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A Variant of It6-Clark Type Formula

in Historical Stochastic Analysis*
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Department of Mathematics, Saitama University

Urawa 338-8570, Japan

§1. Introduction

We consider a version of Ito-Clark type stochastic integration formula (eg [U95, p.92] )
in the theory of historical superprocesses. The key idea of demonstration of the It6-Clark
formula is to derive a variant of Evans-Perkins type stochastic integration by parts with
respect to the historical process in the Perkins sense [P92].

The review of the Evans-Perkins theory [EP95] is a good point to start. There are two
reasons why this type of integration by parts formula is so important. For one thing, it can
provides with a new formula of transformations of stochastic integrals closely connected
with the so-called historical processes. In fact the establishment of the formula asserts
that a product of historical functionals of a specific class and stochastic integral relative
to the orthogonal martingale measure in the Walsh sense [W86] is, in its mathematical
expectation form, equivalent to a certain expression of integration that is involved with
stochastic integral with respect to a Dawson-Perkins historical process [DP91] associated
with a reference Hunt process. In addition, it also allows us to interpret that the formula
is nothing but a variant of stochastic integration by parts in an abstract level, that is very
useful as a theoretical tool of stochastic calculus in the theory of measure-valued processes.
For another, it has an extremely remarkable meaning on an applicational basis. By making
use of the formula S.N. Evans and E.A. Perkins (1995) have succeeded in deriving a kind
of It6-Wiener chaos expansion for functionals of superprocesses [EP95].

S.N. Evans and E.A. Perkins have showed that any L? functional of superprocess may
be represented as a constant Cy plus a stochastic integral with respect to the associated
orthogonal martingale measure M (e.g. [EP94] ). Recently they have obtained the explicit
representations involving multiple stochastic integrals for a quite general functional of the
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so-called Dawson-Watanabe superprocesses. Actually, the results are obtained in the set-
ting of the historical process associated with the superprocess [EP95]. Based upon the
previous results (1994), they derived partial analogue of the It6-Wiener chaos expansion in
superprocess setting by taking advantage of the ”stochastic integral formula” in question.

Lastly we shall give a rough idea of what the integration formula is like, but in the form
as simple as possible. First of all, let us consider the functional F(H) of a historical process
H with branching mechanism @ for a real valued function F' on C([0, c0); M, r(D)) with the
space D of E-valued cadlag paths. Actually, this F should lie in a suitable admissible sub-
space U(M(D)) of C(C([0, c0); Mp(D)); R). Next consider a stochastic integral J (B, M)
= [ [ E(s,y)dM of a bounded predictable function = relative to the orthogonal martingale
measure M in the Walsh (1986) sense. Then we make a product F(H) - J(Z; M). On the
other hand, consider the integral of another type J(F,Z; H) = [ [ I[F]=(s,y)dH,ds for
some predictable function I[F] which is determined by the functional F'(H) given. Thus

we attain the integration formula if we take the mathematical expectation of both terms,
ie, E[F(H) - J(E;, M)] = E[J(F,=; H)).

§2. Notation and Preliminaries

Let C = C?% = C([0, 00), R?) denote the space of R%valued continuous paths on R, =
[0, 00) with the compact-open topology. C = B(C) is its Borel o-field and

C=B(C) = a(y(s), s<t)

denotes its canonical filtration. For y,w € C? and s > 0, we define the stopped path by
y°(t) = y(t A s) and let

y(t), for t<s,
w(t — s), for t>s.

Wﬂwz{ (1)

Mp(C) is the space of finite measures on C with the topology of weak convergence and we
define

MF(C)t = {m € Mp(C); y=19', m—a.s. y}, t>0.
If P, denotes Wiener measure on (C, B(C)) starting at z, 7 > 0, and m € My(C)", define
P7-1m S MF(C) by

Pr,m(A) = /(; Py(’r) ({’LU, y/T/w € A})dm(y)
Let |
Qu[r, 00) := {H € C([r,0), Mp(C)); H, € Mp(C)', ¥t > 7},

and put Qp := Qg(0,00). We write H for the totality of Borel sets of 5. We use the
notation Hi(w) = w(t) for w € Qy as for the canonical realization of historical process.
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Fix0<t <--- <t, and ¥ € C}(R™). For y € C we set

@(y) = '(;(tla"'vtn)(y) :¢(y(t1)a' "7y(tn))7
and 9(t,y) = P(y*). ¥; (resp. ;; ) stands for the first (resp. second) order partials D)

(resp. 2% ) of 9. V4 : [0,00) x C — R? is the (Ci)-predictable process whose j-th
component at (¢,y) is given by

n—1
DAt < tipa)tiar;(F(t)).
=0
While, for 1 <i,j < d, 9;; : [0,00) x C — R is the (C;)-predictable process defined by

n—-1n-1

Pij(t,y) = Z Z I(t < try1 Atiy1) OrariOa5(5(2)).
k=0 1=0
Let us define the domains
Dy := U {‘;(tl,"',tn); O0<thi < <tn, Y € Cgo(Rnd)}U{l}’

n=1

Do := {§; $(t,y) =90 for some € Do}.

Let Q@ = (Q, F, {Fi}s>r, P) be a filtered probability space and let (w,y) = (w, ¥1, - - -, Ya)
denote sample points in = Qx C%. Here 7 > 0 is fixed. When f is a function on [7, c0)
x {) taking values in a normed linear space (E, || ||), then a bounded (Ft)-stopping time
T is a reducing time for if and only if

(7 <t <T) | f(¢w, )l

is uniformly bounded. In addition we say that a sequence {T,} reduces f if and only if
each T, reduces f and T,, / co holds P-a.s. We say that f is locally bounded if such a
sequence {7,,} exists. We assume that
(LB) v € [0,00),a € S%,b € R* and g € R are (.f}*)—predictable processes on [, 00) x
such that A = (v,qa,b, gy~ I(§ #)) is locally bounded.
Notice that the above assumption implies that g is locally bounded.

Now we introduce the martingale problem formulation of historical processes in stochastic
calculus on historical trees (cf. [P92], [P95] ). For 7 > 0 and m € Mp(C)", we define

Arm®(t,y) = AW)(t,y) = = E:Zymu”w¢4tw+wau)m Vi (t,y) + g(t,w, )9 (1)

r'l J=

for 1 € Dy. We write (i, f) or sometimes u(f) for the integral [ fdu when u is a measure
and f is a suitable u-integrable function. Suggested by [DkTn98], we may define
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Definition. (cf. [P95], §2 ) A predictable process K = {K:,t > 7} on Q with sample paths
a.s. in Qg[r,00) is a generalized {v, a,b, g}-historical process (GHP) (or (A, —yA2/2)-
historical process) if and only if K; € Mz(C)* for all t > 7, a.s. and P[K.(1)] < oo, and
if there exists a probability measure P on Qy(7, c0) such that it satisfies the martingale
problem (MP) with initial data {r,m} and {v,a,b,g}: for V¢ € Dy,

40 = (Ko D) — (m )~ [(Ky AD s, t27 (@)

is a continuous (F;)-local martingale satisfying Z,(¥) = 0 and

Z@)= [ [1ow i@l Kaldi)ds,  VizT, as

_Remark. The existence and uniqueness of the law of K is essentially due to [F88] (cf.
[DIP89]). '

Set T = [s, 00), and in particular Ty = [7, c0). Define C(Mp(C)) := C(Ty; My(C)), and
we write C(t) = (7,t] x C for the integral domain. When F is the o-field or the usual
filtration, then f € F indicates that the function f is F-measurable and P(F) is the totality
of (F)-predictable functions, and bP(F) denotes the whole space of functions that are all
bounded elements of P(F). We use the symbol U(Mpz(C)) for an admissible subset of the
space C(C(Mp(C));R); more precisely U(Mp(C)) is the totality of real valued continuous
functions F' on C(Mp(C)) such that for some compactly supported finite measure L(dt)
on Ty, the estimate

|AF(h,9)| < [ g(t,C)L(d)
To
holds for all h,g € C(MFp(C)), where we define AF(z,y) = F(z +y) — F(z).

§3. Predictable Representation Property '

Let {Tx} be a reducing sequence. Take a sequence {1,,}, ¥, € Dy such that 9, converges

‘bounded pointwise (bp for short ) to v, namely, '
"Zn—*w? bp (n—»oo)

An application of dominated convergence theroem together with the local boundedness of
v implies that
(Z(Wn — %)) =0 as n,m — oo

for Vt > 7, a.s. Therefore we obtain

Proposition 1. There is an a.s. continuous adapted process {Z;(y); t > T} such that

sup_|Zu(da) — Zi3)] — 0
T<t<N .
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holds in probability (w.r.t. P)asn — oo forVN > 1.

To proceed our discussion, we need the following lemmas. -

Lemma 1. (cf. Corollary 2.2, p.11, [P95]) Let T' be a reducing time for (v,g). Then we
have .

() 0 < P[K7(1)] < Plsup,qicr | Ki(1)| + (Z(1))1] < 0.

(b) If P|K,(1)?] < oo for p € N, then

(e Zwi} <eo

Lemma 2. (cf. [EP94, p.123]) Dy is dense in bB(C) relative to the bounded pointwise
convergence topology. '

We may use Lemma 1 to obtain

sup |Zy(vn) — Ze(y)| -0 in L2

7<t<Tn

as n — oo, for VYN € N. Clearly Zi(y) is a continuous (F;)-local martingale whose
quadratic variation process is given by

2= [ [ 150,090 Kuldy)ds. ©

By virtue of Lemma 2, it is a routine work to show that this Z; extends to an orthogonal
martingale measure

{Z(¥); t=zT, Y€ bB(C)""}.

Consequently, the mapping ¢ — Zi(¢)) is a continuous local martingale satisfying Eq.(3)
for eaxh ¢ € bB(C), and 9 + Ziaq, () is an L?-valued measure on B(C) for each ¢t > T,
- N € N. By a trivial localization argument, we may define the stochastic integral

2w = [ [ 9(s,0,5)aM(s,y) @

( 3 an orthogonal martingale measure M = M¥ in the sense of Walsh [W86, Chapter 2] )
such that

(2= [ (Karrls,0)(s,0))ds, - ®)

Vt > T, a.s., as long as ¢ belongs to L},.(K,P). Here L}, (K,P) denotes the L? space of
(Ft x C)y>r-predictable functions f and '

fT t f v(s,9) f(8,9)2 K (dy)ds < co

for Vt > 7, P-as.
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We write f € L*(K,P) (resp. L2 (K,P) ) if, in addition,

l;{[:/"/(s,_w,y)f(s,w,y)2Ks(dy)ds} < 00, vt > 0,

respectively,

P{/Too/'yl(s,w,y)f(s,w,y)sz(dy)ds} < 0.

Theorem 1. (Predictable Representation Property) If V € L*(Q,F,P), then there is an
[ in L2 (K, P) such that

V= P / /f(s w,y)dM*¥ (s,y), P—-as. (6)

Proof. 1t is sufficient to verify (6) for the particular case where V is a square integrable
martingale M;. Then Jacod’s general theory (cf. Theorem 2 and Proposition 2 of [J77])
provides with a stochastic integral representation of M;. For the rest, it goes almost
similarly as in the proof of Theorem 1.1 [EP%4, p.124].

§4. Canonical Measure and Campbell Measure

For y € D = D(R,;R%), we define y*~(s) as y(s) itself if s < t and as y(t—) if s > t.
Q(s,y) is a o-finite measure on C(Mp(D)) such that

Qs {heCMp(D)); <3t <s, hit) #0}) =0,

which can be defined by the canonical measure R(7,%,y;d() [D93] associated with the
law of K; = K(t) and the path restriction mapping 7 (cf. §2, pp.1781-1782 in [EP95))
together with a discussion involved with the Dawson-Perkins theory(1991) (e.g. Theorem
2.2.3(pp.27-28) and Proposition 3.3(pp.38-39) in [DP91]). Here R is characterized by

log Ps, [exp(K:, —p)] = (e‘“"” — 1) R(s,t,y; d¢)

/MF(MF(C))

(cf.- Lemma 1 in [Dk99c]; see also [DP91, Proposition 3.3, pp,38—39]). Let F be a real
valued Borel function on C(Mp(C)). Assume that

AFIB) = [ AR(,9)Q(s,y dg) o

C(MF(C))

is well-defined and bounded below for all s > 7,y € C, and h € C(Mz(C)). For a bounded
(F:)-stopping time T', we define the Campbell measure Pr associated with K(t) by

Pr(A x B) = P(K(T, A) - Is{K(T)})/m(C) (8)
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for any Ax B € (CxQ,CxF) (cf. [P95], p-21; or [DP91], p.62). Notice that K = m. Since
the mapping (s, y,w) — I3 [AF](K(w)) is bounded below and measurable with respect to
the product of the predictable o-field associated with the filtration (C;) and the o-field F, we
can apply Lemma 2.2(p.1783) [EP95] together with the projection operation argument and
the predictable section theorem (e.g. Theorem 2.14(p.19) or Theorem 2.28(p.23), [JS87];
see also [E82], pp.50-52), to deduce that there exists a (C; X Fi)i>rpredictable function
Pr|F|(s,y,w) : (1,00) x C x 8 — R such that

Pr{I®[AF|(T)/(C x F)r} = Pr[F|(T,w,y) (9)

holds Pr-a.s. for all bounded (JF;)-predictable stopping times T > s. It is quiﬁe interesting
to note that in particular

P [ I9AFVT,y)K(T,dy) = P [ PriFIT,»)K (T, dy)

We shall introduce an approximation map. For each ! € N, let us choose a partition
AQ) = {t9(j); 1 < j < K[l]} such that 7= t®(0) < tO(1) < --- < tO(k[l]) < oo,

lliglo{sgp At[l;k]} =0 and llirgt(l)(k[l]) = +o00.
The approximation map W{l] from C(Mp(C)) into C(Mp(C)) is defined by
WIl(g)(t) = {Sb(t® (i + 1)) - 9tV (5)) — Sb(tV () - gt (i + 1))}y Atll;4)~

if ¢ € [tW(s), 1O+ 1)), and = gD (k[l])) if t > tD(k[l]), for any element g of C(Mp(C))
with Sb(k) = k — t. Immediately we get
Lemma 3.(cf. Lemma 4 [DK98a]) Let F' be an element of C(C(Mp(C)); R). Then for all
g € C(MFr(C)) “

lim (F o W{l})(g) = £(9)-

§5. Random Measures and Assumptions

We shall introduce the assumptions for our main fesults (Theorem 2, Theorem 3 and
Theorem 4) which are stated in the succeeding section. C* denotes the image of C under
the map: y — yt. We define a measure K*[s,t] on C* by K*[s,t|(F) := K:({y : y* € F}).
Then the measure K*[s,] is atomic with a finite set of atoms, and we write L(s,]( C C*)
for the locations of these atoms. For s € (a, b], let As[¢] be the random measure on C that
places mass (s, y) at each point y in (Lb, c])® = L[s, c|. With some localization arguments
in stochastic calculus, the Perkins-Girsanov theorem of Dawson type [P95] guarantees the
existence of a probability measure Qy on (2, F) such that

d tATN
—d(;;)—Nﬁzexp{ [ [ @nets) £ 0dM<(s,y)

— % /:ATN / g27~1(s)1(g(s) #0) Ks(d'y)ds},
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For brevity’s sake we rather write £(tATy) than the above. On this account, K.,r, satisfies
the martingale problem (MP)[vy,an,by,0] instead of (MP)[v,a, b, g], where we set fx =
[+ I(r < t < Ty). Moreover, for s € (a,b], y € C*, the symbol M(s, y] denotes the mapping
of the set of functions {m : (7,00) — My(C)} into itself and is defined as follows: i.e.,
{M(s,yIm}i(F) is equal to m,(F) if t < s, or is equal to my({y/ € F: (v)* #y}) if t > s.

Let us now introduce assumptions for our principal results.

(A.1) g:[1,00) x 2 x C — R is a (F; x C;)*-predictable process such that gy~ I(g # 0)
is locally bounded.

(A.2) For any predictable function f on [r,00) x I x C* x §, the counting measure n*
satisfies

P /C 1 ((s,8] x I)Gy(de) = m(C*) (¢ — 5)

where G; is a marked historical process corresponding to K and N, is the martingale
measure associated with G; (cf. §7 for details).
(A.3) There exists a random measure A, on (7,00) x C such that

//C(oo) f(s’y)A‘P(ds@)dy):LiLf(say)As[w](dy)ds

holds for any suitable predictable function f.
(A.4) ¥(s,y)E(t ATn)™"! is uniformly bounded in s, K -a.e. y, Qy-a.s.
(A.5) There exists some constant Cy (> 0) such that

»//C'(t)\I,(s,y)2 EXATy)™2 7(s,y) K, (dy)ds < Cy

holds Qu-a.s., for all ¢t > 7.
Note that we shall assume (A.1)-(A.5) hereafter all through the whole paper.

§6. Main Results: Stochastic Integration Formulae

The followings are our main results in this paper. The first one is a finite dimensional
version of Evans-Perkins type stochastic integration by parts formula. Let K be a pre-

dictable measure-valued process whose law is specified by a general martingale problem
(MP) [Tv K:,v,a,b,9].

Theorem 2.(cf. [Dk98b]) Assume that ® : C(Mp(C)) — R is 4 cylinder function with
bounded representing function ¢ : [M(C)]* — R and base T < t(1) < --- < t(k), such that

(e, B)] < 0 3 B(C)
for some positive constant cq, for all a, 8 = (8;) € [M(C)}*. Then fort > T

Plot) [ [, wenau=e} =P [ [ priels, )06 amts (s
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holds where U is a bounded (C; X Fi)y>,-predictable function, K, is a GHP, and Pr[®] is
a predictable function determined by (9) in accordance with the given .

Remark 1. The assertion of the above theorem is quite similar to Theorem 2.4(p.1785, §2,
[EP95)).

Theorem 3. (Stochastic Integratiori By Parts) Let F € U(Mp(C)). If ¥ is an element of
bP(C; x F;), then for allt > s, '

PP [ [, o) (e}
= P [ [ PriFls sy nKidds. (10

Remark 2. Note that it is not hard to extend the assertion in Theorem 2 to the case of a
more general functional F(K). As a matter of fact, once the integral formula as given in
Theorem 2 is established, it is a kind of routine work to generalize it(cf. §3, [Dk98a]). We
shall refer to this generalization in §8.

Theorem 4. (Ito-Clark Type Formula) Let F' € U(Mg(C)).
F() = PIFG]+ [ [ PriF)(s,n)dM (5,9 )

where Pr[F|(s,y) is a P(C; x Ft)-measurable version (reiative to Pr) of

Pr '[/C(MF(C» AF (K, h)Q(s,y*";dh) /| (D ><..7-')T :

§7. Marked Historical Processes and the Girsanov-Dawson-Perkins Theorem

Set I =[0,1], E* = C x I and C* = C(R4, E*), and let C* (resp. C; ) be the Borel o-field
(resp. the canonical filtration) of C*. Put z = (y,n) € E*. Let G be the correspond-
ing counterpart historical process of K starting at (7, ), defined on the stochastic basis
(R, H, H,, P*). Suppose that ¢ : (1,00) x C' x @ — I be an element of P(C; x H;). Given
any cadlag function n : R, — I, we can construct a o-finite counting measure n* on Ry x 1
by assigning an atom of mass one to each point (s, z) such that n(s) —n(s—) = z # 0. Put

Aty z,w) =n"({(s,2) € [n,1) X I; ¢(s,9,w) > 2}) (12)
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and B(t,z,w) = I{A(t,z,w) = 0}. Then we can define an Mp(C)-valued process K|p](%)
by :

Klp ) = [ HI}w)B(t, 2)Gi(da). (13)
Put

N = [ [ ee0)aN(s,2), and Lp,G)= [ [ 1(s,u)e(s,9)Gu(dz)ds

with C*(t) = (7,t] x C*. Then we define

Nl = oo{he, M) = she@) (9

Note that Alp](t) is a Hy-martingale. The new probability space (2, H, P*[p]) is defined
by P*[p|{F} := P*{F - Alp](t)} (cf. [Dk98a]) for any F' € bH, with

H = v Ht (15)

t>r
(see Theorem 2.1(pp.125-126) and Theorem 2.3b(p.127), [EP94]). It is easy to show the
following proposition if we apply Dawson’s Girsanov theorem [D93] (see also [P95]).

Proposition 2.(cf. Theorem 5.1, p.1798, [EP95]) The law of K] under P[p] is equivalent
to the law of K under P.

§8. Sketch of Proofs of Main Theorems

§8.1 Generalization of the Cylinder Function Case: Proof of Theorem 3

As mentioned in Remark 2 of §6, the essential part of an extension of the Evans-Perkins
type integration formula is compressed into the study on its finite dimensional case, namely,
Theorem 2. The general case easily follows from a kind of routine work [Dk98a]. We define
a real valued function L* on C(Mr(C)) by

Ll = [ o, QL) = {L,(,O)). (16

In connection with the measure L (see §2), we introduce the finite measure L(l) = L(I,dt)
which concentrates its mass on {t®(j); 0 < j < k[l]} (cf. [Dk98a, p.5]). We have (L* o
Wl lg) = (L(D),g(-,C)) for g € C(Mg(C)). Recall that :

/g(t,C')Q(s,y; dg) = /é(C) R(s,t,y;df) = 1

holds (cf. Lemma 3, [Dk99a]) with ease for s < t from Lemnia 3.4(pp.41-43), [DP91]. Then
it is easy to verify the followings:

P [ [ otQev )bk nds =i P [ [ QU )L o WIDlgl} Kuldo)ds
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holds with g € C(MF(C)) for all t > 7, and

P [ [ PriFlen)Z(s)Ki(ds)ds

= lim P//C(t) Pr|F o W{l]|(s,4)Z(s,y) Ks(dy)ds. (17)

I—0c0

holds for all t > 7 if Z € P(C; x 7). Since, for each n > 1, P{K,(C)"} is uniformly
bounded on compact intervals, we can readily deduce that P{(L* o W[l])[K]"} is bounded
in I for each n > 1. Moreover,

P{F(K) / /Cm U(s,y) dM(s,y)} = lim P{(F o W[I])(K) / /C o V59 dM(5,9) }

‘To complete the extension discussion in this section we have only to observe that F'o W(l]
satisfies all the conditions of Theorem 2 (cf. Lemma 22, pp.9-10, [Dk98a]). Thus we have a
finite dimensional special case of stochastic integration by parts formula related to historical
processes as far as Proposition 2 in §7 is valid. Hence, combining the above results, we
obtain '

plrw) [ [ wenan} < fmp{(Fown)u) [ [ v am)
— lim P / /C o P oW (s, )¥(s,) Ko(dy)ds

l—o00

- P/ /C(t) PriFI(s,0) 7(s,9)¥(5,0) Ko(d)ds,

which concludes Theorem 3.

§8.2 Stochastic Integration by Parts: Proof of Theorem 2

Since the complete proof is longsome and tiresome, computation in details will be sacrificed
for the sake of simplicity and clearness. The basic idea.is due to §7 in [Dk99a].

Thanks to (A.1), it suffices to verify the integral formula for a special {yn,an,bs,0}-
historical process K.az, under Q, instead of the generalized K (GHP) with P. Indeed,
since dP = £(t A Ty)~1dQ,, what we have to show is as follows:

(The Modified Stochastic Integration By Parts Formula)

Qe {EAT 00m) [ [ W mamton))

= Qu{EenT [ [ Prioe, )6 ¥lo, ) Kuns, (o).

Note that both sides above are well-defined by virtue of (A.4). Notice that Eq.(12)-(14)
remains valid even for ¢ = ¥ . £~1. Hence, by the auguments on exponential martingale
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formalism for the historical process, A[¥ - £7%(¢) is a H,-martingale and the measure

- Qu[¥-E71] is given by Qu[{-}A[¥-£71]]. Then it follows from Dawson’s Girsanov theorem
(Proposition 2 in §7) that, for any positive &,

Qn{®(Kazy)} = Qu[e¥E{@ (K aryle¥E))}.
Immediately,
Qv {®(Krzy) - (AET() — 1)} |
+ QN{(Q(K.ATN[E\PS“l]) — 0 (Knzy)) - (Al¥E(t) — 1)}
= Qu{(Kny) — (K nzy [267))}.

* For simplicity we denote by I (resp. I> ) the first (resp. second) term at the left hand side
of the above equality, and put

I3 = the right hand side with the minus sign.

Then we find that the convergence
el (AeYEY(t) — 1) — //C( ) U(s,y) 8(t/\TN)_1 dM(s,y), Qn—a.s. (e—0)
t

is true (cf. Lemma 8, [Dk99a). Hence we readily obtain

i -1 = . ] t -1 ) | .
e 5= Qu {8(Kun) - [ [ 9o AT abi(o
Paying attention to the fact that
lig)lK*[E\Ifg_l;C](t) =0, Qy-—as.,

we can show that lim.jge™! I = 0, as well.

It remains to treat the third term I;. In order to discuss the convergence of I3 divided
by &, we need the following:

Key Lemma (cf. Lemma 12, [Dk99a])

Qv [ [{oMls,slKar) — B(Knny) }Aue-r(ds @ dy)

= - QN//Pr.[q)]'y(s,y)\ll(s,y)c‘;"l(t/\TN)sz,\TN(y)ds.
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On the other hand, for € > 0 we have

Qu[2(Klev]) ~ 2(K) / 7] |
= e [ [ {@(Mls,y]K) ~ 2(K)}A,(ds ®dy) + (e, @) (18)

where the residue function R satisfies |R(e, @, )| < o(). From (18) we get the convergence
lime™ L= ~Qy [ [ Prie](s,y) v £ Koz (19)

In fact, a simple application of the above-mentioned Key Lemma yiélds the required result.
To complete the proof, we have only to combine the above results.

§8.3 Cluster Representation Argument: Proof of Key Lemma

For the proof of Key Lemma, although it is very technical, we are based on the cluster
representation argument [D93] (see also [DP91]). For the details, we refer to the arguments
stated in §8 in [Dk99a]. The following lemmas are merely essential parts of the discussion.
For any y € C*®, R(s,t,y) denotes the canonical measure (cf §4) in the theory of cluster
random measures (e.g. [D93], [DP91]). Actually, R is a o-finite measure such that

R(S7 t’ Y MF(C)) = Tsgt-

Here the crucial point is that the total mass r,; does not depend on y. So r;;dR(s,t,y)
becomes a probability measure. It is interesting to note that K; is a sum of indepen-
dent nonzero clusters with laws r;}R(s,t,y; dh), conditional on L[s,t| (see §5). Further-
more, conditional on ,, L[s,t] can be regarded as a Poisson point process with intensity
75,477(8) K,. This is one of the most important points for the computation in terms of clus-
ters growing from the points of Lls,?;,1] in what follows. We define a measure S by the
following equation: for Vg € bB(|[Mp(C)]*! — R),

/ 91, M) Sey(dmir @ -+ @ drgg)
= [ olh(tisr), -, h(0) - Hhtusn) # 0}Q(s, 3 dh)

where Q(s,y; dh) is a o-finite measure on C(Mp(C)) (cf. Eq.(7) in §4) S; , is the normal-
ization of Sy, given by dS, ",

* . —
sy = Tot141@Ssy. Moreover, we define

S8) = [ [rele= 0 [l K D 3o

i=1

x QSi,(dnf, ®- - ®dr),

where E = {y1,- -+, ym}(# 0).
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Take the mass ¢ as (VE1)(s,y) at each point y (cf. §5). For simplicity we set
A[®|(M;s,y, K) := ©(M|s,y|K.ary) — P(KAry)-

Recall the assumption (A.3). Immediately we can get
Qv [ [ ARIM:sy, K)Aoe-s(ds @ dy)

= Q[ [ AmIMssp KN [EE d)ds

b _ _

= dsQN { Z A[@](M,S,y, K) : (\118—1)(573/)} .
a+ y€L[s,u] )

In the following calcﬁlation, we may take much advantage of those concepts such as i) the

Markov property of Kj; ii) the infinite divisibility of the law of historical process; iii) the

Poisson nature of the location L[s,t;.1]. Hence we can proceed with the computation. In

fact,

Qxn { > Alq’](M;s,y,K)~(‘1’5”1)(s,y)}

yEL[s,u]

= QN{P Y. P{A[e]- vETUF oLls, u))}

_yGL[S,'u]

=}

= Qu {P >, {E(s;Lls,u) \ {y}) — E(s; Lls, u])} - €~

| yeLis,u)

A} w

It is easy to see the foﬂowing lemma.
Lemma 4. The last expression of (20) is equivalent to
QN L(‘I’S*l)(sa y) * rs,tt+17(37 y)KS/\TN (dy) [exp (—rs,tz+1KS (C)) ’
© 1 _ —
X Z _,’,E// ) (m) T clm {‘:(57{:’;’1" e ,ym}) - '—‘(Ss{yl)' e 7ymay})} :

m=0

X (rs,tl+1)mK.;®m (dyh STy d'ym)] .

A simple computation implies that the integral expression in Lemma 4 is also equal to

Q[N e Kl |[ [ =n [
x  Plp(K(t), -, K(te)) = (K (t2), K (), K(trsa) + Mg, K(te) + )| Fo}
X Tapr - Sy (@11 @+ @ )| e
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While, taking (7), (8) in §4, the Campbell measure theory, and predictable section argument
into consideration, we readily obtain

Lemma 5. The followinf equality holds fof all s,y:

Pro@ls,p)= [ [+ =0 1o Sy (dnn @ - @)
x  P{p(K(t1), -, K(t2) K (1) + M, K (k) + 1) — (K (8), -+ K(tk)) | Fs} -

Therefore, an application of the above proposition with Lemma 4 implies

= Qu [ [, Priolr e s, Ky ds

- [ 1 ds {QN [ =Pria)y- \IfS“‘lsz,\TNds} = [ 1 Bg.(21)ds = | t+ Eq.(20)ds

T

= Qu [ [ ARIM: 8,1, K)Ave-s(ds D ),
which completes the proof.

§9. Ito6-Clark Formula: Proof of Theorem 4

Since P[K;(C)?] is uniformly bounded on compact intervals, our major premise guarantees
the finiteness of the quantity P[F'(K)?]. Therefore we can apply Theorem 1 (§3) for F(K)
to obtain that

F(K) = PIEGN + [~ [ Fs.0)dM* (s,4),P - a.s. 22)

holds for some f in L2 (K, P). While, it follows from the covariance formula in the theroy
of stochastic integration that

([ Lo o) (f [, wenoren)| e
= P[[ [ £60)¥(s, 07,0 Keldy)ds]
for all t > 7 and ¥ in bP(C; x F5). Rewriting the left hand side of Eq.(23) we get
| Plri) [ [wsna )] 24

by employing the predictable representation property (22). Hence we may apply Theorem
3 (§6) to rewrite (24), because the stochastic integration by parts formula is valid for any
bounded (C; x Fi)-predictable functions. So that, from (23)

pf[ o FEWY ()15, y)dK ds = P /L o PrIFY, 1) ¥ (5,025, ) K.
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On this account, the general theory of Hilbert spaces shows that

P [ [ 15(6,9) = PriFY(s,9)}1(s,1) Ku(dy)ds =0,

" Therefore the uniqueness argument allows us to conclude that [ Jew FdM is equivalent to
I Jow) Pr{F)dM, P-a.s. Note that Pr[F](s,y) become null for K,-a.s. y, for any s > t, by its
construction, as long as we choose t largely enough for the support of m to be contained in
[7,]. Consequently, the above integral [ [ Pr[F]dM can be replaced by [ Jooy PriFldM,
which completes the proof. This goes quite similarly as in the proof of Theroem 2.5 in
[EP95].
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