Moduli and Modularity of (\mathbf{Q}, F) -abelian varieties of GL_2 -type

中央大学理工 百瀬 文之 (Fumiyuki Momose) 早稲田大学理工 志村 真帆呂 (Mahoro Shimura)

1 Introduction

Definition (GL₂-type) A/\mathbf{Q} : \mathbf{Q} -simple abelian variety of GL_2 -type,

(1)
$$K = \operatorname{End}_{\mathbf{Q}}^{0}(A) := (\operatorname{End}_{\mathbf{Q}}(A)) \otimes_{\mathbf{Z}} \mathbf{Q} : a \text{ number field,}$$

(2) $dimA = [K : \mathbf{Q}].$

 $T_l(A)$: Tate-module of A, $V_l(A) := T_l(A) \otimes_{\mathbf{Z}_l} \mathbf{Q}_l$.

Remark 1 If A/\mathbf{Q} is GL_2 -type, it has the following representation.

$$\begin{array}{l} \rho_l: G_{\mathbf{Q}} := \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \longrightarrow \operatorname{Aut}_K V_l(A) = \prod_{\lambda \mid l} \operatorname{Aut}_{K_\lambda} V_\lambda(A). \\ V_\lambda(A) := V_l(A) \underset{K \otimes \mathbf{Q}_l}{\otimes} K_\lambda, \ \operatorname{Aut}_{K_\lambda} V_\lambda(A) \cong \operatorname{GL}_2(K_\lambda). \end{array}$$

1.1 Classification of GL_2 -type

(1) A/\mathbf{Q} : non-CM

$$A \underset{/\overline{\mathbf{Q}}}{\sim} B^r$$
, where ' $\underset{/\overline{\mathbf{Q}}}{\sim}$ ' means isogenous over $\overline{\mathbf{Q}}$.
 $F := Z(\operatorname{End}^0(A))$: totally real field.

$$\operatorname{End}^0(B) = egin{cases} F\colon \dim B = [F:\mathbf{Q}] \\ D/F\colon \operatorname{totally indefinite division quaternion algebra over } F, \\ \dim(B) = 2[F:\mathbf{Q}] \end{cases}$$

If the following diagram commutes, we call B, (\mathbf{Q}, F) -abelian variety of GL_2 -type.

$$\exists \varphi_{\sigma} : {}^{\sigma}B \longrightarrow B : D$$
—isogeny

(2) $A/\overline{\mathbf{Q}}$: CM $A \sim E^{\dim(A)}, E : \text{CM elliptic curve.}$

Conjecture 1 (Taniyama-Shimura, Ribet-Serre)

 $A/\mathbf{Q}: \mathbf{Q}$ -simple abelian variety of GL_2 -type.

 \implies A is isogenous over **Q** to some **Q**-simple factor of $J_1(N)$.

Remark 2 It is known that Conj. 1 is true for the following cases.

- (1) A is a CM-abelian variety.
- (2) A is an elliptic curve and 27∤cond(A), (Wiles, Taylor, Diamond, Fontaine).

2 Moduli of GL_2 -type

We fix a totally indefinite quaternion division algebra D/F.

$$d := \begin{cases} 1 & \text{if } D = F \\ \operatorname{disc}(D/F) & \text{if } D \neq F. \end{cases}$$

We consider the following three families of isogeny classes of abelian varieties.

- $\text{(A) } \left\{ (A,\iota) \mid A/\mathbf{Q} : \mathbf{Q}\text{-}simple \ abelian \ variety \ of \ } \mathrm{GL}_2\text{-}type, \ \iota : F \hookrightarrow \mathrm{End}^0(A) = \mathrm{Mat}(D) \right\} / \underset{(A)}{\sim}$
- (B) $\{(B,\iota) \mid B/\overline{\mathbf{Q}} : (\mathbf{Q},F)\text{-abelian variety of } \mathrm{GL}_2\text{-type}, \iota : F \hookrightarrow \mathrm{End}^0(B) = D\}/D\text{-isog}.$
- (C) $\coprod_{\substack{\mathfrak{m}\subset\mathcal{O}_F\\\text{square free}\\(\mathfrak{m},d)=1}} (M(d,\mathfrak{m})/W)(\mathbf{Q})^0/\underset{(C)}{\sim}.$

Notation

- (A) $A_1 \underset{(A)}{\sim} A_2 \iff \exists \chi : \textit{Dirichlet character}, A_2 \underset{/\mathbf{Q}}{\sim} A_{1,\chi}$ with F-structure, $(A_{1,\chi} : \textit{twist of } A_1 \; \textit{by } \chi)$.
- (C) $M(d, \mathfrak{m})_{/\mathbf{Q}}$: coarse moduli space of $(B, \iota, V, \mathcal{E})$, $\iota: \mathcal{O}_D \hookrightarrow \operatorname{End}(B)$, $V \subset B[\mathfrak{m}], \mathcal{O}_D$ -module, $V \cong \mathcal{O}_D/\mathfrak{m}\mathcal{O}_D$, $\operatorname{Trd}_{D/F}(a) = \operatorname{Tr}(a)$ on LieB as \mathcal{O}_F -modules $(a \in \mathcal{O}_D)$, $\mathcal{E}:$ canonical polarization.

 $W = W(d, \mathfrak{m}) \subset \operatorname{Aut}_{\mathbf{Q}} M(d, \mathfrak{m});$ $\mathfrak{a}, \mathfrak{p} : prime \ of \ \mathcal{O}_F, \ \mathfrak{P} : prime \ of \ \mathcal{O}_D.$ The following list is generators of W.

$$\begin{cases} W[\mathfrak{a}]: (B, *) \longmapsto (B/B[\mathfrak{a}], *'), \ (\mathfrak{a}, d\mathfrak{m}) = 1, (\mathfrak{a} \sim \mathfrak{a}' in \ C^+(F) \Longleftrightarrow W[\mathfrak{a}] = W[\mathfrak{a}']) \\ W[\mathfrak{p}]: (B, *) \longmapsto (B/B[\mathfrak{P}], *'), \ \mathfrak{p}|d, \ \mathfrak{P} \supset \mathfrak{p}, \\ W[\mathfrak{p}]: (B, V, *) \longmapsto (B/V[\mathfrak{p}], (V + B[\mathfrak{p}])/V[\mathfrak{p}], *'), \ \mathfrak{p}|d. \end{cases}$$

 $(class\ of\ (B,*)) = x \in (M(d,\mathfrak{m})/W)(\mathbf{Q})^0,$

B: simple abelian variety,

 $\forall \mathfrak{p} \mid \mathfrak{m}, \ \exists \sigma \in \mathrm{G}_{\mathbf{Q}}, \ \exists \gamma_a \in W \ \textit{s.t.} \ \mathfrak{p} \mid \textit{deg}\gamma_\sigma, \ \ ^\sigma(B, *) \cong \gamma_a(B, *).$

$$\underset{(C)}{\sim}$$
; $x\underset{(C)}{\sim}y \Longleftrightarrow \exists \mathfrak{n}(\neq 0): \textit{ideal of } \mathcal{O}_F, \ (\mathfrak{n}, d\mathfrak{m})=1,$

 $\exists z \in (M(d,\mathfrak{m}\mathfrak{n})/W)(\mathbf{Q}),$

 $\exists y = \pi w_{\mathfrak{n}}(z).$

Here we consider W as a subgroup of AutM(d, mn).

 $w_{\mathfrak{n}}: (B, V + V', *) \longmapsto (B/V', (V + B[\mathfrak{n}])/V', *'), \ V' \cong \mathcal{O}_D/\mathfrak{n}\mathcal{O}_D.$

 $\pi: M(d,\mathfrak{mn}) \longrightarrow M(d,\mathfrak{m}),$

$$(B, V + V', *) \longmapsto (B, V, *)$$

Theorem 1 (A) $\stackrel{\text{1:1}}{\longleftrightarrow}$ (B) $\stackrel{\text{1:1}}{\longleftrightarrow}$ (C).

Remark 3

 $(A) \stackrel{1:1}{\longleftrightarrow} (B)$ is Ribet-Pyle's descent.

 $(B) \stackrel{1:1}{\longleftrightarrow} (C)$ is a generalization of the theory of Elkies's local tree.

2.1 Trees

Let G be the tree attached to lattices of $V_{\mathfrak{p}}(B)$. More precisely, let $\varphi_{\sigma}: {}^{\sigma}B \longrightarrow B$ be a D-isogeny, then we have the following commutative diagram and i. (We note that $V_{\mathfrak{p}}(B)$ corresponds to $B[\mathfrak{p}^{\infty}]$.)

$$B[\mathfrak{p}^{\infty}] \longrightarrow {}^{\sigma}B[\mathfrak{p}^{\infty}].$$
 $O_D ext{-cyclic}$
 $B[\mathfrak{p}^{\infty}]/B[\mathfrak{p}^i] \cong B[\mathfrak{p}^{\infty}]$

Hence, this \mathcal{O}_D -cyclic map gives the distance between $V_{\mathfrak{p}}(B)$ and ${}^{\sigma}V_{\mathfrak{p}}(B)$. Because $G_{\mathbf{Q}}$ acts on the lattices, $G_{\mathbf{Q}}$ acts on G.

 $(1) \mathfrak{p} \nmid d$,

(a) $G_{\mathbf{Q}} \curvearrowright G$ is fixed point free (in this case $\mathfrak{p} \mid \mathfrak{m}$),

- : the attached object is minimal.
- (b) $G_{\mathbf{Q}} \curvearrowright G$ has fixed points (in this case $\mathfrak{p} \nmid \mathfrak{m}$),

- :fixed point, and the attached object is minimal.
- (2) $\mathfrak{p} \mid d$, $B[\mathfrak{p}^{\infty}]$ has a maximal \mathcal{O}_D -submodule $V = B[\mathfrak{P}] \subset B[\mathfrak{p}]$, $\mathfrak{P} \mid \mathfrak{p}$, $\mathfrak{P}^2 = \mathfrak{p}\mathcal{O}_D$. $B[\mathfrak{p}^{\infty}] \longrightarrow B[\mathfrak{p}^{\infty}]/B[\mathfrak{P}] \longrightarrow (B[\mathfrak{p}^{\infty}]/B[\mathfrak{P}])/(B[\mathfrak{p}^{\infty}]/B[\mathfrak{P}])[\mathfrak{P}] = [B[\mathfrak{p}^{\infty}]/[B[\mathfrak{p}]] = [B[\mathfrak{p}^{\infty}]]$ Hence, in this case G has exactly two vertices.

(a) $G_{\mathbf{Q}} \curvearrowright G$ is fixed point free (in this case $\mathfrak{p} \mid \delta$),

- : the attached object is minimal.
- (b) $G_{\mathbf{Q}} \curvearrowright G$ has fixed points (in this case $\mathfrak{p} \nmid \delta$),

• :fixed point, and the attached object is minimal.

$$(B) \longrightarrow (C)$$

we choose locally minimal model for each p.

Global condition is $(B,*) \longmapsto w[\mathfrak{a}](B,*)$.

If there are more than two minimal points, we identify these by $(B,*) \longmapsto w_{\mathfrak{p}}(B,*)$ and $\stackrel{\sim}{(C)}$.

$$(C)': \ (M(d,\mathfrak{m})/W)(\mathbf{Q})^0 = (\coprod_{W' < W} (M(d,\mathfrak{m})/W')(\mathbf{Q})^{00})/W,$$

Here $x \in (M(d, \mathfrak{m})/W)(\mathbf{Q})^{00} \iff G_{\mathbf{Q}} \text{ acts on } M(d, \mathfrak{m})_x \text{ the fiber of } x \text{ transitively.}$

2.2 Invariant δ

$$(A) \longleftrightarrow (B) \longleftrightarrow (C)'.$$

$$A/\mathbf{Q} \longleftrightarrow B/\overline{\mathbf{Q}} \longleftrightarrow x/\mathbf{Q}.$$

 A/\mathbf{Q} : Neben character ε of order 2-power.

Definition

(A)
$$S_A' := \{ \mathfrak{p} \subset \mathcal{O}_F \mid \mathfrak{p} \mid D(K/F), \ \mathfrak{p} \nmid 2 \}.$$

$$\delta_A' := \prod_{\mathfrak{p} \in S_A'} \mathfrak{p}$$

$$(B) \ S_B := \left\{ \mathfrak{p} \subset \mathcal{O}_F \mid \frac{\exists \sigma \in G_{\mathbf{Q}}, \ \exists D \text{-isogeny} \ \sigma \psi : B \longrightarrow \sigma B,}{\mathfrak{p} - \operatorname{part} \ \text{of} \ \ker(\sigma \psi) = \operatorname{cyclic} \ \text{and} \ \operatorname{odd} \ \operatorname{degree}} \right\}.$$

$$\delta_B := \prod_{\mathfrak{p} \in S_A} \mathfrak{p}.$$

$$\delta_B' := 2\text{-primary part of} \ \delta_B.$$

$$\begin{split} (\mathrm{C})' \; S_{C'} &:= \{ \mathfrak{p} \subset \mathcal{O}_F \mid \exists \gamma \in W', \; \gamma = w[\mathfrak{a}] w_{\mathfrak{b}} w_{\mathfrak{c}}, \; (\mathfrak{a}, d\mathfrak{m}) = 1, \; \mathfrak{b} \mid d, \; \mathfrak{c} \mid \mathfrak{m}, \; \mathfrak{p} \mid \mathfrak{bc} \}. \\ \delta_{C'} &:= \prod_{\mathfrak{p} \in S_{C'}} \mathfrak{p}. \\ \delta_{C'}' &:= 2\text{-primary part of } \delta_{C'}. \end{split}$$

Theorem 2

 $\delta_B = \delta_{C'}$ (We denote this value δ). $\delta_A' = \delta_B' = \delta_{C'}'$.

2.3 Invariant e_s and e

Definition

Let $\mathfrak{p} \mid d\mathfrak{m}$ and $\mathfrak{p} \mid p$. For $x \in (M(d,\mathfrak{m})/W')(\mathbf{Q})^{00}$,

$$e_s = \begin{cases} 2 & \text{if } W' \cap \operatorname{Aut}(B, *)/\overline{\mathbf{F}}_p \neq (1) \\ 1 & \text{if } W' \cap \operatorname{Aut}(B, *)/\overline{\mathbf{F}}_p = (1). \end{cases}$$
$$e = \sharp \operatorname{Aut}(B, *)/\overline{\mathbf{F}}_p.$$

3 Modularity

(class of x=(B,*)) $\in (M(d,\mathfrak{m})/W')(\mathbf{Q})^{00}$.

We assume that $\mathfrak{p} \mid d\mathfrak{m}, \mathfrak{p} \mid p \neq 2$ satisfy the following conditions;

$$(C1) \begin{cases} \mathfrak{p} \mid \mathfrak{m} \quad (B[\mathfrak{p}]/\overline{\mathbf{F}}_p)^{\text{\'et}} \neq (0). \\ \mathfrak{p} \mid d \quad \operatorname{rank}_{\mathcal{O}_F/\mathfrak{p} \otimes \overline{\mathbf{F}}_p} \operatorname{Tan}_{/\overline{\mathbf{F}}_p} B[\mathfrak{P}] = 1, \ (\mathfrak{P} \subset \mathcal{O}_D, \ \mathfrak{P} \mid \mathfrak{p}). \end{cases}$$

$$(C2) \begin{cases} \mathfrak{p} \mid \mathfrak{m} \quad \begin{cases} p-1 \mid e & \text{if } e_s = 1, \ 4 \nmid e. \\ p-1 \mid \frac{1}{2}e_s e & \text{otherwise.} \end{cases}$$

$$\mathfrak{p} \mid d \end{cases}$$

$$(1) B[p]/\overline{\mathbf{F}}_p)^{\text{\'et}} = (0),$$

$$\begin{cases} \frac{1}{2}e \leq p-1, \ e \neq p+1 & \text{if } e_s = 1, \ 4 \nmid e. \\ \frac{1}{2}2^t e_s e \leq p-1 \text{ or } \frac{1}{2}2^t e_s e = 2(p-1) & \text{otherwise.} \end{cases}$$

$$\text{Here } t := v_2(p-1).$$

$$(2) B[p]/\overline{\mathbf{F}}_p)^{\text{\'et}} \neq (0),$$

$$\begin{cases} \frac{1}{2}e \leq p-1, \ e \neq p+1 & \text{if } e_s = 1, \ 4 \nmid e. \\ \frac{1}{2}e_s e \leq p-1 & \text{otherwise.} \end{cases}$$

Proposition 1 If x and $\mathfrak{p} \mid d$ satisfy $(C1) \Longrightarrow \mathfrak{p} \mid \delta$.

Proposition 2 We assume the condition (C1) for x and \mathfrak{p} . We set $e = p^r e'$, $p \nmid e'$. Then

(i) p | m,

$$\left\{egin{aligned} \mathrm{N}(\mathfrak{p}) \equiv 1 \pmod{e'}, \ \zeta_{p^r} \in F_{\mathfrak{p}}. \end{aligned}
ight.$$

(ii) p | d,

$$\begin{cases} \mathrm{N}(\mathfrak{p}) \equiv -1 \pmod{e'} \\ v_{\mathfrak{p}}(p) \geq \varphi(p^r). \end{cases}$$

(iii) $B/\overline{\mathbf{F}}_p \sim E^{\dim B}$, E: supersingular elliptic curve,

Theorem 3

 $x \in (M(d, \mathfrak{m})/W')(\mathbf{Q})^{00}$, $\exists \mathfrak{p} \mid d\mathfrak{m}$, $\mathfrak{p} \mid p \neq 2$ such that satisfies (C1) and (C2), then the object of x is modular.

Remark 4 Under the above condition, we can show that

The Galois Image on
$$A[\mathfrak{p}] \subset \begin{cases} \text{Normalizer of Split Cartan subgroup} & \text{if } \mathfrak{p} \mid \mathfrak{m} \\ \text{Normalizer of Cartan subgroup} & \text{if } \mathfrak{p} \mid d. \end{cases}$$

Remark 5 We omit the case $\mathfrak{p} \mid \mathfrak{m}$ and $\mathfrak{p} \mid 3$. But we can show the modularity with additional conditions. That is Theorem 4.

Notation

$$W'(\mathfrak{p}) < W' : \mathrm{index} \ 2, \ \gamma \in W'(\mathfrak{p}), \ (\mathrm{deg}\gamma, \mathfrak{p}) = 1, \ \gamma = w[\mathfrak{a}]w_{\mathfrak{b}}w_{\mathfrak{c}}, \ \mathrm{deg}\gamma = \mathfrak{abc}, \ (\mathfrak{a}, d\mathfrak{m}) = 1, \ \mathfrak{b} \mid d, \ \mathfrak{c} \mid \mathfrak{m}.$$

Theorem 4

$$x \in (M(d,\mathfrak{m})/W')(\mathbf{Q})^{00}, \; \exists \mathfrak{p} \mid d\mathfrak{m}, \; \mathfrak{p} \mid p=3 \; such \; that$$

(C0)
$$(M(d,\mathfrak{m})/W'(\mathfrak{p}))_x(\mathbf{R}) = \phi.$$

$$(C1)'(B[\mathfrak{p}]/\overline{\mathbf{F}}_3)^{\acute{e}t} \neq (0).$$

(C2)'
$$e_s = 1$$
, $e = 2$ (or 2×3 -power).

 \implies the object of x is modular.

Remark 6 Moreover, we have a criterion of modularity for the case of the action of $G_{\mathbf{Q}}$ on the tree has more than two fixed points by using the result of Skinner-Wiles.

4 Q-curves

Let $D = F = \mathbf{Q}$, $\dim B = 1$.

We set $\mathfrak{m} = N$ (square free), $M(1, N) = X_0(N)$.

Theorem 5 If $x \in (X_0(N)/W')(\mathbf{Q})^{00}$ satisfies the following conditions, then the object of x is modular.

- (A) In the case of $p \geq 5$,
 - (C1) $x/\overline{\mathbf{F}}_p \neq \text{supersingular point.}$
 - (C2) e_s e p

$$1 \quad 2 \quad \geq 5 \ (\neq 3)$$

$$1 \quad 4 \quad \geq 5 \ (\neq 3)$$

1 6
$$\geq$$
 13 (\neq 7)

$$2 \ 2 \ \geq 5 \ (\neq 3)$$

$$2 \quad 4 \quad \geq 13 \ (\neq 5)$$

$$2 \quad 6 \quad \geq 13 \ (\neq 7)$$

(B) In the case of p = 3,

(C0)
$$(X_0(N)/W'(3))_x(\mathbf{R}) = \phi.$$

$$(C2)'$$
 $e_s = 1, e = 2.$

Example 1

 $(4-1) N = p \ge 5, \ne 7;$

If $x \in (X_0(p)/w_p)(\mathbf{Q})$ is non-cuspidal point and if $x \pmod{p}$ is non-supersingular point, then x : modular.

If p = 7 and $e \neq 6$, then modular.

(4-2) $N = 35,39 \iff X_0(N)/w_N = \mathbf{P}^1$;

 $x \in (X_0(N)/w_N)(\mathbf{Q}) : non-cuspidal \ point \Longrightarrow x : modular.$

If N = 65, then $X_0(N)/w_N$ is an elliptic curve with positive rank.

 $x \in (X_0(N)/w_N)(\mathbf{Q}) : non-cuspidal \ point \Longrightarrow x : modular.$

(4-3) N = p = 3;

By using the Fricke's explicit defining equation of $X_0(3)$:

$$\begin{cases} j := j(\tau) = 27(\tau + 1)(9\tau + 1)^3/\tau, \\ w_3(\tau) = 1/\tau. \end{cases}$$

we obtain the conditions in Theorem. 4 explicitly as follows (v₃: the valuation at 3).

- (C0) implies τ is a root of $X^2 aX + 1 = 0$, $a \in \mathbf{Q}$ and |a| < 2.
- (C1) implies $v_3(j) \leq 0$. It implies $v_3(a) \geq 1$ or $v_3(a) \leq 3$.

If τ is a root of $X^2 - aX + 1 = 0$ where a satisfies above conditions, then $j(\tau)$ gives modular **Q**-curve.

5 QM-abelian surfaces

Let D/\mathbf{Q} be a indefinite quaternion division algebra. (i.e. $D \neq F$, $F = \mathbf{Q}$, $\dim B = 2$) $M(d, m)/\mathbf{Q}$: Shimura curve.

Theorem 6 For $p \mid dm, p \neq 2$,

If $x \in (M(d,m)/W')(\mathbb{Q})^{00}$ satisfies the following conditions, then the object of x is modular.

- (1) $p \mid m$; Conditions (C1) and (C2) are same as of **Q**-curves.
- (2) $p \mid d$; For $y \in M(d, m)_x$,
 - (C1) $y/\overline{\mathbf{F}}_p \neq \text{double point.}$
 - (C2) e_s e p
 - $1 \quad 2 \quad \geq 3$
 - $1 \quad 4 \quad \geq 3$
 - 1 6 $\geq 11 \ (\neq 5)$
 - $2 \quad 2 \quad \geq 3$
 - $2 \quad 4 \quad \geq 11 \ (\neq 3,7)$
 - 2 6 \neq 1 + 2-power, 1 + 5 × 2-power.

Example 2

(5-1) The following diagram is the covering map of M(6,1) reduction mod 3 and its quotient curves by its involutions. $(M(6,1)/w_a = \mathbf{P}^1, a \neq 1)$

 \times : e = 6, •: e = 4, •: \mathbf{F}_3 -rational points $(e_s = 1, e = 2)$

(5-2) If d is contained in the following list, then $M(d,1)/w_d = \mathbf{P}^1$ and $\forall x \in (M(d,1)/w_d)(\mathbf{Q})$ is modular.

$$d = 14, 21, 33, 34, 35, 39, 46, 51, 55, 62, 69, 87, 94, 95, 111, 119, 159.$$

If d is contained in the following list, then $M(d,1)/w_d$ is an elliptic curves with positive rank and $\forall x \in (M(d,1)/w_d)(\mathbf{Q})$ is modular.

$$d = 57, 65, 77, 129, 143.$$

Remark 7 Even for $m \neq 1$, We have obtained some examples.