{a})(\varphi(^{arrow}a, X)arrow\psi(a, xarrow))$

$\bullet\psi(\vec{a}, f(\tilde{a}))$ .
Definition 4.8. Let $\varphi$ be an $esb$ formula in T. Then we denote the equivalent
sharply bounded formula (in the extended language) by $\varphi^{b}$’ (called $sb$ version of $\varphi$).
If $\varphi$ is $ep\Sigma_{1}^{b}$ of the form $\exists x_{1}\leq t_{1}\cdots\exists x_{k}\leq t_{k}.\varphi(x_{1}, \ldots, x_{k}.)$ where $\varphi$ is $esb$ then $\varphi^{b}$

denotes the formula
$\exists x_{1}\leq t_{1}\cdots\exists x_{k}$. $\leq t_{k\varphi^{b}}$. $(X_{1}, . , . , x_{k}.)$ .

For sequents and inference $rules_{f}$ their $sb$ versions are defined analogously.

Now we define a theory whose provably total functions are exactly those in $LD^{i}$ .
Definition 4.9. $L_{2}^{i}$ is the $L_{1}$ theory which consists of the following axioms:

$\bullet$ BASIC
$\bullet$ $\Sigma_{0^{- B}}^{b}ib$-Comprehension
$\bullet\Sigma_{0}^{b}rightarrow LIND$

$\bullet ep\Sigma_{1}^{b_{-}}L^{i+}1IND$ .
Remark 4.1. Let $f\in AC^{0}$ and $L_{2}^{i}(f)$ be the theory $L_{2}^{i}$ extended by the function
symbol $f$ together with its defining axioms. Then $L_{2}^{i}(f)$ is a conservative extension
of $L_{2}^{i}$ . Hence we can regard ACCA as a subtheory of $L_{2}^{i}$ .
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First we show the definability of $LD^{i}$ functions in $L_{2}^{i}$ .

Theorem 4.9 (Kuroda). If $f\in LD^{i}$ then $f$ is $esb$ definable in $L_{2}^{i}$ .

Proof. The proof is by induction on the complexity of $f\in AL^{i}$ .
By the proof of Theorem 4.1, all INITIAL functions are $\Sigma_{0}^{b}$ definable in $T^{0}AC^{0}$ ,

hence also in $L_{2}^{i}$ . The same argument implies that the closure under composition
and CRN are also proved within $T^{0}AC^{0}$ . So it suffices to show that esb definable
functions of $L_{2}^{i}$ are closed under $L^{i}BRN$ operation.

Let $f$ be define by $L^{i}BRN$ from $g,$ $h_{0},$ $h_{1}$ and $k$ each has $\Sigma_{1}^{b}$ definition in $L_{2}^{:}$ . Let
$\Phi(x,\overline{y})$ be the formula expressing that “

$w$ is a sequence of the computation of $f$”.
Then it is readily seen that $\Phi$ is $ep\Sigma_{1}^{b}$ in $L_{2}^{i}$ and

$L_{2}^{i}\vdash\Phi(0,\overline{y})\wedge\forall x(\Phi(x,\overline{y})arrow\Phi(x+1,\overline{y}))$ .

So by $ep\Sigma_{1}^{b_{-}}LiIND$ we have $L_{2}^{i}\vdash\forall x\Phi(|x|_{i},\overline{y})$ . Hence the $\Sigma_{1}^{b}$ formula $\Phi$ defines $f$

provably in $L_{2}^{i}$ . $\square$

Now we shall show the converse to the previous theorem. Namely, All $\Sigma_{1}^{b}$ conse-
quences of $L_{2}^{i}$ are witnessed by some $LD^{i}$ functions.

Theorem 4.10 (Kuroda). Let $\varphi\in ep\Sigma_{1}^{b}$ be such that $L_{2}^{i}\vdash\forall x\exists y\varphi(x, y)$ . Then
there exists a function $f\in LD^{i}$ such that $L_{2}^{i}\vdash\forall x\varphi(x, f(x))$ .

The proof is by the witnessing method.
Theorem 4.10 is a corollary to the following theorem.

Theorem 4.11. Let $\Gammaarrow\Delta$ be provable in $L_{2}^{i}$ and $\Gamma^{b}arrow\Delta b$ be of the form
$\exists x\leq s_{1}A\mathrm{i}^{b}(\vec{a}, x)\wedge$ $\cdot$ .. $\exists x\leq s_{m}A_{m}^{b}(\vec{a}, X)$

$arrow\exists y\leq t_{1}B_{1}^{tb}(\vec{a}, x)\wedge\cdots\exists y\leq t_{m}B_{n}^{b}(\vec{a}, X)$

where $A_{1},$
$\ldots,$

$A_{m},$ $B_{1}\ldots$ , $B_{n}$ are sharply bounded. Then there exist functions $f_{1},$
$\ldots$ , $f_{n}\in$

$LD^{i}$ such that

$b_{1}\leq s_{1}(\vec{a})A^{tb}1(a, xarrow)\wedge$ $\cdot$ . . $b_{m}\leq \mathit{8}_{m}(\vec{a})$Asb (m
$x\vec{a},$ )

$arrow f_{1}(\vec{a}, b)arrow\leq t_{1}(^{arrow)B^{\ell b}(\tilde{a}}a1’ f(\vec{a}, b)arrow)\wedge\cdots f_{n}(\vec{a},b)arrow\leq t_{m}(^{\vee}a)B_{n}^{b}(aarrow, b\sim)$ ,

where $barrow=b_{1},$
$\ldots$ )

$b_{m}$ .

Proof. Induction on the number of sequences in the $L_{2}^{i}$ proof of the sequent $\Gammaarrow\Delta$ .
The precise proof will appear in [20]. $\square$
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4.3. KPT witnessing theorem and conditional separation. It is much more
natura’l if we can replace $s\Sigma_{1^{-L}}^{b}i+1IND$ with $\Sigma_{1}^{b_{-}}Li+1IND$ in the definition of $L_{2}^{i}$ .
However, it is unknown whether this extended theory corresponds to the class $LD^{i}$ .
Nevertheless, we can show that this theory may be slightly stronger than $L_{2}^{i}$ .

Definition 4.10. $L_{2}^{i}(\Sigma_{1}^{b})=L_{2}^{i}+\Sigma_{1^{-}}^{b}Li+1IND$ .

As in Johannsen and Pollet [15], we use KPT witnessing theorem to separate
$L_{2}^{i}(\Sigma_{1}^{b})$ from weaker theory $AC^{0}CA$ .

Theorem 4.12. The theory $AC^{0}CA$ is $\Pi_{1}^{0}$ axiomatized.

Therefore by Herbrand’s theorem for $\forall\exists\forall\Sigma_{1}^{b}$ formula we obtain

Theorem 4.13. Let $\varphi\in\Sigma_{1}^{b}$ and suppose $AC^{0}CA\vdash\exists x\forall y\varphi(a, x, y)$ . Then there
exists a finite number of functions $f_{1},$

$\ldots$ , $f_{k}$. $\in AC^{0}$ such that $AC^{0}CA$ proves

$\varphi(a, f_{1}(a),$ $b_{1})\mathrm{v}\varphi(a, f1(a, b1), b_{2})\mathrm{v}\cdots \mathrm{v}\varphi(a, fk(a, b_{1}, \ldots, b_{k-1}), b_{k})$ .

This witnessing theorem is known to be realized by the following $\Omega$ principle:

Either $\forall zP(a, f1(a),$ $z)$ or if $b_{1}$ is such that $\neg R(a, f_{1}(a),$ $b_{1})$

then either $\forall zP(a, f_{2}(a, b1), z)$ or if $b_{2}$ is such that $\neg R(a, f_{2}(a, b_{1}), b2)$

then $\forall zP(a, f_{\mathrm{k}}(a, b1, \ldots , b_{k-1}), z)$

For a binary predicate $R(x, y)$ define

$R^{*}(x, y)\equiv R(X, y)\wedge\forall z’(|x|i\leq|z|_{i}<|y|_{i}arrow\neg R(x, z))$ .

Let $\Omega^{i}(R)$ be the $\Omega$ principle for the optimization problem $R^{*}$ . Then we have

Theorem 4.14. $AC^{0}CA=L_{2}^{i}(\Sigma_{1}^{b})implie\mathit{8}$ the principle $\Omega^{i}(AC^{0})$ .

Proof. The proof is essentially the same as in Johannsen and Pollet [15]. $\square$

Also we have

Theorem 4.15. The principle $\Omega^{i}(AC^{0})$ implies that nonuni$formAC^{0}\subseteq NP$ .

Hence as a corollary we have

Corollary 4.16. $AC^{0}CA\neq L_{\dot{2}}(\Sigma_{1}^{b})$ .

It seems hard to show that $AC^{0}\neq LD^{i}$ . So by Corollary 4.16 it is also hard to
show that $L_{2}^{i}=L_{2}^{i}(\Sigma_{1}^{b})$ . But this may be possible since Corollary 4.16 says nothing
about $\Sigma_{1}^{b}$ conservation between $AC^{0}CA$ and $L_{2}^{i}(\Sigma_{1}^{b})$ .
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5. REMARKS FOR FUTURE RESEARCHES

5.1. Complexity cla$s\mathrm{s}$ and function algebras.

Problem 5.1. Find a function algebra for $ND^{i}$ .

In section 3.2 we gave a recursion theoretic characterization of the class $LD$ . But
the author do not know whether the class $ND^{i}$ admits similar characterization. As
for function algebras for complexity classes, S. Bellantoni and S. Cook gave a new
characterization using two sorts of parameters (safe and normal) and safe recursion
scheme. The main advantages of their characterization are that it does not require
the artificial function $x\# y$ and also that it eliminates the bound for growth rate
in the recursion scheme. Izumi Takeuti asked whether $LD^{i}$ admits safe recursion
theoretic characterization.

It seems that the separation of classes $LD^{i}’ \mathrm{s}$ and $AC^{0}$ or $AC^{1}$ (or other classes) is
very difficult. In general these separation problems become much easier if we allow
oracles. So,

Problem 5.2. Show that there exists an oracle $A$ such that $AC^{0}[A]\neq LD^{i}[A]$ ,
$LD^{i}[A]\neq AC^{1}[A]$ or $LD^{i}[A]\neq LD^{j}[A]$ for $i\neq j$ .

5.2. Some questions on the theory $L_{2}^{:}$ and other related systems. It seems
more likely that we can replace $L_{2}^{i}$ by the following theory.

Definition 5.1. $L_{2}^{i}(\Delta_{1}^{b})$ is the theory $L_{2}^{i}$ extended by the following $\Delta_{1^{-}}^{b}Li+1IND$ :

$\forall x(\varphi(x)\mapsto\neg\psi(x))arrow L^{i+1}IND(\varphi)$ .

Then the problem is

Problem 5.3. Show that $\Sigma_{1}^{b}$ consequences of $L_{2}^{i}(\Delta_{1}^{b})$ corresponds to $LD^{i}$ .

The problem of determining the computational complexity of $\Sigma_{1^{-}}^{b}Li+1IND$ is also
interesting. More generally we may ask

Problem 5.4. What is the computational complexity of $\Sigma_{k}^{b}con\mathit{8}equences$ of $\Sigma_{k^{-}}^{b}$

$L^{i+1}IND$ ?

The relation between $L^{i}IND$ for $i\in\omega$ is also interesting:

Problem 5.5. Does $\Sigma_{k+1^{- L^{i}}}^{b}.IND$ imply $\Sigma_{k^{-}}^{b}LjIND$ for some $i<j$ ?

49



REFERENCES

1. B. Allen, Arithmetizing uniform $NC$ , Annals of Pure and Applied Logic, 53(1), 1991,

1-50.
2. S. R. BUSS, Bounded Arithmetic. Bibliopolis. (1986).
3. A. K. Chandra, L. Stockmeyer and U. Vishkin, Constant depth reducibility, SIAM J.

Compt., 13, 1984, 423-439.
4. P. Clote, Sequential machine-independent characterizations of the parallel complexity

classes ALOGTIME, $AC^{\mathrm{k}},$ $NC^{k}$ and $NC$ , in: $\mathrm{P}.\mathrm{J}$ . Scott and $\mathrm{S}.\mathrm{R}$ . Buss $\mathrm{e}\mathrm{d}\mathrm{s}.$ , Feasible
Mathematics, (Birkh\"auser, 1990) 49-70.

5. P. Clote, Computation models and function algebras, preprint.
6. P. CLOTE AND G. TAKEUTI, First Order Bounded Arithmetic and Small Circuit $C_{om}-$

plexity classes. In: Feasible Mathematics II, Birkh\"auser. pp. 154-218 (1995).
7. S. Cook, Feasibly constructive proofs and the propositional calculus, in: Proc. 7th Annual

ACM Syymp. on Theory of Computing, (1975), 83-97.
8. F. Ferreira) On end-extensions of models of $\neg \mathrm{e}\mathrm{x}\mathrm{p}$ , Math. $\mathrm{L}\mathrm{o}\mathrm{g}$ . Quart., 42, 1996, 1-18.
9. M. Furst, $\mathrm{J}.\mathrm{B}$ . Saxe and M. Sipser, Parity, Circuits and the Polynomial-Time Hierarchy,

Mathematica Systems Theory, (1984), 13-27.
10. N. Immerman, Nondeterministic space is closed under complement, SIAM J. Comput.,

(1988), 935-938.
11. N. Immerman, Expressibility and parallel complexity, SIAM J. Comput., (1989) 625-

638.
12. N. Immerman, Descriptive Complexity, (Springer Verlag, New York, 1999).
13. J. JOHANNSON, A Bounded Arithmetic Theory for Constant Depth Threshold Circuits.

In: G\"odel ’96, Lecture Notes in Logic 6, pp. 224-234 (1996).
14. J. Johannsen, Weak Bounded Arithmetic, the Diffie-Hellman Problem and Constable’s

Class $K$, preprint.
15. J. JOHANNSON AND C. POLLET, On $\Delta_{1}^{b}$ Bit Comprehension Rule, to appear in: Pro-

ceedings of Logic Colloquium ’98.
16. $\mathrm{D}.\mathrm{S}$ . Johnson, A Catalog $of’$ Complexity Classes, in: J. van Leeuwen ed., Hand-

book of Theoretical Computer Science Vol. 1, Algorithms and Complexity, (The MIT
$\mathrm{p}_{\mathrm{r}\mathrm{e}}\mathrm{s}\mathrm{s}/\mathrm{E}\mathrm{l}\mathrm{s}\mathrm{e}\mathrm{v}\mathrm{i}\mathrm{e}\mathrm{r}$, 1990)

17. J. $\mathrm{K}\mathrm{R}\mathrm{A}\mathrm{J}\mathrm{I}\check{\mathrm{C}}\mathrm{E}\mathrm{K}’$ , Bounded Arithmetic, Propositionat Logic, and Complexity Theory. Cam-
bridge Univ. Press, (1995).

18. S. KURODA, On a Theory for $AC^{0}$ and the Strength of the Induction Scheme. Math.
$\mathrm{L}\mathrm{o}\mathrm{g}$ . Quart., pp. 417-426 (1998).

19. S. KURODA, Rnction Algebras for Very Small Depth Circuits, submitted.
20. S. KURODA, Bounded Arithmetic for slow growing depth circuits, in preparation.
21. N. Nisan, $RL\subseteq SC$ ,
22. H. E. Rose, Subrecursion: Functions and hierarchies, Oxford Logic Guide 9, (1984)
23. $\mathrm{W}.\mathrm{L}$ . Ruzzo, On Uniform Circuit Complexity, J. Compt. Sys. Sci., 22, (1981), 365-383.

50


