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Abstract

A model of a system driven by quantum white noise with singular quadratic self-
interaction is considered and an exact solution for the evolution operator is found. It
is shown that the renormalized square of the squeezed classical white noise is equivalent to
the quantum Poisson. process. A convenient regularization of singular quantum differential
equations for the evolution operator is suggested. We describe how equations driven by
nonlinear functionals of white noise can be derived in nonlinear quantum optics by using
the stochastic limit.
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Quantum white noise has emerged in quantum optics $[1,2]$ and it has been widely studied
in quantum theory $[1,2]$ , in infinite dimensional analysis [3] and in quantum probability
$[4,5]$ . Ordinary white noise differential equations describe quantum fluctuations in quantum
optics, in laser theory, in atomic physics, in the theory of quantum measurement and in
other topics and they are linear with respect to white noise in the sense that the typical
equation for the evolution operator $U_{t}$ has the form [1,2,4]

$\frac{dU_{t}}{dt}=-i(^{p_{t}b^{+}+}tFtt+_{b})U_{t}$ (1)

Here $F_{t}$ is an operator describing the system (for example, atom) and $b_{t}$ and $b_{t}^{+}$ are quantum
white noise operators,

$[b_{t},b_{s}^{+}]=\delta(t-S)$ , $[b_{t}, b_{s}]=0$

In this note we attempt to consider white noise with nonlinear interaction. The motiva-
tion for such a consideration is that if fluctuations in a system are rather large then they
can produce a white noise with nonlinear interaction. It is not clear apriori what it means
to have white noise with nonlinear interaction because we want the evolution operator $U_{t}$

to be a bona tide unitary operator and not a distribution. Therefore we first consider a
simple exactly solvable model with such interaction and then discuss how one can derive
equations driven by nonlinear white noise in nonlinear quantum optics.

The first step to study such noises is to investigate quantum white noise with quadratic
interaction. In this note we shall consider a model with the following equation for the
evolution operator $U_{t}$ : ..

$\frac{dU_{t}}{dt}=-i[\omega tb^{+_{b(+}}tt+gtb+2b_{t}t2)+c_{t}]U_{t}$ (2)

where $\omega_{t},$ $g_{t}$ and $c_{t}$ are functions of time $t$ . We shall demonstrate that the singularity of
the Hamiltonian imposes a restriction to these functions which does not arise in the case
of regular Hamiltonians.

The consideration of models of quantum white noise with a non-linear singular interac-
tion like (2) was out of reach in the known approach [6] to classical and quantum stochastic
calculus. It became possible only recently with the development of the new white noise
approach to quantum stochastic calculus $[4,5]$ in which $.\mathrm{m}$ethods of renormalization the-
ory have been used. Actually already equation (1) requires a regularization as it will be
discussed below.

As any model with quadratic interaction the model (2) is exactly integrable in some
sense. What makes the consideration of the model interesting is the singular character
of the interaction which involves products of operators $b_{t}$ at the same time, like $b_{t}^{2}$ , and
it is not clear a priori that such products have a meaning at all. In fact the model (2)
shows certain surprising properties. Even after having given a meaning to equation (2) one
cannot naively interpret the formal Hamiltonian in (2) as a usual self-adjoint operator.
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For example the model (2) with $\omega_{t}=0$ and $g_{t}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ has been considered in [7] and
it has been shown that, even after renormalization the solution of (2) is not unitary. The
results of the present note show that for a special region of values of the parameters $\omega_{t},$ $g_{t}$

and $c_{t}$ the unitarity of the solution can be guaranteed and in fact one has an explicit and
simple form for it. Unitarity of the solution is proved for all values of the parameters below
a certain threshold. Strangely enough this threshold corresponds exactly to the square of
classical white noise. It seems interesting to have an exactly $\mathrm{s}\mathrm{o}1_{\mathrm{V}}\dot{\mathrm{a}}$ ble dynamical model
driven by a $\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}$ white noise term because it can be instructive f.or the consideration
of more realistic models.

We solve equation (2) by using a Bogoliubov transformation, that is we look for a real
function $\theta_{t}$ such that, defining the operators $a_{t}$ and $a_{t}^{+}$ by

$b_{t}=a_{t}ch\theta_{t}-aShtt+\theta$ , $b_{t}^{++}=a_{t}ch\theta_{t}-atsh\theta_{t}$ (3)

one has
$\omega_{tt}b_{t}^{+}b+g_{\iota}(b+2+tb_{t}2)=\Omega ta^{+}at+\kappa_{t}t\delta(0)$ (4)

for appropriate choice of $\Omega_{t}$ and $\kappa_{t}$ . In (4) a formal infinity appears as the $\delta$-function in
zero $\delta(0)$ . We remove it by the renormalization, that is we choose the function $c_{t}$ in (1) as
$c_{t}=-\kappa_{t}\delta(0)$ so that one has

$\omega_{t}b_{t}^{+_{b_{t}(}}+g_{t}b_{t}+2+b_{t}^{2})+$

.
$Ct=\Omega_{t}a_{t}^{+_{a_{t}}}$

and the renormalization constant $c_{t}$ does not alter the dynamics.
Notice that (3) implies that

$[a_{t}, a_{S}^{+}]=\delta(t-s)$ , . $[a_{t}, a_{s}]=0$

so the operators $a_{t},$ $a_{s}^{+}$ define a squeezed white noise. One easily proves that such a real
function $\theta_{t}$ must satisfy the equation

$\frac{g_{t}}{\omega_{t}}=\frac{sh\theta_{t^{C}}h\theta_{t}}{sh^{2}\theta_{t}+ch2\theta_{t}}$ (5)

Therefore the only restriciton on the rea.l functions $g_{t}$ and $\omega_{t}$ is that $|g_{t}/\omega_{t}|<1/2$ . Under
this condition one deduces the expression of $\Omega_{t}$ and $\kappa_{t}$

$\Omega_{t}=\frac{\omega_{t}}{sh^{2}\theta_{t}+ch2\theta_{t}}$ (6)

$\kappa_{t}=-\frac{\omega_{t^{Sh^{2}\theta}t}}{sh^{2}\theta_{t}+ch2\theta_{t}}$

Let $T$ be the formal unitary operator of the Bogoliubov transformation

$T^{+}b_{t}T=a_{t}$ , $T^{+}b_{t}^{+}\tau=a_{t}^{+}$
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The Bogoliubov transformation (3) is not unitary represented in the original Fock space
$\tilde{\mathcal{H}}_{b}$ for -particles with vacuum $\psi_{b}$ . The operator $T^{+}$ acts actually from $\mathcal{H}_{b}$ to another Fock
space $\mathcal{H}_{a}$ for $a$-particles with the vacuum $\psi_{a}=T^{+}\psi_{b}$ (see for example [8]). One has the
relation

$(\tau^{+}\psi_{b},a_{\mathcal{T}}\ldots aTmta^{+\ldots+}t_{1}t_{n}\psi_{b}1UaT^{+})=(\psi_{a’ \mathcal{T}_{1}\ldots\tau}aaU_{t}a_{t}^{+}\ldots a^{+}\psi_{a}m1t_{n})$ (7)

In this relation in the left hand side one has the inner product in the Fock space of $b-$

particles $\mathcal{H}_{b}$ with operators $a_{t},$
$a_{t}^{+}$ being expressed in terms of $b_{t}$ and $b_{t}^{+}$ by formulas (3)

and with $U_{t}$ satisfying equation (1). In the left hand side of (7) there are meaningless
operators $T$ that requires a regularization.

However t.h$\mathrm{e}$ right hand side of the relation (7) is well defined. In the right hand side one
has the inner product in the Fock space $\mathcal{H}_{a}$ of $a$-particles with $U_{t}$ satisfying the following
equation

$\frac{dU_{t}}{dt}=-\dot{i}\Omega_{ttt}a_{t}^{+}aU$ (8)

So we reduce the solution of equation (1) to the solution of equation (8) with $\Omega_{t}$ given by
(6). Eq. (8) defines the squeezed quantum Poisson process.

Now let us solve equation (8). It is not in the normal form and we have to use a
regularization. We choose the following convenient one:

$a_{t}^{+}a_{t}U_{t}= \lim_{\epsilonarrow 0}\frac{1}{2}a_{t}(+a_{t}-\epsilon+a_{t+\epsilon})U_{\iota}$ (9)

$i^{\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{m}}(8)$ one gets the following equation for the normal simbol $\tilde{U}_{t}=\tilde{U}_{t}(\alpha^{+}, \alpha)$ of the
operator $U_{t}$ (about normal simbols see, for example [9]) ..

$\frac{d\tilde{U}_{t}}{dt}=-\dot{i}\lim_{\epsilonarrow 0}\Omega_{tt}\alpha^{+}(\alpha_{t}+\frac{1}{2}(\frac{\delta}{\delta\alpha_{t-\epsilon}^{+}}+\frac{\delta}{\delta\alpha_{t+\epsilon}}))\tilde{U}_{t}$

the solution of which is
$\tilde{U}_{t}=\exp\{-\dot{i}\int_{0}^{t}\sigma_{\tau}\alpha_{\tau\}}^{+}\alpha_{\tau}d_{\mathcal{T}}$ (10)

where
$\sigma_{t}=\frac{\Omega_{t}}{1+\frac{i}{2}\Omega_{t}}$ (11)

The operator $U_{t}$ with the normal simbol (10), (11) is unitary if $\Omega_{t}$ is a real function. The
normal simbol (10) corresponds to the following stochastic differential equation in the sense
$\mathrm{o}\mathrm{f}[6]$

$dU_{t}=-\dot{i}dN(\sigma_{t})U_{t}$ (12)

The regularization we have used is not unique. A more general regularization is

$a_{t}U_{t}= \lim_{\epsilonarrow 0^{[c}}a_{t}-\epsilon+(1-C)at+\xi]Ut$
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where $c$ is an arbitrary complex constant. Then instead of (11) one gets

$\sigma_{t}=\frac{\Omega_{t}}{1+ic\Omega_{t}}$

In this case the operator $U_{t}$ is unitary if $c= \frac{1}{2}+\dot{i}X$ where $x$ is an arbitrary real number.
We will show elsewhere that the choice of different regularizations corresponds, in the

probabilistic language, to different notions of stochastic integration.
Finally by using (10)$-(11)$ and performing the Gaussian funcitonal integrals for the

normal simbol one gets the following expression for correlators

$( \psi_{a},\exp\{\int f_{1}(_{\mathcal{T}})a\tau d\tau\}Ut\exp\{\int f_{2}(\tau)a\tau\}+d\tau\psi_{a})=$

$= \exp\{\int f_{1}(\mathcal{T})\frac{1+\frac{i}{2}\Omega_{\tau}}{1-\frac{i}{2}\Omega_{\tau}}f_{2}(\mathcal{T})d\mathcal{T}\}$ (13)

where $f_{1}$ and $f_{2}$ are arbitrary functions.
Note that by using the similar regularization for equation (1)

$U_{t}=1-i \lim_{\epsilonarrow 0}\int_{0}^{t}[F_{\mathcal{T}}b_{t}^{+}+F_{\tau}^{+}(cb_{T-}\epsilon+(1-C)b\tau+\mathrm{g})]U_{\tau}d\tau$

one can write it in the normal form as

$\frac{dU_{t}}{dt}=-i(F_{tt}b+Ut+F_{tt}^{+_{U_{t}b-i_{\mathrm{C}F^{+_{pU_{t})}}}}}tt$ (14)

Now let us comment about the unitarity condition in the model (2). The operator $U_{t}$

(8) is unitary in the Hilbert space $f\ell_{a}$ for any real function $\Omega_{t}$ . However to come to this
$U_{t}$ we have used the Bogoliubov transformation with the restriction $|g_{t}/\omega_{t}|<1/2$ to the
parameters in the original model (2). In the limit $g_{t}/\omega_{t}arrow 1/2$ there is no dynamics because
one gets $\Omega_{t}arrow 0$ and $U_{t}arrow 1$ . The critical case $g_{t}/\omega_{t}=1/2$ corresponds exactly to the
equation

$dU_{t}/dt=-\dot{i}g_{t}$ : $(b_{t}^{+}+b_{t})^{2}$ : $U_{t}$ (15)

driven by the renormalized square of the classical white noise $w_{t}=b_{t}^{+}+b_{t}$ . So we get that
eq. (15) leads only to the trivial evolution operator $U_{t}=1$ . To obtain a nontrivial evolution
one has to make a renormalization of the. parameter $g_{t}$ . Let us consider the following model

$\frac{dU_{t}}{dt}=-i\frac{f_{t}}{\epsilon}[2b_{t}^{+}b_{t}+(1-\frac{\epsilon^{2}}{2})(b+2+tb_{t}2)+c\epsilon,t]U_{t}$ (16)

Eq. (16) is a regularization of the square of the classical white noise because in the formal
limit $\epsilonarrow 0$ one gets $\mathrm{e}\mathrm{q}.(15)$ with $g_{t}=f_{t}/\epsilon$ . In the limit $\epsilonarrow 0$ by using formulas (5) and
(6) one gets $\Omega_{t}arrow 2f_{t}$ and therefore the model (16) is equivalent in this limit to the model
describing the quantum Poisson process

$\frac{dU_{t}}{dt}=-i2f_{tt}a_{t}+aU_{t}$
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So we have demonstrated that the model with the renormalized square of the squeezed
classical white noise has a meaning and it defines the quantum Poisson process.

It would be interesting to study also the case when $|g_{t}/\omega_{t}|>1/2$ . Here we would like to
mention a possible relation of this question with a non-associative Ito algebra of stochastic
differentials introduced in [4]. The linear stochastic differentials are defined as

$dB_{t}=b_{t}dt$ , $dB_{t}^{+}=b_{t}^{+}dt$ (17)

and they satisfy the quantum Ito multiplication rule $dB_{t}dB_{t}^{+}=dt$ that can be derived
from (17) by using the formal identity

$\delta(0)dt=1$ (18)

and also $b_{t}^{+}b_{t}(dt)2=0$ . Eq. (12) in these notations takes the form of the quantum stochastic
$\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}^{\iota}$rential equation [6]

$dU_{t}=-\dot{i}(F_{t}dB_{t}^{+}Ut+F_{t}^{+_{U_{t}d}}Bt-iCF^{+}tFtdtU_{t})$

To write equation (2) as the quantum stochastic differential equation we have to introduce
nonlinear stochastic differentials

$dB_{t}^{(n)}m,=b_{tt}^{+m_{b^{n}d}}t$

By using (18) and a renormalization prescription one can get the following non-associative
generalization of the Ito multiplication rule

$dB_{t}^{(m,n)(}dB_{t}k,\iota)=nkdB_{t}^{(n}m+k-1,+\iota 1)$ (19)

It is an important open problem to study the relation of the alg.ebra (19) with the unitarity
of the evolution operator in the model (2).

Now let us discuss how quantum white noises with non-linear singular interactions arise
in the stochastic approximation to the usual Hamiltonian quantum systems. Actually this
is a rather general effect in theory of quantum fluctuations [5]. In the stochastic limit
of quantum theory white noise Hamiltonian equations such as (1) are obtained as scaling
limits of usual Hamiltonian equations.

One has to use the formalism of non-linear quantum optics for the consideration of such
problems as how is a short pulse of squeezed light generated when an intense laser pulse
undergoes parametric downconversion in a traveling-wave configuration inside a non-linear
crystal or how does such a squeezed pulse undergo self-phase modulation as it propagates in
a non-linear optical fiber [1,10-13]. The Lagrangian describing the propagation of quantum
light through a nonlinear medium contains nonlinear terms in electric field $E$ and magnetic
field $B$ [10-13]:

$L= \frac{1}{2}(E^{2}-B^{2})+\chi_{(}2)E2E^{\mathrm{a}_{+}}+\chi(\mathrm{a})\cdots$
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where $\chi_{(i)}$ are non-linear optical susceptibilities. Such nonlinear terms lead to various
non-linear quantum noises that can be approximated by non-linear quantum white noises.

Let us consider a system interacting with quantum field with the evolution equation of
the form

$\frac{dU(t)}{dt}=-\dot{i}[\lambda^{2}-n\chi A(t)^{n}+\ldots]U(t)$ (20)

where
$A(t)= \int a(k)f(k)e^{i}d\omega(k)tk$ , $[a(k), a^{+}(p)]=\delta^{3}(k-p)$

$f(k)$ is a form-factor, $\chi$ is a constant and $\lambda$ is a small parameter. Here the field operator
$A(t)$ can be interpreted as a mode of $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{n}\mathrm{e}\dot{\mathrm{t}}$ic field in nonlinear quantum optics.

For example in the process of parametric down conversion a photon of frequency $2\omega$ splits
into two photons each with frequency $\omega$ and in the simple model of parametric amplifier
where the pump mode at frequency $2\omega$ is classical and the signal mode at frequency $\omega$ is
described by the annihilation operator $a$ one has the Hamiltonian of the form [1]

$H=\omega a^{+}a-\dot{i}\chi(a^{22it2}e-\omega ae^{-2i}+\omega t)$

In the stochastic (or $t/\lambda^{2}-$) limit [14,4,5] one obtains from (14) an equation of the type
(2) with a singular interaction driven by a non-linear quantum white noise. Indeed after
the rescaling $tarrow t/\lambda^{2}$ one gets equation

$\frac{dU(t/\lambda^{2})}{dt}=-i[\chi\lambda^{-n_{A}}(\frac{t}{\lambda^{2}})^{n}+\ldots]U(t/\lambda^{2})$

which in the limit $\lambdaarrow 0$ becomes

$\frac{dU_{t}}{dt}=-\dot{i}[xb^{n}t+\ldots]U_{t}$

because, as shown in [5],
$\frac{1}{\lambda}A(\frac{t}{\lambda^{2}})arrow b_{t}$

in the sense that all the vacuum correlators of the left hand side converge to the corre-
sponding correlators of the right hand side.

Finally let us briefly comment about possible applications of quantum white noise with
nonlinear interaction to non-linear quantum optics and to theory of quantum measurement.
The physical meaning of parameters $\omega_{t}$ and $g_{t}$ depends on the physical model. For instance
in the case of a short pulse propagating in a nonlinear medium the parameters in the
evolution equation for the white noise are related with the nonlinear optical susceptibilities
as it was discussed above. If we take the sum of terms of the form (1) and (2) and $F_{t}$ are
function then such a model also is easily solved by means of non-homogeneous Bogoliubov
transformation. However for a realistic model not only $F_{t}$ should be operators but also the
parameters $\omega_{t}$ and $g_{t}$ in principle should be operators as well. The consideration of such a
model is very important but it is out of the scope of this note.
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In the modern theory of quantum measurement [1] one considers a system inter..acting
with a linear quantum white noise. For a system interacting with a nonlinear medium
one has to consider quantum white noise with nonlinear interaction. One expects that a
dynamical model of a system interacting with nonlinear white noise can be interpreted as
describing the process of self-measurement by analogy with the self-focusing of a beam.

To conclude, the model (2) with quadratic singular interaction of quantum white noise
has been considered in this note. We have demonstrated that the singular equation (2)
leads to a $\dot{\mathrm{w}}$ell defined unitary evolution operator (10), (11) and we have computed ex-
plicitly its matrix elements (see (13)). The model was solved under some restrictions to
the parameters $\omega_{t}$ and $g_{t}$ which deserve a further study. The results obtained in this ex-
actly solved model could be useful for investigation of more realistic and more complicated
models with quadratic as well as with higher order singular white noise interactions.
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