TITLE:
ON THE VANISHING OF IWASAWA INVARIANTS OF ABSOLUTELY ABELIAN p-EXTENSIONS (Algebraic Number Theory and Related Topics)

AUTHOR(S):
Yamamoto, Gen

CITATION:

ISSUE DATE:
1999-04

URL:
http://hdl.handle.net/2433/63020

RIGHT:
ON THE VANISHING OF IWASAWA INVARIANTS OF ABSOLUTELY ABELIAN p-EXTENSIONS

GEN YAMAMOTO (山本 惠)

ABSTRACT. Let p be any odd prime. We determine all absolutely abelian p-extension fields such that Iwasawa λ_p, μ_p and ν_p-invariants of the cyclotomic \mathbb{Z}_p-extension are zero, in terms of congruent conditions, p-th power residues, and genus fields.

1. INTRODUCTION

Let p be a prime and \mathbb{Z}_p the ring of p-adic integers. Let k be a finite extension of the rational number field \mathbb{Q}, k_∞ a \mathbb{Z}_p-extension of k, k_n the n-th layer of k_∞/k, and A_n the p-Sylow subgroup of the ideal class group of k_n. Iwasawa proved the well-known theorem about the order $\#A_n$ of A_n that there exist integers $\lambda = \lambda(k_\infty/k) \geq 0$, $\mu = \mu(k_\infty/k) \geq 0$, $\nu = \nu(k_\infty/k)$, and $n_0 \geq 0$ such that

$$\#A_n = p^{\lambda n + \mu p^n + \nu}$$

for all $n \geq n_0$. These integers $\lambda = \lambda(k_\infty/k)$, $\mu = \mu(k_\infty/k)$ and $\nu = \nu(k_\infty/k)$ are called Iwasawa invariants of k_∞/k for p. If k_∞ is the cyclotomic \mathbb{Z}_p-extension of k, we write $\lambda_p(k)$, $\mu_p(k)$ and $\nu_p(k)$ for the above invariants, respectively.

In [7], Greenberg conjectured that if k is a totally real, $\lambda_p(k) = \mu_p(k) = 0$. We call this conjecture Greenberg conjecture. For Iwasawa λ_p, μ_p-invariants of abelian p-extension fields of \mathbb{Q}, there are results by Greenberg ([7], V), Iwasawa([9]), Fukuda, Komatsu, Ozaki and Taya([6]), Fukuda([4]), and the author([12]), etc. On the other hand, Ferrero and Washington have shown that $\mu_p(k) = 0$ for any abelian extension field k of \mathbb{Q}.

In this paper, we will consider a stronger condition than Greenberg conjecture that $\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0$ and determine all absolutely abelian p-extensions k, i.e. k is an abelian extension of the rational number field \mathbb{Q}, with $\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0$ for an odd prime p, using the results of G. Cornell and M. Rosen([1]).

2. MAIN THEOREM

Throughout this section, we fix an odd prime p. For an absolutely abelian p-extension field k, let f_k be its conductor, i.e. f_k is the minimum positive integer with $k \subseteq \mathbb{Q}(\zeta_{f_k})$. Then, it follows easily that $f_k = p^a p_1 \cdots p_t$, where a is a non-negative integer and p_1, \cdots, p_t are distinct primes which are congruent to 1 modulo p. We denote k_G by the genus field of k. So k_G is the maximal unramified abelian extension of k such that k_G/\mathbb{Q} is an abelian extension. In general, if k/\mathbb{Q} is an abelian extension of odd degree, then
it has shown by Leopoldt that

$$[k_G : k] = \prod_{i=1}^{e_t} e_i$$

where \(e_1, \ldots, e_t\) are ramification indices of primes which ramify in \(k/\mathbb{Q}\). Hence in our case, \(k_G\) is also an abelian \(p\)-extension of \(\mathbb{Q}\). For instance we denote by \((\cdot)_{p}\) the \(p\)-th power residue symbol, i.e., for integers \(x, y\), \((\frac{x}{y})_{p} = 1\) if and only if \(x\) is the \(p\)-th power modulo \(y\).

Our main theorem gives a necessary and sufficient condition for \(\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0\) in terms of \(p\)-th power residue symbol, congruent conditions and genus fields:

Theorem 1. Let \(k\) be an abelian \(p\)-extension of \(\mathbb{Q}\), and \(f_k = p^ap_1 \cdots p_t\) the prime decomposition of its conductor, where primes \(p_1, \ldots, p_t\) are distinct. If

\[
\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0,
\]

then \(t \leq 2\). Conversely, in each case of \(t = 0\) or \(1\) or \(2\), the followings are a necessary and sufficient condition of (1):

In case of \(t = 0\) : (1) holds.

In case of \(t = 1\) : (1) is equivalent to \(k = k_{1,G}\) and,

\[
\left(\frac{p}{p_1} \right) \neq 1 \text{ or } p_1 \neq 1 \pmod{p^2}.
\]

In case of \(t = 2\) : (1) is equivalent to \(k = k_{1,G}\), and for \((i, j) = (1, 2)\) or \((2, 1)\),

\[
\left(\frac{p}{p_i} \right) \neq 1, \left(\frac{p_j}{p_i} \right) \neq 1, p_j \neq 1 \pmod{p^2},
\]

and, there exist \(x, y, z \in \mathbb{F}_p\) such that

\[
\left(\frac{p_ip_j^y}{p_i} \right) = 1, \left(\frac{p_i^y}{p_j} \right) = 1, p_ip_j^y \equiv 1 \pmod{p^2}, \text{ and } xyz \neq -1 \text{ in } \mathbb{F}_p.
\]

In case of \(t = 2\), the conditions in Theorem 1 are complicated. So we will give an example. We consider the case \(p = 3, p_1 = 7\) and \(p_2 = 19\). We denote \(k_7\) (resp. \(k_{19}\)) by the subfield of \(\mathbb{Q}(\zeta_7)\) (resp. \(\mathbb{Q}(\zeta_{19})\)) with degree 3 over \(\mathbb{Q}\). As for the condition \(k_1 = k_{1,G}\), there exists a field \(F\) such that \(k_7 \subset F \subset k_7k_{19}\mathbb{Q}_1\) and \(F \neq k_7k_{19}, k_7\mathbb{Q}_1\), where \(\mathbb{Q}_1\) is the first layer of cyclotomic \(\mathbb{Z}_3\)-extension of \(\mathbb{Q}\). Then \(k_7k_{19}\mathbb{Q}_1/F\) is a nontrivial unramified extension and \(k_7k_{19}\mathbb{Q}_1\) is abelian, hence \(F \subset k_7k_{19}\mathbb{Q}_1 \subset F_G\). But, for \(F_1 = k_7k_{19}\mathbb{Q}_1\), it follows easily that \(F_1 = F_{1,G}\). If we restrict the case \(p\) is unramified in \(k\), i.e. \(a = 0\), then the statement \(k_1 = k_{1,G}\) can be simplified to \(k = k_G\) because \(k_1 = k\mathbb{Q}_1\). This restriction is not so strong: In general, for an absolutely abelian \(p\)-extension field \(k\), there exists an absolutely abelian extension field \(k'\) such that \(p\) is unramified in \(k'\) and \(k_{\infty} = k'_{\infty}\). Note that if \(k\) is the maximal subfield of \(\mathbb{Q}(\zeta_m)\) (\(m = p^ap_1 \cdots p_t\) as above) which is abelian \(p\)-extension of \(\mathbb{Q}\), then \(k = k_G\).

We continue to examine the above example. If we put \((i, j) = (1, 2)\), then \(p_1 = 19 \equiv 1 \pmod{3^2}\), so the condition (3) is not satisfied. But if we put \((i, j) = (2, 1)\), then we can
verify that \(p_i = 19 \) and \(p_j = 7 \) satisfy the conditions (3) and (4). Hence, for example, if \(K \) is the maximal subfield of \(\mathbb{Q}(\zeta_{7\cdot 19}) \) which is 3-extension of \(\mathbb{Q} \), then \(K \) satisfies the conditions of Theorem 1. Therefore we get

\[
\lambda_p(K) = \mu_p(K) = \nu_p(K) = 0.
\]

As for Greenberg conjecture, we can also get the following: In general, it is known that if \(L \subseteq M \) then \(\lambda_p(L) \leq \lambda_p(M) \) and \(\mu_p(L) \leq \mu_p(M) \) for number fields \(L, M \). Hence for any subfield \(k \) of \(\mathbb{Q}(\zeta_{7\cdot 19}) \) which is 3-extension of \(\mathbb{Q} \), i.e. \(k \subseteq K \), then \(\lambda_p(k) = \mu_p(k) = 0 \). This consideration is generalized as follows:

Corollary 2. Let \(m = p^a p_1 \cdots p_i \) satisfy the condition (2) or (3), (4). Then for any subfield \(k \) of \(\mathbb{Q}(\zeta_m) \) which is \(p \)-extension of \(\mathbb{Q} \), Greenberg conjecture for \(k \) and \(p \) is valid.

3. The results of G. Cornell and M. Rosen

In this section, we review briefly part of [1]. Let \(K/\mathbb{Q} \) be an abelian \(p \)-extension, \(p \) a prime. In the 1950’s, A. Fröhlich determined all such fields with class number prime to \(p \) (cf. [2]). In [1], G. Cornell and M. Rosen reconsidered this problem in the case where \(p \) is an odd prime, and reduced the problem to the case when \(\text{Gal}(K/\mathbb{Q}) \) is an elementary abelian \(p \)-group, i.e. \(\text{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^m \) for some integer \(m \).

We suppose that \(p \) is an odd prime and \(\text{Gal}(K/\mathbb{Q}) \) is an abelian \(p \)-group. Then the genus field \(K_G \) of \(K \) is also abelian \(p \)-extension. If \(p \) does not divide the class number \(h_K \) of \(K \), then \(K \) does not have any non-trivial unramified abelian \(p \)-extension by class field theory, hence \(K_G = K \). In the following we will assume \(K_G = K \). Further, we consider the central \(p \)-class field \(K_C \) of \(K \), i.e. \(K_C \) is the maximal \(p \)-extension of \(K \) such that \(K_C/K \) is abelian and unramified, \(K_C/\mathbb{Q} \) is Galois and \(\text{Gal}(K_C/K) \) is in the center of \(\text{Gal}(K_C/\mathbb{Q}) \). Since a \(p \)-group must have a lower central series that terminates in the identity, one sees that \(p \nmid h_K \) if and only if \(K_C = K \). So we are interested in which case \(K_C = K \). This can be reduced the case when \(\text{Gal}(K/\mathbb{Q}) \) is an elementary abelian \(p \)-group by the following result:

Lemma 3 ([1] Theorem 1). Let \(K/\mathbb{Q} \) be an abelian \(p \)-extension with \(K_G = K \). Let \(k \) be the maximal intermediate extension between \(\mathbb{Q} \) and \(K \) such that \(\text{Gal}(k/\mathbb{Q}) \) is an elementary abelian \(p \)-group. Then \(p \)-rank of \(\text{Gal}(K_C/K) \) is equal to the \(p \)-rank of \(\text{Gal}(k_C/k) \).

In the case \(\text{Gal}(K/\mathbb{Q}) \) is an elementary abelian \(p \)-group, by the results of Furuta and Tate, we have the following lemma:

Lemma 4 ([1] Section 1). Let \(K \) be an absolutely abelian \(p \)-extension such that \(\text{Gal}(K/\mathbb{Q}) \) is an elementary abelian \(p \)-group and \(K_G = K \). Then, we have

\[
\text{Gal}(K_C/K) \cong \text{Coker}(\bigoplus_{i=1}^a \wedge^2(G_i) \longrightarrow \wedge^2(G)),
\]

where \(G_i \)'s are the decomposition groups of primes ramified in \(K/\mathbb{Q} \) and \(G = \text{Gal}(K/\mathbb{Q}) \).
We will assume $\text{Gal}(K/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^m$. Let p_1, \cdots, p_t be the primes ramified in K and h_K the class number of K. From genus theory, it follows that if h_K is not divisible by p, then $t = m$. Also it follows that if $m \geq 4$ then p divides h_K by Lemma 4. So, we assume $t = m$ and $m = 2$ or 3. (In case of $t = m = 1$, $p \not| h_K$. cf. [8].)

Lemma 5 ([1] Proposition 2). Suppose $m = 2$ and $p_i \neq p$ for $i = 1, 2$. Then $p|h_K$ if and only if $(\mathbb{Q}_p/p_1^2)_p = 1$ and $(\mathbb{Q}_p/p_2)_p = 1$.

Next, we consider the case where one of the ramified primes is p. Suppose $m = 2$ and p and p_1 are the only primes ramified in K. Then we can get easily $K = k(p_1)\mathbb{Q}_1$ and $p_1 \equiv 1 \pmod{p}$, where $k(p_1)$ is the unique subfield of $\mathbb{Q}(\zeta_{p_1})$ which is cyclic over \mathbb{Q} of degree p, ζ_{p_1} is a primitive p_1-th root of unity, and \mathbb{Q}_1 is the first layer of the cyclotomic \mathbb{Z}_p-extension of \mathbb{Q}.

Lemma 6 ([1] Proposition 3). Suppose $m = 2$ and p and p_1 are the only primes ramified in K. Then $p|h_K$ if and only if $(\mathbb{Q}_p/p_1)_p = 1$ and $p_1 \equiv 1 \pmod{p^2}$.

Suppose $t = m = 3$ and p_1, p_2 and p_3 all the primes ramified in K. We put D_{p_i}, the decomposition field of p_i ($i = 1, 2, 3$) in K. In [1], the following simple result is given:

Lemma 7 ([1] Theorem 2). Suppose $t = m = 3$. Following statements (a) and (b) are equivalent:

(a) h_K is not divisible by p,

(b) $[D_{p_1} : \mathbb{Q}] = [D_{p_2} : \mathbb{Q}] = [D_{p_3} : \mathbb{Q}] = p$ and $D_{p_1}D_{p_2}D_{p_3} = K$.

In the next section, we shall prove Theorem 1, using these results.

4. **Proof of Theorem 1**

Notations are as in previous section.

Firstly, we suppose $\lambda_p(k) = \mu_p(k) = \nu_p(k) = 0$. Clearly, this condition is equivalent to $A(k_n) = 0$ for any sufficiently large n. Then, k_n satisfies $k_n = k_{n,G}$ and $k_1 = k_{1,G}$, because all ramified primes are totally ramified in k_n/k_1. Since k_n is also an abelian p-extension of \mathbb{Q}, we can apply the results of Cornell-Rosen:

Let L be the maximal subfield of k_n such that $\text{Gal}(L/\mathbb{Q})$ is an elementary abelian extension of \mathbb{Q}. Since $k_n = k_{n,G}$, $\text{Gal}(k_n/\mathbb{Q})$ is the direct sum of the inertia groups of primes ramified in k_n/\mathbb{Q}, hence it follows that $L = k(p_1) \cdots k(p_t)\mathbb{Q}_1$. By Lemma 3, $A(k_n) = 0$ is equivalent to $p|\parallel h_L$. Note that if $t \geq 3$ then we always have $p|\parallel h_L$ as in the previous section. Hence we may examine in each case of $t = 0$ or 1 or 2.

If $t = 0$ then $L = \mathbb{Q}_1$, hence it is well known that $A(L) = A(\mathbb{Q}_1) = 0$ (cf. [8]).

If $t = 1$ then $L = k(p_1)\mathbb{Q}_1$. By lemma 6, we get the statement in Theorem 1.

In the following we assume that $t = 2$. In this case, $L = k(p_1)k(p_2)\mathbb{Q}_1$. Let G_p, G_{p_i} ($i = 1, 2$) be the decomposition groups for p, p_i in $\text{Gal}(L/\mathbb{Q})$ and let D_p, D_{p_i} be the fixed field of G_p, G_{p_i}, respectively. We note that $D_p \subset k(p_1)k(p_2)\mathbb{Q}_1$ and $D_{p_i} \subset k(p_1)k(p_2)\mathbb{Q}_1$.

Now, from our assumption $p|\parallel h_L$, we have $[D_p : \mathbb{Q}] = [D_{p_1} : \mathbb{Q}] = [D_{p_2} : \mathbb{Q}] = p$ and $D_pD_{p_1}D_{p_2} = L$ by Lemma 7. Here, we assume that either $(\mathbb{Q}_p/p_1)_p = 1$ or $(\mathbb{Q}_p/p_2)_p = 1$ or
\(p_2 \equiv 1 \pmod{p^2}\) holds, and either \((\frac{p_2}{p_1})_p = 1\) or \((\frac{p_1}{p_2})_p = 1\) or \(p_1 \equiv 1 \pmod{p^2}\). This is equivalent to

\[D_p = k(p_1) \text{ or } D_{p_1} = k(p_2) \text{ or } D_{p_2} = \mathbb{Q}_1\]
for \((i, j) = (1, 2)\) and \((2, 1)\),

(5)

because \([D_p : \mathbb{Q}] = [D_{p_1} : \mathbb{Q}] = [D_{p_2} : \mathbb{Q}] = p\).

If \(D_p = k(p_1)\), then \(D_{p_2} \neq k(p_1)\) because \(D_p D_{p_1} D_{p_2} = L\). Hence by (5) (put \((i, j) = (2, 1)\)), we have \(D_{p_1} = \mathbb{Q}_1\). Then \(D_{p_2} \subseteq k(p_1)\mathbb{Q}_1 = D_p D_{p_1}\), which contradicts \(D_p D_{p_1} D_{p_2} = L\). In the same way, if \(D_p = k(p_2)\), then \(D_{p_1} \neq k(p_2)\) and we have \(D_{p_2} = \mathbb{Q}_1\) by (5), which contradicts. Thus, it follows that the assumption (5) cause contradiction. Therefore, for \((i, j) = (1, 2)\) or \((2, 1)\), \((\frac{p}{p_1})_p \neq 1\), \(p \neq 1\), and \(p_j \not\equiv 1 \pmod{p^2}\).

Without loss of generality, we may assume \((i, j) = (1, 2)\). Since \((\frac{p}{p_1})_p \neq 1\), \(p\) is inert in \(k(p_1)\). Hence \(\sigma = (\frac{k(p_1)/\mathbb{Q}}{p}) \neq 1\), where \((\frac{k(p_1)/\mathbb{Q}}{p})\) is the Artin symbol, and \(\sigma\) generates \(\text{Gal}(k(p_1)/\mathbb{Q})\). We often regard \(\sigma >\) \(\text{Gal}(k(p_1)/k(p_2))\) or \(\text{Gal}(L/k(p_2)\mathbb{Q}_1)\) in the natural way. Similarly, we put \(\tau = (\frac{k(p_2)/\mathbb{Q}}{p_1})\) and \(\eta = (\frac{\mathbb{Q}_1/\mathbb{Q}}{p_2})\), then \(\sigma >\) \(\text{Gal}(k(p_2)/\mathbb{Q})\) and \(\eta >\) \(\text{Gal}(\mathbb{Q}_1/\mathbb{Q})\).

Since \((\frac{p}{p_1})_p \neq 1\), there exists \(x \in \mathbb{F}_p\) such that \((\frac{p_1 p}{p^2})_p = 1\). Then

\[
\left(\frac{p_2 p^x}{p_1}\right)_p = 1 \iff \left(\frac{k(p_1)/\mathbb{Q}}{p_2 p^x}\right) = \left(\frac{k(p_1)/\mathbb{Q}}{p_2}\right) \left(\frac{k(p_1)/\mathbb{Q}}{p}\right)^x = 1.
\]

Therefore \((\frac{k(p_1)/\mathbb{Q}}{p_2})_p = \sigma^{-x}\). Similarly, we obtain \(y, z \in \mathbb{F}_p\) such that \((\frac{p_2 p^y}{p_1})_p = 1\) and \(p_1 p_2^y \equiv 1 \pmod{p^2}\), and hence \((\frac{k(p_2)/\mathbb{Q}}{p_1})_p = \tau^{-y}\) and \((\frac{\mathbb{Q}_1/\mathbb{Q}}{p_2})_p = \eta^{-z}\).

Since \((\frac{k(p_1)/k(p_2)/\mathbb{Q}}{p})_p = (\frac{k(p_1)/\mathbb{Q}}{p}) (\frac{k(p_2)/\mathbb{Q}}{p}) = \sigma \tau^{-y}\), \(D_p\) is the fix field of \(\sigma \tau^{-y}\) in \(k(p_1)k(p_2)\). Therefore, when we consider \(G_p\) in \(\text{Gal}(L/\mathbb{Q})\),

\[G_p = \langle \eta, \sigma \tau^{-y} \rangle .\]

And similarly,

\[G_{p_1} = \langle \sigma, \tau \eta^{-z} \rangle ,\]

and

\[G_{p_2} = \langle \tau, \eta \sigma^{-x} \rangle ,\]

in \(\text{Gal}(L/\mathbb{Q})\).

By a direct computation, we have,

\[G_p \cap G_{p_1} = \langle \sigma \tau^{-y} \eta^{xz} \rangle .\]

Hence,

\[G_p \cap G_{p_1} \cap G_{p_2} = \langle \sigma \tau^{-y} \eta^{xyz} \rangle \cap \langle \tau, \eta \sigma^{-x} \rangle \]

\[= \begin{cases}
\{1\} & \text{if } xyz \neq -1, \\
\langle \sigma \tau^{-y} \eta^{xyz} \rangle & \text{if } xyz = -1.
\end{cases}\]

But, our assumption \(D_p D_{p_1} D_{p_2} = L\) implies \(G_p \cap G_{p_1} \cap G_{p_2} = \{1\}\). Hence \(xyz \neq -1\).
Conversely, we assume k satisfies the conditions of Theorem 1 in case of $t = 2$. Since $k_1 = k_{1,G}$, it follows easily that $L = k(p_1)k(p_2)\mathbb{Q}_1$ is the maximal intermediate extension between \mathbb{Q} and $k_n(n \geq 1)$ such that $\text{Gal}(L/\mathbb{Q})$ is an elementary abelian p-group. Without loss of generality, we may assume $(i, j) = (1, 2)$. Since $\text{Gal}(k(p_1)k(p_2)/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^2$ and p is unramified in $k(p_1)k(p_2)$, p must decompose in $k(p_1)k(p_2)$. But the condition $(\frac{p_2}{p_1})_p \neq 1$ implies p is inert in $k(p_1) \subset k(p_1)k(p_2)$, hence we obtain $[D_p : \mathbb{Q}] = p$. Similarly, $(\frac{p_1}{p_2})_p \neq 1$ and $p_2 \neq 1 \pmod{p^2}$ imply $[D_{p_1} : \mathbb{Q}] = [D_{p_2} : \mathbb{Q}] = p$. Therefore, as in the above computation of G_p, G_{p_i}, we have $D_pD_{p_1}D_{p_2} = L$, by $xyz \neq -1$. □

5. REMARKS

The condition of Theorem 1 in [12] means $xyz = 0$ which is a special case of $xyz \neq -1$. Hence, our Corollary 2 contains some known results and there exist infinitely many fields satisfying the conditions of Theorem 1 (cf. [12]).

If $K = k(p_1)k(p_2)$ satisfies the conditions of Theorem 1, then $\lambda_p(k) = \mu_p(k) = 0$ for any field $k \subseteq K$ with $[k : \mathbb{Q}] = p$. This is a result of Fukuda [4]. He has shown this result using a technic of capitulation of ideal class group. The case $xyz = -1$ is a difficult case. But we can get some results:

Proposition 8. Notations are as in section 3. Assume that $(\frac{p_1}{p_1})_p \neq 1, (\frac{p_1}{p_2})_p \neq 1$, and $p_2 \neq 1 \pmod{p^2}$. Then $\lambda_p(k) = \mu_p(k) = 0$ for the decomposition field k of p in $k(p_1)k(p_2)$.

Proof. We apply a result of [6]:

Lemma 9 ([6] Corollary 3.6). Let k be a cyclic extension of \mathbb{Q} of degree p. Then the following conditions are equivalent:

(a) $\lambda_p(k) = \mu_p(k) = 0$,

(b) For any prime ideal w of k_∞ which is prime to p and ramified in $k_\infty/\mathbb{Q}_\infty$, the order of the ideal class of w is prime to p.

If $xyz \neq -1$ then we have $\lambda_p(k) = \mu_p(k) = 0$ by Corollary 2. So we only consider the case $xyz = -1$. In this case we have $k \neq k(p_i)$ ($i = 1, 2$). It follows easily that $A(k)$, the p-part of the ideal class group of k, is cyclic of order p, and it is generated by products of primes of k above p. On the other hand, for $i = 1, 2$, the prime p_i of k above p_i generates $A(k)$, and is inert in k_∞/k. Since the primes of k above p is principal for some k_n by the natural mapping $A(k) \to A(k_n)$ (cf. [7]), p_i is principal in k_∞.

Since the primes ramified in $k_\infty/\mathbb{Q}_\infty$ are p_1 and p_2, which is principal in k_∞, we can apply Lemma 9 and obtain $\lambda_p(k) = \mu_p(k) = 0$. □

Recently, Fukuda verified Greenberg conjecture for various cubic cyclic fields k with $f_k = p_1p_2$ and $p = 3$. He gives an example, which is the case $p_1 = 7$ and $p_2 = 223$. Note that there exist two such fields, and these p_1 and p_2 do not satisfy condition (3) in Theorem 1. He verified $\lambda_3 = \mu_3 = 0$ for one of such fields by using his result concerning with the unit group of k (cf. [5]).
When $t \geq 3$, i.e., at least 3 primes are ramified in k/\mathbb{Q}, there are a few results for Greenberg conjecture. In this case, the p-rank of $A(k)$ is greater than 2. Greenberg([7]) gave the following example, but the proof are omitted in his paper: $p = 3$ and k is an cubic cyclic field with conductor $7 \cdot 13 \cdot 19$ and 3 is inert in k/\mathbb{Q}. He mentioned that by "delicate" arguments one can show $\lambda_{3}(k) = \mu_{3}(k) = 0$. The author had a chance to contact Prof. Greenberg, and asked him about this example. He kindly taught the author the "delicate" arguments, which is a system to examine relations of the ideal class group of intermediate fields of $k\mathbb{Q}_{1}$. Applying his idea, we can show the following result:

Theorem 10 ([13]). Let p be any odd prime. For any integer $0 \leq m \leq p-1$, there exist infinitely many cyclic extension fields k of \mathbb{Q} with $[k : \mathbb{Q}] = p$ such that p-rank$A(k) = m$ and $\lambda_{p}(k) = \mu_{p}(k) = 0$.

REFERENCES

**DEPARTMENT OF MATHEMATICAL SCIENCE, SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, 3-4-1, OKUBO SHINJUKU-KU, TOKYO 169-8555, JAPAN
E-mail address: 697m5068@mse.waseda.ac.jp**