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SR PR HHEE (Toshihico Arimitsu)
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I. INTRODUCTION

Quantum field theory is constructed upon a basic assumption of stability: the stabil-
ities of vacuum and one-particle state. These stabilities are essential for perturbational
calculations where physical particles are specified by asymptotic fields with renormalized
masses. The vacuum, therefore the representation space, is specified by the annihilation
and creation operators of the asymptotic field. For finite temperature, vacuum keeps its
stability but one-particle state loses the stability because of thermal fluctuations. In this
case, we do not have an asymptotic field. We cannot find it out by going back to infinite
past nor going forward to infinite future. The concept of the dynamical mapping [1,2]
was introduced to secure this situation, where the mapping of Heisenberg operatbrs is not
necessarily performed by means of asymptotic fields. In non-equilibrium and dissipative
systems, the situation becomes much worse, where both vacuum and one-particle states
are unstable. We do not know how one can extend the concept of the dynamical mapping
to this challenging situation. "

Within Thermo Field Dynamics (TFD) [1-4], two vacuums representing thermal equi-

- librium states of different temperatures are mutually unitary-inequivalent. We can cal-
culate thermodynamic quantities by representing corresponding observable operators by
means of the Fock space constructed on the thermal vacuum specified by temperature
T. Therefore, it is interpreted that the quasi-static process induces a change of system
among these unitary inequivalent representation spaces.

On the other hand, for realistic dynamical processes, how can we interpret this mi-
gration in the set consisting of the orthogonal (inequivalent) representation spaces? The
situation may become more vivid when one remembers the process of the vacuum ex-
pansion in terms of thermodynamics. In this paper, by making use of Non-Equilibrium

Thermo Field Dynamics (NETFD) [5-32], we will propose a possibility how one can deal
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with the migration of a vacuum among the mutually inequivalent representation spaces.
The time-evolution of a thermal vacuum (equivalently the time-evolution of a representa-
tion space) is controlled by dissipative thermal processes, and the dynamics of fields are
specified by mechanical rules. The former may be described by a macroscopic time scale,
whereas the latter by a microscopic one.

NETFD is a canonical operator formalism of quantum systems in far-froﬁl-equilibrium
state which provides us with a unified formulation for dissipative systems (covering whole
the aspects in non-equilibrium statistical mechanics, represented by the Boltzmann, the
Fokker-Planck, the Langevin and the stochastic Liouville equations) by the method similar
to the usual quantum field theory that accommodates the concept of the dual structure
in the interpretation of nature, i.e. in terms of the operator algebra and the representation
space (Fig. 1). The representation space of NETFD (named thermal space) is composed
of the direct product of two Hilbert spaces, the one for non-tilde fields and the other for
tilde fields.

The infinitesimal time-evolution generator (hat-Hamiltonian) of the quantum master
equation within NETFD was discovered first [5,6] for the cases corresponding to station-
ary processes by, so to speak, a principle of correspondence which makes the connection
between NETFD and the density operator formalism [33-35]. Then, it was found [7] that
the time-evolution generator can be also derived upon several axioms such as (2) and
(8) below. The renormalized time-evolution generator in the interaction representation
(the semi-free hat-Hamiltonian) corresponding to non-stationary processes was derived
together with an equation for the one-particle distribution function [8,9]. Within these
aspects, the canonical formalism of dissipative quantum ﬁelds in NETFD was formulated,
and the close structural resemblance between NETFD and usual quantum field theories
was revealed [10,11]. The generating functional within NETFD was derived [12]. Fur-
thermore, the kinetic equation was derived within NETFD [13], and the relation between
NETFD and the closed time-path methods [36-38] was shown (see Appendix A for the
relation of NETFD to the path integral method). The extension of NETFD to the hy-
drodynamical region, as well as the kinetic region, was started [14,15,39].

The framework of NETFD was extended further to take account of the quantum
stochastic processes [16-21]. Here again NETFD allowed us to construct a unified canon-
ical theory of quantum stochastic operators. The stochastic Liouville equatidns both of

the Ito and of the Stratonovich types were introduced in the Schrédinger representa-
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tion. Whereas, the Langevin equations both of the Ito and of the Stratonovich types were
constructed as the Heisenberg equation of motion with the help of the time-evolution gen-
erator of corresponding stochastic Liouville equations. The Ito formula was generalized
for quantum systems.

NETFD has been applied to various systems, e.g. the dynamical rearrangement of
thermal vacuum in superconductor [23], spin relaxation [24], various transient phenomena
in quantum optics [25-29], non-linear damped harmonic oscillator [30], the tracks in the
cloud chamber (a non-demolition continuous measurement) [31], 'miéroscopic derivation

of the quantum Kramers equation [32].

II. FRAMEWORK OF NETFD

The dynamics of physical systems is described, within NETFD, by the Schrodinger
equation for the thermal ket-vacuum |0(%)):

o .

—|0(t)) = —i t)).

~10(5)) = —if1]0(t) 1)
The time-evolution generator H is an tildian operator satisfying

(if)” =iH. : (2)

The tilde conjugation ~ is defined by [3,4]:

(A1Ag)”~ = A; Ay, (3)

(c1di + e2ds)™ = i A + &3 As, (4)
(A)N = A’ (5)

(AT)N = AT) (6)

where ¢; and ¢y are c-numbers. The tilde and non-tilde operators at an equal time are

mutually commutative:
[A, B]=0. (7)

The thermal bra-vacuum (1| is the eigen-vector of the hat-Hamiltonian H with zero

eigen-value:
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(118 = 0. (8)

This guarantees the conservation of the inner product between the bra and ket vacuums

in time:

o) =1. (9)

Let us assume that the thermal vacuums satisfy

(1 =(1], 10(t))~ = |0(to)), (10)

at a certain time ¢ = ¢;. Then, (2) guarantees that they are satisfied for all the time:

1™ = (1], |o())~ = 0(2)). (11)

Dissipative Q. Field Th.
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Y . | .
FA@) =4[H@), A®)] £10(2)) = —iH|0())
Heisenberg Eq. le » Q. Master Eq.
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dA(t) = i[Hy(t)dt, A®)]|  dI0f(t)) = <iHz.dt [05(1))
—dM(t) [dM(t), A(t)] Herdt = Hdt + dM;
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(Ito) (Ito)
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Heisenberg Rep. Schrédinger Rep.

FIG. 1. System of the Stochastic Differential Equations within Non-Equilibrium Thermo Field

Dynamics. RA stands for the random average. VE stands for the vacuum expectation.
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The observable operator A should be an Hermitian operator consisting only of non-

tilde operators. Its expectation value is real as can be proven as follows.

(A); = (A7
= {(114jo@)}~
={A{jow)y”
= (1l4)o@®))
= (114%0(t))
= (1]4lo(t))
= (A (12)

An Example —Quantum Kramers Equation

Let us find out the general structure of hat-Hamiltonian which is bilinear in

(z, p, &, P).  and p satisfies the canonical commutation relation

[z, p] =1. | (13)
Accordingly, Z and p satisfies

&, B = —i. | (14)

The conditions, (iH)~ = iH, and (1|H = 0 give us the general expression

H = Hy + i, (15)
where
Hy = Hy — H H—i2'+’—"—“’3x2 | (16)
0o = 11p 0, 0= 2mP ) )
II = I + IIp, | (17)

with



- 1 -
fin = ~igr (@~ ) (0+5),
i, = -—%ﬁmw(l +27) (z — £)°.

Here, we neglected the diffusion in z-space. The Schrédinger equation
2 00y = ~iAl0(®)
at ] - Y

gives the quantum Kramers equation.

The Heisenberg equation for the dissipative system is given by

| %z(t) = ilA(t), 2(t)]
= —p(0) + g {alt) ~ 50))
%awammm

= —mas(t) - 2 {plt) + (1)}
+ikmw(1 + 27) {z(t) — Z(t)} .
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(18)

(19)

(20)

(21)

Applying the bra-vacuum (1| of the relevant system, we have the equations for the

vectors:

1

la(t) = - (1lp(r),
d

E<1|p(t) = ——mwz(.1|x(t) — n;(llp(t).

The stochastic Liouville equation within the Ito calculus becomes

d|0g (1)) = —iH,dt|0f(2))),

with the stochastic hat-Hamiltonian
Hyodt = Hdt + dM,.

Here, the martingale operator dM, is defined by

Jrmw

dM, = (¢ — %) (dX; + dX,)

with

(22)

(25)
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dX, = dB, + dB], (26)

where dB, dB' and their tilde conjugates are the operators representing quantum Brow-
nian motion (see Appendix B). The generalized fluctuation-dissipation theorem is given
by '

dM,dM, = —21Ipdt. 27

Taking a random average, the stochastic Liouville equation (23) reduces to the quantum

master equation (19) with

10(2)) = {104()))- | (28)

The stochastic Heisenberg equation (the Langevin equation) for this hat-Hamiltonian

is given by

da(t) = i[H(t)dt, o(t)] — dM(t) [dM(t), (2)]

_ %p(t)dt + %m {z(t) — 5(0)} dt, o (29)
dp(t) = ~ma(t)ds — S {p(0) + 5(0)} dt
_ vx;w [dx(®)+dX@®)}. | (30)
The averaged equation of motion is given by
2 (alt)) = — (p(e)), (31)
%((P(t)» = —mw*{z(t)) — £{p()), (32)

where {(---) = (1]{|---|)|1). The vacuumes (| and |} are introduced in Appendix B. These
averaged equations can be also derived from (20) and (21) by taking the average (- - -)).

III. STATIONARY STATE
Let us assume the existence of the eigen-equation

H|0g) = E|0g), (33)



7

where the eigen-value Eisa complex c-number called hat-energy.
Applying (1] o (33) and making use of (8) and (9), we see that

0= (1|H|0g) = £ (1/0z) = E. B E7)

Therefore, if there exists the eigen-vector satisfying (33), its eigen-value E is equal to zero.
The Schrédinger equation (1) tells us that the eigen-vector |0g) is a stationary state.

If we assume that there is only one equilibrium state, the stationary eigen-vector
represents the thermal equilibrium state which will be referred to as |0,,)-

IV. VACUUM FOR CANONICAL ENSEMBLE (TFD)

Let us consider two sets of boson operators (a, a') and (&, a') which satisfy the

commutation relation:
la*, @¥] = 6", (35)
where we introduced the thermal doublet notation defined by

a*l=a, a*?=3gl, . (36)
T

, a7t =—g, (37)
and the Kronecker delta 6. These operators saﬁisfy the thermal state conditions

al0,4(6)) = =/TOa]0,,(6)), (39)
16)la = 10)]a. | (39)

The thermal vacuums (1()| and |0,(0)) are tilde-invariant:
(1O = (LO)], [0e4(0))™ = [0eq(6))- (40)

For simplicity, we will confine the discussion to the case of Boson fields, which can be
easily extended to Fermion fields. '

The vacuums (1(f)| and |04,(8)) representing the canonical ensemble are defined by

(L0175 =0, 7%0,4(6)) =0, (41)
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with the creation operator ; ‘and the annihilation operator s which are defined through

the Bogoliubov transformation [1]- [4]
7% = B()*a", 75 =a"B7(9)™. (42)
Hei‘e, we introduced the thermal doublet notations

W =y, =4, ; (43)
B =t W= h (44

and the matrix

Bl = 1+ a(8) —n(8) . (45)
-1 1

Representing, for example, the number operators a'a with respect to this vacuum, we

obtain

(1(0)la'al0cy(6)) = 7(6). )
Using the thermal state conditions (38) and (39), we see. that

n(0) = (/7@ 1), (47)

which is the thermal vacuums representing the canonical ensemble with temperature
T(6). Note that two representation spaces belonging to different parameter 8 are unitary-
inequivalent [1-4].

Imagine a space constituted by the set of mutually inequivalent degenerate thermal
vacuums |0,(6)) specified by 7(T'(6)) having zero hat-energy, i.e., E = 0. The adiabatic
change of the thermal equilibrium state specified by temperature 7°(9) to the one by T'(¢")
can be interpreted as the change of the parameter 8 to & in this space.

For non-equilibrium cases, thermal vacuum, which is not the zero hat-energy vacuum
~ in general, is specified by the one-particle distribution function nk(t) Its different depen-
dence in k gives mutually inequivalent vacuums. A participation of certain dissipative
process makes it possible to connect these inequivalent vacuums in time as will be shown

in the following.
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V. SEMI-FREE OPERATORS

Now, we consider, for simpIicity, the case of a semi-free field

e = [ s e an(, (45)
oz = (%;ﬁ e~ H g (£)H, - (49)

accompanied by the equal-time commutziti_on relation
[ax(2)¥, e(t)"] = 6" 6(k — £). (50)
Here, we introduced the thermal doublet notation for the semi-free operators by

a(t)=r = ai(t), a(t)*=2 =al(), (51)
aty = =al(t), @ty = —ax(?). (52)

The Heisenberg operators a(t)* and a(t)” are defined by
a()F =V DapV (L), @) =V (Bav (1), (53)

where V() satisfies

%V(t) — i), (i) =, | (54)
with V(0) =1, i.e.,
a(t) = VWV (1), a0 = VA 0Ev ). ' (55)

Note that a; and @), do not depend on time. Since the semi-free hat-Hamiltonian H,
is not necessarily Hermite, we introduced the symbol f} in order to distinguish it from
the Hermite conjugation . However in the following, we will use 1 instead of 1, for
simplicity, unless it is confusing. We also drop the subscript representing momentum
unless it is necessary.
It is known that the hat-Hamiltonian for the renormalized semi-free field is given by
[8,9]

H, = Hy, + i, (56)
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with
Hos = w(taa +w(), (57)
ngﬁ”m@A@W+§%Qﬁ”f+w@L » (58)

where the integration with respect to the momentum k is implicit. We introduced two

matrices
1 + 2n(t -2n(t
e I (59)
21 +n(t)) —(1+ 2n(t))
and, 71! = 72 = 1, 7!2 = 722 = —1. Here, n(t) represents the one-particle distribution

function which should be specified by the kinetic equation

d

Z(t) = —26(t)n(t) +iZ<(2), (60)

where the functions x(t) and X <(¢) (w(t) also) are determined self-consistently when an
interaction Hamiltonian is specified. |

The equation of motion for the field is given by the Heisenberg equation
d TR § & B} -
Sy =il®), o@, (61)
with
H(t) = V@) BV (). (62)

Then, the equation of motion for the semi-free operator a(t)* becomes

%a(t)ﬂ = —i [w(t)6" — ik(t)A()*] a(t)”
dn(t) pv v ’
~ B rary (63)

Introducing annihilation and creation operators

W=y, AT=5F, (64)
'7#:1 = 'Yga '7#22 = _‘:ﬁv ' (65)

in the Schrédinger representation through
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W =B#)"a", A =aB )", (66)
with the time-dependent Bogoliubov transformation

Bl = 1+n(t) —n(t) | (67)

the hat-Hamiltonians (57) and (58) reduce, respectively, to [8,9]

Hoe = [ dun(t) (vime — 7). (68)
IL=- / &Pk (k) (v +Fins)
dng(t) ».
-2l (69)

The new operators annihilate the thermal vacuums |0(¢)) and (1] as
12l0(t)) =0, (1/5% =0, (70)

respectively. The time-dependence of ; and 4; comes from that of the one-particle dis-

tribution function n(t):

Y= 7t:0 — [n(t) — n(0)] 'TQ- (71)

Substituting the normal ordered expression of the hat-Hamiltonian (68) and (69) into

the Schrédinger equation (1), we can obtain its solution as

0®) = V(©l0) -
= exp{ [k fru(®) — me(0)] 287 }10) (72)

This expression tells us that the time-evolution of the unstable vacuum is realized by
the condensation of 4;4{-pairs into the vacuum. It also shows that the vacuum is the
functional of the one-particle distribution function ng(t). The dependence of the thermal

vacuum on ng(t) is given by

oy 100) =250 (73
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We see that the vacuum |0(t)) represents the state where exists the macroscopic object
~ described by the one-particle distribution function ng(t).

The operators
Y =VHORVE), Ao =V OV E), (74)
in the Heisenberg representation with the thermal doublets,

YO =0,y =77 (1), (75)
;Y(t)y;l' = 7$(t)7 W(t)pzz = —4(t), (76)

satisfy the equal-time commutation relation:
@)%, 3(8)"] = 6+, (77)
and have the properties
Y(@®)I0) =0, (1F*(t)=0. (78)

Note that the thermal vacuums are tilde invariant (see (40)).

The quasi-particle operators y(t)* satisfy the equation of motion

(e = i () — (e 2(0)" (1)

where the matrix 74 is defined by 3! = —732 = 1, 73> = 7' = 0. The equation of

motion (79) is solved to give

A" = exp { /0 ds [—iws(8)6* — (s} "]} 7(0)”. (80)

VI. REFERENCE VACUUM

In order to put the part relating to the non-equilibrium and dissipative time-evolution

into vacuum, we divide V (t) into two parts:

V(t) = Vo)W (), (81)
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where Vp(t) satisfies

d -

ZV(t) = —z‘ffo,ﬂ%(t). | (82)
Then, we see that W (t) obeys
SW() = IOW), N
with
f1(t) = V™ () iRV t) = I, (84)

where we used the commutativity
[Hoyz, I5] = 0. (85)

Operators in this representation evolves in time as

a(t) = V5 (B)a o r) = are o % o), (36)
O = V5 (Ot To(t) = teode 0, (87)

Here, we are using the same notation a(t)* and (¢)* for the quasi-particle operators as
those for the semi-free particle operators introduced in the previous section. We hope
that they are not confusing.

We call the vacuum

0()) ret = W(t)i())
= exp { [k fru(®) ~ me(0)] 23 H0), (88)
re(1] = (1To(2) = (1, (89)

the reference vacuum [22]. For the latter equation, we used the fact that
(1|Hy; = 0. » (90)

"The Schrédinger equation for the former vacuum |0()),o can be rewritten as

{5+ e () s | 0 =0 o1

k(t
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This shows that the reference vacuum, in this case, is migrating in the super-representation
space spanned by the one-particle distribution function {ni(t)} with the wvelocity

{dny(t)/dt} as a conserved quantity. These vacuums satisfy
ref(LI77 (1) =0, Y(£)I0(t))ret = 0. - (92)
For the case of a semi-free particle corresponding to a stationary process [5,6] where
iD<(t) =27, w(t)=w, K{E)=k | (93)

the kinetic equation becomes

ant) _

o 2k [n(t) — 7). (94)

Then, the hat-Hamiltonian (56) reduces to
B = Hy+il, | (95)
with

Hy = Ho— Hy, Ho=wa'a, (96)

I=-x [(1 + 2m) (a*a + d*d)
—2(1+n)aa — 2ﬁaf&“] — 2K7. 97)

The time-dependence of the reference vacuum is given by

10(£)) et = exp { [ — n(0)] (1 — &™) v*5* } |0), (98)

where 7 is the one-particle distribution function of the final equilibrium state, say () in
section IV. For this simple case, |0(t)) is determined by 7, n(0) and «. It is interesting if we
put n(0) = n(6p) and 7 = n(f), and remember that, in non-equilibrium thermodynamics,
the thermodynamical states are specified only by its initial and final states.

The representation space (the thermal space) of NETFD is the vector space spanned by

the set of bra and ket state vectors which are generated, respectively, by cyclic operations
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of the annihilation operators () and ¥(t) on (1|, and of the creation operators v*(t)
and 7*(£) on [0(t))yet- o

The normal product is defined by means of the annihilation and the creation oper-
ators, i.e. v*(t), 5%(t) stand to the left of y(t), 4(t). The process, rewriting physical
operators in terms of the annihilation and creation operators, leads to a Wick-type for-
mula, which in turn leads to Feynman-type diagrams for multi-point functions in the
renormalized interaction representation. The internal line in the Feynman-type diagrams

is the unperturbed two-point function (the propagator):

G(t, £ = ~i(LIT [a(t)“a(t)" W (s)] O

= [B' g, t)B(t)]", (99)
where
Gt,8') = —i(UT [y()* ()" W (9)] 0) et
GR@t,t) 0
— | . (100)
0  GA(t,t)
with
GR(t,t)
t .
= —i0(t —t') exp {/ds [—iw(s) — n(s)]} , (101)
tl
G4(t,?)
¢
— (¢ — ) exp { /t ds[—iw(s) + n(s)]} . (102)
Here, the time argument e represents a time which is larger than ¢ and #'.
VII. DYNAMICAL MAPPING
Within the reference vacuum representation, we have
a(t) = () + n(t)7* (t), (103)

at(t) = {L+n(®)}55(¢) +7(t), | (104)
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which can be interpreted as the dynamical mapping of the operators of a(t) and @'(t) with
" respect to the reference vacuum p¢(1| and |0(¢)),r- The fact that the reference vacuum is

specified by the one-particle distribution function n(t) is shown in the dynamical mapping

a'(t)a(t) = n(t) + {1+ n®)} v (£)7(t)
+n()7F (1)3(t)
+n(t) {1+ 2@} OF @) +1(0)F@). (105)

N

The dynamical mapping of the fluctuation is given by

at(t)a(t)a’ (t)a(t) —ref (1la’(t)a(t)|0(t))ze
=n(t) {1+ n(t)} + [normal ordered series]. (106)

VIII. AN INTERPRETATION OF THE REFERENCE VACUUM
REPRESENTATION

In order to understand the physical meaning of the reference vacuum, we will consider,

for a moment, the Schrédinger equation
9 0(t)) = —i (Ho + €M) [0(2)) (107)
ot ’

with e < 1.
Let us suppose that the vacuum |0(¢)) depends on two independent time variables g

and %;:
10(£)) — 100, t1)), (108)

where t, represents a fast (or microscopic) time scale and ¢; a slow (or macroscopic) time
scale. The slow and fast in time scale is introduced with respect to the small parameter

€. Then, the time derivative will be given by
— = — b e—. _ (109)

Physical axis can be provided by putting to = t and t; = €t at an appropriate stage.
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Expanding the vacuum with respect.to €:

0(t0, 1)) = 10(to, t1))o + €|0(%0, £1))1, (110)

we obtain the equations of order of €® and of €', respectively, in the forms

d -
5 |0(t0, t1))o = —iHo|0(fo, t1))o, - (111)
0

8 L
—a—t; IO(tO) t1)>1 + ZHolO(to, tl))l

_ -5%|0(t0,t1)>0 — iE,10(t0, t2))o. (112)

The solution of (111) is given by
10(to, £1))o = e~ Ho%|0(t1))o. (113)

Note that the vacuum |0(¢;))¢ appeared on the right-hand side depends only on the slow
time ;.

Substituting (113) into the right-hand side of (112), we have inhomogeneous terms
which should be vanished unless they give rise to secular divergence. Then, we obtain the

equation which determines the ¢;-dependence of |0(%1))o in the form

2 060 = =B ) (), | (114)
with
Hi(to) = e*'ffotOFIle“iﬁotol. (115)
The solution
10(t1))o = e~ |g) (116)

of (114) gives the time-dependence of the reference vacuum. This slow time-dependence
may be related to that of macroscopic (or semi-macroscopic) objects. The point is that we
put this slow time-dependent part into one of the characteristics of the reference vacuum.

Since the inhomogeneous terms in (112) has been taken out, the equation for |0(to, #1))1

reduces to
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E) | .
%IO(to,tl»l = —ZHQIO(tQ,tl»l. (117)

The vacuum |0(¢;)); which appears in the solution of this equation is determined by the
secular terms in the equation of order of €2.

It is necessary to determine the dynamics with respect to the fast time variable to
and the one with respect to the slow time variable ¢; self-consistently in the sense that
the thermalization of the reference vacuum and the microscopic time-evolution become
mutually consistent on the physical axis. There are similar intérpreta,tions supporting
this point of view. The time-evolution of a vacuum specified by the stochastic Liouville
equation is controlled by a random process whose time index is semi-macroscopic [17-19].

Note that the séparation of time scale into two is intimately related to the Boltzmann
equation limit. If this limit is not appropriate, as in the hydrodynamical regime, one needs
to introduce more independent time variables which may leads to multiple time-scale
analysis [42,43]. In the hydrodynamical regime, the vacuum describing non-equilibrium
thermodynamic processes is a functional of the space and time dependent thermodynamic
quantities, e.g., the local temperature, the local pressure, the local chemical potential,
the local fluid velocity and so on [15]. The space and time indices of these quantities are

mMacroscopic.

IX. COMMENTS AND FUTURE PROBLEMS

We introduced in this paper one of the new concepts revealed by the development
of NETFD, the concept of migration of unstable vacuum, which is inevitable for the
dissipative quantum systems in far-from equilibrium states. The concept was clearly
stated by the expression (91) which shows that in the kinetic regime the reference vacuum
migrates with the velocity dng(t)/dt as a conserved quantity in the super-representation
épace spanned by the one-particle distribution function ng(t). In order to understand the
migration among inequivalent representation spaces, it is required to extend the concept
of dynamical mapping for dissipative non-equilibrium systems, which was initiated in
this paper. In this respect, an extension of the mechanism and of the concept in the
app‘earance of macroscopic objects due to the Boson transformation to non-equilibrium
dissipative situations is one of the attractive future problems. It is also necessary to

extend the present approach to cope with phenomena in the hydrodynamical regime [15],
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such as dense fluid, dense nuclear matter, dense plasma and so on.

The formulation of NETFD has a wide potentiality in the sense that it may provide
us with a technical tool telling how to extend the concepts revealed in the usual quantum
field theory to dissipative non-equilibrium cases. The discovery that the time-evolution
of unstable vacuum is realized by the condensation of v} 4{-pairs into the vacuum is one
of the examples. We hope that with the help of NETFD we can find out a breakthrough
to realize Boltzmann’s original dream, i.e., the essential understanding of irreversibility.
The notion of the dual structure in quantum field theory, the operator algebra and the

representation space, was not recognized in Boltzmann’s days.
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APPENDIX A: RELATION TO PATH INTEGRAL

The kernel
KB, t50/, 1) = e e 50! ), (A
defined by
@p00)
= 5] Ke t ,00 0 (42)

can be expressed in terms of path integral. Here, we introduced the coherent state by
o, §) = e "6 51540, ), (A3)
with

dla, B) = alo, B), dla,f) =0, B) (Ad)



(@, Bla’ = (o Bla*, (o Bla" = (c, BIB-

- By making use of

(anaﬁnlan-—l,ﬁn—— )
—3lan|?—Llon-12+ofan—1

—=e7 2

xXe 2 lﬂn-—1|2_ 2 lﬁnlz+ﬂn_1ﬁn

and

hn,n—l (am ﬂn Ian——h ﬂn—l)
= (amﬂn‘ﬁlan—la ﬁn—l)
= {wa;lan_l — whnPrs

—iK [(1 + 20 ) (o501 + Brfn_y)

~ 21 + R)an_18;_y — 200}, — ik}

X (an’ ﬁnlan-—l’ /Bn—l)

the path integral

K(a’ ﬁ’t Cl/’IBI t,)

- (T /22 (T 22)

X (an, Bv|an—1, Bn-1) - - - (a1, Bi| oo, Bo)

N-1
X eXp [—iAt z hn,n-——l]

n=1

foen e_§|0‘12 %lallz’_%lﬁ|2+%lﬁ'|2/Dza/D2ﬂ

YeXp [z /t " dt [ia*(8)a(t) — iB* (1)B(2)

—at) {wa*(t) — ik(1+ 2n)a*(t) + 2ik(1 + 2)5* (1)}
—B(t) {—wp*(t) — ir(1 + 20)B*(t) + 2ixna*(t)}

—2k7)] .

can be solved with the help of the equations of motion

d [ e o* (%)
& g1 B ()
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(A5)

(A6)

(A7)

(A9)



0- w—ik(1+2n) 2ik(l+n)

—2iKkn w +ik(1 + 27)

with the boundary conditions

a*t)=a", ai)=d

pgrt)=p" B@)=p.
The result is

K(a7 187 t; a,) ﬁl’ t’)

1 1 1 1
= vt —t) exp | ~5laf — o/ ~ 2|8 - 210"

+k’z(t — t’) ,3'*0/ + kf(t — tl) Ot*,@
+At—t) o + 05t —t) B*B]

where

ki(t) = (1+R)p(t) (1 — e 25
ks(t) = nv(t) (1 — e™2%t)
e(t) — I/(t) e—iwt—r‘:t
1

V(t) = (1 + ﬁ) — ,ﬁe—Zn't'

Then, we finally obtain

(o, BlO(1)) :
6{2 d (,{2 / ! / ! /
= [ L BB a0, 0,00, 810)
I R L e T
1+ n(t)
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(A10)

(A11)

(A12)

(A13)
(A14)
(A15)
(A16)

(A17)

Let us introduce the annihilation and creation operators b;, b} and their tilde conjugates

satisfying the canonical commutation relation:
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[be, b =8t =1, [br, Bl] = 8(t ~¢). (B1)
The vacuums (| andv |) are defined by
b)) =0, bB)=0, (|bf=(B (B2)

The argument ¢ represents time.

Introducing the operators
| t—dt ¢
B = /0 dBy = /0 dt' by, | | (B3)
t—dt ¢ :
Bf = / dB} = / ' b, (B4)
0 0
and their tilde conjugates for ¢ > 0, we see that they satisfy B(0) = 0, BY(0) =0,
[Bs, B:] = min(s, ), (B5)

and their tilde conjugates, and that they annihilate the vacuum |) with the thermal state

condition for (|:
dBy) =0, dBy))=0, (|dB} = (|dB. (B6)

These operators represent the quantum Brownian motiofl.

Let us introduce a set of new operators by the relation
dCf = B*dBy, (B7)
with the Bogoliubov transformation defined by

Y 1+n —-n
B* = . , (B8)

where 7 is the Planck distribution function. We introduced the thermal doublet;:

dB=' =dB,, dB'*=dB}, (B9)
dB=' = dB!, dB**=—dB, | (B10)

and the similar doublet notations for dC¥ and dC¥. The new operators annihilate the

new vacuum (|, and have the thermal state condition for |):
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dCil) =0, dCy|) =0, (|dC} = (|dC,. | (B11)

We will use the representation space constructed on the vacuums (| and |). Then, we

have, for example,

([dBy]) = (|dBf|) =0, | (B12)
(|dBJdB:|) = ndt, (|dB,dB}|) = (7 + 1) dt. (B13)
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