A Variant of Itô-Clark Type Formula in Historical Stochastic Analysis*

Isamu DÔKU (道工 勇)
Department of Mathematics, Saitama University
Urawa 338-8570, Japan

§1. Introduction

We consider a version of Itô-Clark type stochastic integration formula (e.g. [U95, p.92]) in the theory of historical superprocesses. The key idea of demonstration of the Itô-Clark formula is to derive a variant of Evans-Perkins type stochastic integration by parts with respect to the historical process in the Perkins sense [P92].

The review of the Evans-Perkins theory [EP95] is a good point to start. There are two reasons why this type of integration by parts formula is so important. For one thing, it can provides with a new formula of transformations of stochastic integrals closely connected with the so-called historical processes. In fact the establishment of the formula asserts that a product of historical functionals of a specific class and stochastic integral relative to the orthogonal martingale measure in the Walsh sense [W86] is, in its mathematical expectation form, equivalent to a certain expression of integration that is involved with stochastic integral with respect to a Dawson-Perkins historical process [DP91] associated with a reference Hunt process. In addition, it also allows us to interpret that the formula is nothing but a variant of stochastic integration by parts in an abstract level, that is very useful as a theoretical tool of stochastic calculus in the theory of measure-valued processes. For another, it has an extremely remarkable meaning on an applicational basis. By making use of the formula S.N. Evans and E.A. Perkins (1995) have succeeded in deriving a kind of Itô-Wiener chaos expansion for functionals of superprocesses [EP95].

S.N. Evans and E.A. Perkins have showed that any L^2 functional of superprocess may be represented as a constant C_0 plus a stochastic integral with respect to the associated orthogonal martingale measure M (e.g. [EP94]). Recently they have obtained the explicit representations involving multiple stochastic integrals for a quite general functional of the

^{*}Research supported in part by JMESC Grant-in-Aids SR(C) 07640280 and CR(A) 09304022.

so-called Dawson-Watanabe superprocesses. Actually, the results are obtained in the setting of the historical process associated with the superprocess [EP95]. Based upon the previous results (1994), they derived partial analogue of the Itô-Wiener chaos expansion in superprocess setting by taking advantage of the "stochastic integral formula" in question.

Lastly we shall give a rough idea of what the integration formula is like, but in the form as simple as possible. First of all, let us consider the functional F(H) of a historical process H with branching mechanism Φ for a real valued function F on $C([0,\infty); M_F(D))$ with the space D of E-valued cadlag paths. Actually, this F should lie in a suitable admissible subspace U(M(D)) of $C(C([0,\infty); M_F(D)); \mathbf{R})$. Next consider a stochastic integral $J(\Xi; M) = \int \int \Xi(s,y)dM$ of a bounded predictable function Ξ relative to the orthogonal martingale measure M in the Walsh (1986) sense. Then we make a product $F(H) \cdot J(\Xi; M)$. On the other hand, consider the integral of another type $J(F,\Xi; H) = \int \int I[F]\Xi(s,y)dH_sds$ for some predictable function I[F] which is determined by the functional F(H) given. Thus we attain the integration formula if we take the mathematical expectation of both terms, i.e., $\mathbf{E}[F(H) \cdot J(\Xi; M)] = \mathbf{E}[J(F,\Xi; H)]$.

§2. Notation and Preliminaries

Let $C = C^d = C([0, \infty), \mathbf{R}^d)$ denote the space of \mathbf{R}^d -valued continuous paths on $\mathbf{R}_+ = [0, \infty)$ with the compact-open topology. $C = \mathcal{B}(C)$ is its Borel σ -field and

$$C_t = \mathcal{B}_t(C) = \sigma(y(s), \ s \le t)$$

denotes its canonical filtration. For $y, w \in C^d$ and $s \ge 0$, we define the stopped path by $y^s(t) = y(t \land s)$ and let

$$y/s/w = \begin{cases} y(t), & \text{for } t < s, \\ w(t-s), & \text{for } t \ge s. \end{cases}$$
 (1)

 $M_F(C)$ is the space of finite measures on C with the topology of weak convergence and we define

$$M_F(C)^t := \{ m \in M_F(C); \ y = y^t, \ m - a.s. \ y \}, \qquad t \ge 0.$$

If P_x denotes Wiener measure on $(C, \mathcal{B}(C))$ starting at $x, \tau \geq 0$, and $m \in M_F(C)^{\tau}$, define $P_{\tau,m} \in M_F(C)$ by

$$P_{\tau,m}(A) := \int_C P_{y(\tau)}(\{w; \ y/\tau/w \in A\}) dm(y).$$

Let

$$\Omega_H[\tau,\infty) := \left\{ H \in C([\tau,\infty), M_F(C)); \ H_t \in M_F(C)^t, \ \forall t \ge \tau \right\},\,$$

and put $\Omega_H := \Omega_H[0, \infty)$. We write \mathcal{H} for the totality of Borel sets of Ω_H . We use the notation $H_t(\omega) = \omega(t)$ for $\omega \in \Omega_H$ as for the canonical realization of historical process.

Fix $0 \le t_1 < \cdots < t_n$ and $\psi \in C_b^2(\mathbf{R}^{nd})$. For $y \in C$ we set

$$\bar{y}(t) = (y(t \wedge t_1), \dots, y(t \wedge t_n)),
\bar{\psi}(y) \equiv \bar{\psi}(t_1, \dots, t_n)(y) = \psi(y(t_1), \dots, y(t_n)),$$

and $\tilde{\psi}(t,y) = \bar{\psi}(y^t)$. ψ_i (resp. ψ_{ij}) stands for the first (resp. second) order partials $\partial_i \psi$ (resp. $\partial_{ij}^2 \psi$) of ψ . $\nabla \bar{\psi}$: $[0,\infty) \times C \to \mathbf{R}^d$ is the (\mathcal{C}_t) -predictable process whose j-th component at (t,y) is given by

$$\sum_{i=0}^{n-1} \mathbf{I}(t < t_{i+1}) \psi_{id+j}(\bar{y}(t)).$$

While, for $1 \leq i, j \leq d, \bar{\psi}_{ij} : [0, \infty) \times C \to \mathbf{R}$ is the (\mathcal{C}_t) -predictable process defined by

$$\bar{\psi}_{ij}(t,y) := \sum_{k=0}^{n-1} \sum_{l=0}^{n-1} \mathbf{I}(t < t_{k+1} \wedge t_{l+1}) \partial_{kd+i} \partial_{ld+j}(\bar{y}(t)).$$

Let us define the domains

$$D_{0} := \bigcup_{n=1}^{\infty} \left\{ \bar{\psi}(t_{1}, \dots, t_{n}); \ 0 \leq t_{1} < \dots < t_{n}, \ \psi \in C_{0}^{\infty}(\mathbf{R}^{nd}) \right\} \bigcup \{1\},$$

$$\tilde{D}_{0} := \left\{ \tilde{\psi}; \ \tilde{\psi}(t, y) = \bar{\psi}(y^{t}) \text{ for some } \bar{\psi} \in D_{0} \right\}.$$

Let $\bar{\Omega} = (\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq \tau}, \mathbf{P})$ be a filtered probability space and let $(\omega, y) = (\omega, y_1, \dots, y_d)$ denote sample points in $\hat{\Omega} = \Omega \times C^d$. Here $\tau \geq 0$ is fixed. When f is a function on $[\tau, \infty) \times \hat{\Omega}$ taking values in a normed linear space $(E, \| \|)$, then a bounded (\mathcal{F}_t) -stopping time T is a reducing time for if and only if

$$\mathbf{I}(\tau < t \le T) \| f(t, \omega, y) \|$$

is uniformly bounded. In addition we say that a sequence $\{T_n\}$ reduces f if and only if each T_n reduces f and $T_n \nearrow \infty$ holds P-a.s. We say that f is locally bounded if such a sequence $\{T_n\}$ exists. We assume that

(LB) $\gamma \in [0, \infty), a \in S^d, b \in \mathbf{R}^d$ and $g \in \mathbf{R}$ are $(\hat{\mathcal{F}}_t^*)$ -predictable processes on $[\tau, \infty) \times \hat{\Omega}$ such that $\Lambda = (\gamma, a, b, g\gamma^{-1} \mathbf{I}(\hat{g} \neq))$ is locally bounded.

Notice that the above assumption implies that g is locally bounded.

Now we introduce the martingale problem formulation of historical processes in stochastic calculus on historical trees (cf. [P92], [P95]). For $\tau \geq 0$ and $m \in M_F(C)^{\tau}$, we define

$$A_{\tau,m}\tilde{\psi}(t,y) \equiv A(\bar{\psi})(t,y) := \frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} a_{ij}(t,y) \bar{\psi}_{ij}(t,y) + b(t,\omega,y) \cdot \nabla \bar{\psi}(t,y) + g(t,\omega,y) \bar{\psi}(y^{t})$$

for $\bar{\psi} \in D_0$. We write $\langle \mu, f \rangle$ or sometimes $\mu(f)$ for the integral $\int f d\mu$ when μ is a measure and f is a suitable μ -integrable function. Suggested by [DkTn98], we may define

Definition. (cf. [P95], §2) A predictable process $K = \{K_t, t \geq \tau\}$ on $\bar{\Omega}$ with sample paths a.s. in $\Omega_H[\tau, \infty)$ is a generalized $\{\gamma, a, b, g\}$ -historical process (GHP) (or $(A, -\gamma\lambda^2/2)$ -historical process) if and only if $K_t \in M_F(C)^t$ for all $t \geq \tau$, a.s. and $\mathbf{P}[K_\tau(1)] < \infty$, and if there exists a probability measure \mathcal{P} on $\Omega_H[\tau, \infty)$ such that it satisfies the martingale problem (MP) with initial data $\{\tau, m\}$ and $\{\gamma, a, b, g\}$: for $\forall \bar{\psi} \in D_0$,

$$Z_{t}(\bar{\psi}) = \langle K_{t}, \bar{\psi} \rangle - \langle m, \bar{\psi} \rangle - \int_{\tau}^{t} \langle K_{s}, A(\bar{\psi})(s) \rangle ds, \quad t \geq \tau, \tag{2}$$

is a continuous (\mathcal{F}_t) -local martingale satisfying $Z_{\tau}(\bar{\psi})=0$ and

$$\langle Z(\bar{\psi})\rangle_t = \int_{\tau}^t \int \gamma(s,\omega,y)\bar{\psi}(y)^2 K_s(dy)ds, \qquad \forall t \geq \tau, \quad a.s.$$

Remark. The existence and uniqueness of the law of K is essentially due to [F88] (cf. [DIP89]).

Set $T_s = [s, \infty)$, and in particular $T_0 = [\tau, \infty)$. Define $C(M_F(C)) := C(T_0; M_F(C))$, and we write $C(t) = (\tau, t] \times C$ for the integral domain. When \mathcal{F} is the σ -field or the usual filtration, then $f \in \mathcal{F}$ indicates that the function f is \mathcal{F} -measurable and $\mathcal{P}(\mathcal{F})$ is the totality of (\mathcal{F}) -predictable functions, and $b\mathcal{P}(\mathcal{F})$ denotes the whole space of functions that are all bounded elements of $\mathcal{P}(\mathcal{F})$. We use the symbol $U(M_F(C))$ for an admissible subset of the space $C(C(M_F(C)); \mathbf{R})$; more precisely $U(M_F(C))$ is the totality of real valued continuous functions F on $C(M_F(C))$ such that for some compactly supported finite measure L(dt) on T_0 , the estimate

$$|\Delta F(h,g)| \le \int_{T_0} g(t,C) L(dt)$$

holds for all $h, g \in C(M_F(C))$, where we define $\Delta F(x, y) := F(x + y) - F(x)$.

§3. Predictable Representation Property

Let $\{T_N\}$ be a reducing sequence. Take a sequence $\{\bar{\psi}_n\}$, $\bar{\psi}_n \in D_0$ such that $\bar{\psi}_n$ converges bounded pointwise (bp for short) to ψ , namely,

$$\bar{\psi}_n \to \psi, \quad bp \quad (n \to \infty).$$

An application of dominated convergence theroem together with the local boundedness of γ implies that

$$\langle Z(\bar{\psi}_n - \bar{\psi}_m) \rangle_t \to 0$$
 as $n, m \to \infty$

for $\forall t \geq \tau$, a.s. Therefore we obtain

Proposition 1. There is an a.s. continuous adapted process $\{Z_t(\psi); t \geq \tau\}$ such that

$$\sup_{\tau \le t \le N} \left| Z_t(\bar{\psi}_n) - Z_t(\psi) \right| \to 0$$

holds in probability (w.r.t. **P**) as $n \to \infty$ for $\forall N > \tau$.

To proceed our discussion, we need the following lemmas.

Lemma 1. (cf. Corollary 2.2, p.11, [P95]) Let T be a reducing time for (γ, g) . Then we have

- (a) $0 < \mathbf{P}[K_T(1)] \le \mathbf{P}[\sup_{t \le t \le T} |K_t(1)| + \langle Z(1) \rangle_T] < \infty$.
- (b) If $P[K_{\tau}(1)^p] < \infty$ for $p \in \mathbb{N}$, then

$$\mathbf{P}\left\{\left(\sup_{\tau\leq t\leq T}|K_t(1)|\right)^p+\langle Z(1)\rangle_T^p\right\}<\infty.$$

Lemma 2. (cf. [EP94, p.123]) D_0 is dense in $b\mathcal{B}(C)$ relative to the bounded pointwise convergence topology.

We may use Lemma 1 to obtain

$$\sup_{\tau \le t \le T_N} |Z_t(\bar{\psi}_n) - Z_t(\psi)| \to 0 \quad \text{in} \quad L^2$$

as $n \to \infty$, for $\forall N \in \mathbb{N}$. Clearly $Z_t(\psi)$ is a continuous (\mathcal{F}_t) -local martingale whose quadratic variation process is given by

$$\langle Z(\psi)\rangle_t = \int_{\tau}^t \int_C \gamma(s,\omega,y)\psi(y)^2 K_s(dy)ds.$$
 (3)

By virtue of Lemma 2, it is a routine work to show that this Z_t extends to an orthogonal martingale measure

$$\{Z_t(\psi); t \geq \tau, \psi \in b\mathcal{B}(C) \}.$$

Consequently, the mapping $t \mapsto Z_t(\psi)$ is a continuous local martingale satisfying Eq.(3) for each $\psi \in b\mathcal{B}(C)$, and $\psi \mapsto Z_{t \wedge T_N}(\psi)$ is an L^2 -valued measure on $\mathcal{B}(C)$ for each $t \geq \tau$, $N \in \mathbb{N}$. By a trivial localization argument, we may define the stochastic integral

$$Z_{t}(\psi) = \int_{\tau}^{t} \int \psi(s, \omega, y) dM(s, y)$$
 (4)

(\exists an orthogonal martingale measure $M=M^K$ in the sense of Walsh [W86, Chapter 2]) such that

$$\langle Z(\psi)\rangle_t = \int_{\tau}^t \langle K_s, \gamma(s,\omega)\psi(s,\omega)^2\rangle ds,$$
 (5)

 $\forall t \geq \tau$, a.s., as long as ψ belongs to $L^2_{loc}(K, \mathbf{P})$. Here $L^2_{loc}(K, \mathbf{P})$ denotes the L^2 space of $(\mathcal{F}_t \times \mathcal{C})_{t \geq \tau}$ -predictable functions f and

$$\int_{\tau}^{t} \int \gamma(s,y) f(s,y)^{2} K_{s}(dy) ds < \infty$$

for $\forall t \geq \tau$, P-a.s.

We write $f \in L^2(K, \mathbf{P})$ (resp. $L^2_{\infty}(K, \mathbf{P})$) if, in addition,

$$\mathbf{P}\left\{\int_{\tau}^{t} \int \gamma(s,\omega,y) f(s,\omega,y)^{2} K_{s}(dy) ds\right\} < \infty, \qquad \forall t > 0,$$

respectively,

$$\mathbf{P}\left\{\int_{\tau}^{\infty} \int \gamma(s,\omega,y) f(s,\omega,y)^2 K_s(dy) ds\right\} < \infty.$$

Theorem 1. (Predictable Representation Property) If $V \in L^2(\Omega, \mathcal{F}, \mathbf{P})$, then there is an f in $L^2_{\infty}(K, \mathbf{P})$ such that

$$V = \mathbf{P}[V] + \int_{\tau}^{\infty} \int f(s, \omega, y) dM^{K}(s, y), \qquad \mathbf{P} - a.s.$$
 (6)

Proof. It is sufficient to verify (6) for the particular case where V is a square integrable martingale M_t . Then Jacod's general theory (cf. Theorem 2 and Proposition 2 of [J77]) provides with a stochastic integral representation of M_t . For the rest, it goes almost similarly as in the proof of Theorem 1.1 [EP94, p.124].

§4. Canonical Measure and Campbell Measure

For $y \in D = D(\mathbf{R}_+; \mathbf{R}^d)$, we define $y^{t-}(s)$ as y(s) itself if s < t and as y(t-) if $s \ge t$. Q(s,y) is a σ -finite measure on $C(M_F(D))$ such that

$$Q(s, y^{s-}; \{h \in C(M_F(D)); \tau \le \exists t \le s, h(t) \ne 0\}) = 0,$$

which can be defined by the canonical measure $R(\tau, t, y; d\zeta)$ [D93] associated with the law of $K_t = K(t)$ and the path restriction mapping π (cf. §2, pp.1781-1782 in [EP95]) together with a discussion involved with the Dawson-Perkins theory(1991) (e.g. Theorem 2.2.3(pp.27-28) and Proposition 3.3(pp.38-39) in [DP91]). Here R is characterized by

$$\log \mathcal{P}_{s,\delta_y}[\exp\langle K_t,-arphi
angle] = \int_{M_F(M_F(C))} \left(\mathrm{e}^{-\langle\zeta,arphi
angle}-1
ight) R(s,t,y;d\zeta)$$

(cf. Lemma 1 in [Dk99c]; see also [DP91, Proposition 3.3, pp.38-39]). Let F be a real valued Borel function on $C(M_F(C))$. Assume that

$$I_{s,y}^{Q}[\Delta F](h) := \int_{C(M_{F}(C))} \Delta F(h,g) Q(s,y^{s-};dg)$$
 (7)

is well-defined and bounded below for all $s > \tau$, $y \in C$, and $h \in C(M_F(C))$. For a bounded (\mathcal{F}_t) -stopping time T, we define the Campbell measure P_T associated with K(t) by

$$P_T(A \times B) := \mathbf{P}(K(T, A) \cdot \mathbf{I}_B\{K(T)\})/m(C)$$
(8)

for any $A \times B \in (C \times \Omega, C \times \mathcal{F})$ (cf. [P95], p.21; or [DP91], p.62). Notice that $K_{\tau} = m$. Since the mapping $(s, y, \omega) \mapsto I_{s,y}^{Q}[\Delta F](K(\omega))$ is bounded below and measurable with respect to the product of the predictable σ -field associated with the filtration (\mathcal{C}_t) and the σ -field \mathcal{F} , we can apply Lemma 2.2(p.1783) [EP95] together with the projection operation argument and the predictable section theorem (e.g. Theorem 2.14(p.19) or Theorem 2.28(p.23), [JS87]; see also [E82], pp.50-52), to deduce that there exists a $(\mathcal{C}_t \times \mathcal{F}_t)_{t \geq \tau}$ -predictable function $Pr[F](s, y, \omega) : (\tau, \infty) \times C \times \Omega \to \mathbf{R}$ such that

$$P_T\{I^Q[\Delta F](T)/(\mathcal{C} \times \mathcal{F})_T\} = Pr[F](T,\omega,y) \tag{9}$$

holds P_{T} -a.s. for all bounded (\mathcal{F}_t) -predictable stopping times T > s. It is quite interesting to note that in particular

$$\mathbf{P}\int_C I^Q[\Delta F](T,y)K(T,dy) = \mathbf{P}\int_C Pr[F](T,y)K(T,dy).$$

We shall introduce an approximation map. For each $l \in \mathbb{N}$, let us choose a partition $\Delta(l) = \{t^{(l)}(j); 1 \leq j \leq k[l]\}$ such that $\tau = t^{(l)}(0) < t^{(l)}(1) < \cdots < t^{(l)}(k[l]) < \infty$,

$$\lim_{l\to\infty}\{\sup_{k}\Delta t[l;k]\}=0 \ \ \text{and} \ \ \lim_{l\to\infty}t^{(l)}(k[l])=+\infty.$$

The approximation map W[l] from $C(M_F(C))$ into $C(M_F(C))$ is defined by

$$W[l](g)(t) := \{Sb(t^{(l)}(i+1)) \cdot g(t^{(l)}(i)) - Sb(t^{(l)}(i)) \cdot g(t^{(l)}(i+1))\} \Delta t[l;i]^{-1}$$

if $t \in [t^{(l)}(i), t^{(l)}(i+1))$, and := $g(t^{(l)}(k[l]))$ if $t \ge t^{(l)}(k[l])$, for any element g of $C(M_F(C))$ with Sb(k) = k - t. Immediately we get

Lemma 3.(cf. Lemma 4 [DK98a]) Let F be an element of $C(C(M_F(C)); \mathbf{R})$. Then for all $g \in C(M_F(C))$

$$\lim_{l\to\infty} (F\circ W[l])(g) = F(g).$$

§5. Random Measures and Assumptions

We shall introduce the assumptions for our main results (Theorem 2, Theorem 3 and Theorem 4) which are stated in the succeeding section. C^t denotes the image of C under the map: $y \mapsto y^t$. We define a measure $K^*[s,t]$ on C^s by $K^*[s,t](F) := K_t(\{y: y^s \in F\})$. Then the measure $K^*[s,t]$ is atomic with a finite set of atoms, and we write $L[s,t](\subset C^s)$ for the locations of these atoms. For $s \in (a,b]$, let $\lambda_s[\varphi]$ be the random measure on C that places mass $\varphi(s,y)$ at each point y in $(L[b,c])^s = L[s,c]$. With some localization arguments in stochastic calculus, the Perkins-Girsanov theorem of Dawson type [P95] guarantees the existence of a probability measure \mathbf{Q}_N on (Ω, \mathcal{F}) such that

$$\frac{d\mathbf{Q}_{N}}{d\mathbf{P}}\Big|_{\mathcal{F}_{t}} = \exp\left\{ \int_{\tau}^{t \wedge T_{N}} \int g \gamma^{-1}(s) \mathbf{I}(g(s) \neq 0) dM^{K}(s, y) - \frac{1}{2} \int_{\tau}^{t \wedge T_{N}} \int g^{2} \gamma^{-1}(s) \mathbf{I}(g(s) \neq 0) K_{s}(dy) ds \right\}.$$

For brevity's sake we rather write $\mathcal{E}(t \wedge T_N)$ than the above. On this account, $K_{\cdot \wedge T_N}$ satisfies the martingale problem $(MP)[\gamma_N, a_N, b_N, 0]$ instead of $(MP)[\gamma, a, b, g]$, where we set $f_N := f \cdot \mathbf{I}(\tau < t \leq T_N)$. Moreover, for $s \in (a, b], y \in C^s$, the symbol $\mathcal{M}[s, y]$ denotes the mapping of the set of functions $\{m: (\tau, \infty) \to M_F(C)\}$ into itself and is defined as follows: i.e., $\{\mathcal{M}[s, y]m\}_t(F)$ is equal to $m_t(F)$ if t < s, or is equal to $m_t(\{y' \in F: (y')^s \neq y\})$ if $t \geq s$. Let us now introduce assumptions for our principal results.

- (A.1) $g: [\tau, \infty) \times \Omega \times C \to \mathbf{R}$ is a $(\mathcal{F}_t \times \mathcal{C}_t)^*$ -predictable process such that $g\gamma^{-1} \cdot \mathbf{I}(g \neq 0)$ is locally bounded.
- (A.2) For any predictable function f on $[\tau, \infty) \times I \times C^* \times \Omega$, the counting measure n^* satisfies

$$\mathbf{P}\int_{C^*} n^*((s,t] imes I)G_t(dx) = m(C^*)(t-s)$$

where G_t is a marked historical process corresponding to K and N_t is the martingale measure associated with G_t (cf. §7 for details).

(A.3) There exists a random measure Λ_{φ} on $(\tau, \infty) \times C$ such that

$$\int\int_{C(\infty)}f(s,y)\Lambda_{arphi}(ds\otimes dy)=\int_{a+}^{b}\int_{C}f(s,y)\lambda_{s}[arphi](dy)ds$$

holds for any suitable predictable function f.

- (A.4) $\Psi(s,y)\mathcal{E}(t\wedge T_N)^{-1}$ is uniformly bounded in s, K_s -a.e. y, \mathbf{Q}_N -a.s.
- (A.5) There exists some constant C_0 (> 0) such that

$$\int \int_{C(t)} \Psi(s,y)^2 \mathcal{E}(t \wedge T_N)^{-2} \gamma(s,y) K_s(dy) ds \leq C_0$$

holds \mathbf{Q}_N -a.s., for all $t \geq \tau$.

Note that we shall assume (A.1)-(A.5) hereafter all through the whole paper.

§6. Main Results: Stochastic Integration Formulae

The followings are our main results in this paper. The first one is a finite dimensional version of Evans-Perkins type stochastic integration by parts formula. Let K be a predictable measure-valued process whose law is specified by a general martingale problem $(MP)[\tau, K_{\tau}, \gamma, a, b, g]$.

Theorem 2.(cf. [Dk98b]) Assume that $\Phi: C(M_F(C)) \to \mathbf{R}$ is a cylinder function with bounded representing function $\varphi: [M(C)]^k \to \mathbf{R}$ and base $\tau < t(1) < \cdots < t(k)$, such that

$$|\Delta \varphi(\alpha, \beta)| \le c_0 \sum_{j} \beta_j(C)$$

for some positive constant c_0 , for all α , $\beta = (\beta_j) \in [M(C)]^k$. Then for $t > \tau$

$$\mathbf{P}igg\{\Phi(K)\int\int_{C(t)}\Psi(s,y)dM^K(s,y)igg\} = \mathbf{P}\int\int_{C(t)}Pr[\Phi](s,y)\Psi(s,y)\gamma(s,y)K_s(dy)ds$$

holds where Ψ is a bounded $(C_t \times \mathcal{F}_t)_{t \geq \tau}$ -predictable function, K_t is a GHP, and $Pr[\Phi]$ is a predictable function determined by (9) in accordance with the given Φ .

Remark 1. The assertion of the above theorem is quite similar to Theorem 2.4(p.1785, §2, [EP95]).

Theorem 3. (Stochastic Integration By Parts) Let $F \in U(M_F(C))$. If Ψ is an element of $b\mathcal{P}(\mathcal{C}_t \times \mathcal{F}_t)$, then for all t > s,

$$\mathbf{P}\left\{F(K)\int\int_{C(t)}\Psi(s,y)\ dM^{K}(s,y)\right\} \\
= \mathbf{P}\int\int_{C(t)}Pr[F](s,y)\gamma(s,y)\Psi(s,y)K_{s}(dy)ds. \tag{10}$$

Remark 2. Note that it is not hard to extend the assertion in Theorem 2 to the case of a more general functional F(K). As a matter of fact, once the integral formula as given in Theorem 2 is established, it is a kind of routine work to generalize it(cf. §3, [Dk98a]). We shall refer to this generalization in §8.

Theorem 4. (Itô-Clark Type Formula) Let $F \in U(M_F(C))$.

$$F(K) = \mathbf{P}[F(K)] + \int_{\tau^{\perp}}^{\infty} \int Pr[F](s, y) dM^{K}(s, y)$$
(11)

where Pr[F](s,y) is a $\mathcal{P}(\mathcal{C}_t \times \mathcal{F}_t)$ -measurable version (relative to P_T) of

$$\left[\int_{C(M_F(C))} \Delta F(K,h) Q(s,y^{s-};dh) \; / \; (\mathcal{D} imes \mathcal{F})_T
ight].$$

§7. Marked Historical Processes and the Girsanov-Dawson-Perkins Theorem

Set I = [0, 1], $E^* = C \times I$ and $C^* = C(\mathbf{R}_+, E^*)$, and let C^* (resp. C^*_t) be the Borel σ -field (resp. the canonical filtration) of C^* . Put $x = (y, n) \in E^*$. Let G be the corresponding counterpart historical process of K starting at (τ, μ) , defined on the stochastic basis $(\Omega, \mathcal{H}, \mathcal{H}_t, \mathbf{P}^*)$. Suppose that $\varphi : (\tau, \infty) \times C \times \Omega \to I$ be an element of $\mathcal{P}(C_t \times \mathcal{H}_t)$. Given any cadlag function $n : \mathbf{R}_+ \to I$, we can construct a σ -finite counting measure n^* on $\mathbf{R}_+ \times I$ by assigning an atom of mass one to each point (s, z) such that $n(s) - n(s-) = z \neq 0$. Put

$$A(t,x,\omega) := n^*(\{(s,z) \in [\tau,t) \times I; \quad \varphi(s,y,\omega) > z\})$$
(12)

and $B(t,x,\omega) = \mathbf{I}\{A(t,x,\omega) = 0\}$. Then we can define an $M_F(C)$ -valued process $K[\varphi](t)$ by

 $K[\varphi;J](t) := \int_{C^*} \mathbf{I}\{J\}(y)B(t,x)G_t(dx). \tag{13}$

Put

$$I_1(\varphi,N) = \int \int_{C^*(t)} \varphi(s,y) dN(s,x), \quad ext{and} \quad I_2(\varphi,G) = \int \int_{C^*(t)} \gamma(s,y) \varphi(s,y)^2 G_s(dx) ds$$

with $C^*(t) = (\tau, t] \times C^*$. Then we define

$$\Lambda[\varphi](t) := \exp\left\{I_1(\varphi, N) - \frac{1}{2}I_2(\varphi, G)\right\}. \tag{14}$$

Note that $\Lambda[\varphi](t)$ is a \mathcal{H}_t -martingale. The new probability space $(\Omega, \mathcal{H}, \mathbf{P}^*[\varphi])$ is defined by $\mathbf{P}^*[\varphi]\{F\} := \mathbf{P}^*\{F \cdot \Lambda[\varphi](t)\}$ (cf. [Dk98a]) for any $F \in b\mathcal{H}_t$ with

$$\mathcal{H} := \bigvee_{t \ge \tau} \mathcal{H}_t \tag{15}$$

(see Theorem 2.1(pp.125-126) and Theorem 2.3b(p.127), [EP94]). It is easy to show the following proposition if we apply Dawson's Girsanov theorem [D93] (see also [P95]).

Proposition 2.(cf. Theorem 5.1, p.1798, [EP95]) The law of $K[\varphi]$ under $P[\varphi]$ is equivalent to the law of K under P.

§8. Sketch of Proofs of Main Theorems

§8.1 Generalization of the Cylinder Function Case: Proof of Theorem 3

As mentioned in Remark 2 of §6, the essential part of an extension of the Evans-Perkins type integration formula is compressed into the study on its finite dimensional case, namely, Theorem 2. The general case easily follows from a kind of routine work [Dk98a]. We define a real valued function L^* on $C(M_F(C))$ by

$$L^*[g] := \int_{T_0} g(t, C) L(dt) = \langle L, g(\cdot, C) \rangle. \tag{16}$$

In connection with the measure L (see §2), we introduce the finite measure $L(l) \equiv L(l,dt)$ which concentrates its mass on $\{t^{(l)}(j); 0 \leq j \leq k[l]\}$ (cf. [Dk98a, p.5]). We have $(L^* \circ W[l])[g] = \langle L(l), g(\cdot, C) \rangle$ for $g \in C(M_F(C))$. Recall that

$$\int g(t,C)\,Q(s,y;dg) = \int \xi(C)\,R(s,t,y;d\xi) = 1$$

holds (cf. Lemma 3, [Dk99a]) with ease for s < t from Lemma 3.4(pp.41-43), [DP91]. Then it is easy to verify the followings:

$$\mathbf{P} \int \int_{C(t)} \{Q(s, y^{s-}) L^*[g]\} K_s(dy) ds = \lim_{l \to \infty} \mathbf{P} \int \int_{C(t)} \{Q(s, y^{s-}) (L^* \circ W[l])[g]\} K_s(dy) ds$$

holds with $g \in C(M_F(C))$ for all $t > \tau$, and

$$\mathbf{P} \int \int_{C(t)} Pr[F](s,y)Z(s,y)K_s(dy)ds$$

$$= \lim_{l \to \infty} \mathbf{P} \int \int_{C(t)} Pr[F \circ W[l]](s,y)Z(s,y)K_s(dy)ds. \tag{17}$$

holds for all $t > \tau$ if $Z \in \mathcal{P}(\mathcal{C}_t \times \mathcal{F}_t)$. Since, for each $n \geq 1$, $\mathbf{P}\{K_t(C)^n\}$ is uniformly bounded on compact intervals, we can readily deduce that $\mathbf{P}\{(L^* \circ W[l])[K]^n\}$ is bounded in l for each $n \geq 1$. Moreover,

$$\mathbf{P}\bigg\{F(K)\ \int\int_{C(t)}\Psi(s,y)\,dM(s,y)\bigg\}=\lim_{l\to\infty}\mathbf{P}\bigg\{\Big(F\circ W[l]\Big)(K)\ \int\int_{C(t)}\Psi(s,y)\,dM(s,y)\bigg\}.$$

To complete the extension discussion in this section we have only to observe that $F \circ W[l]$ satisfies all the conditions of Theorem 2 (cf. Lemma 22, pp.9-10, [Dk98a]). Thus we have a finite dimensional special case of stochastic integration by parts formula related to historical processes as far as Proposition 2 in §7 is valid. Hence, combining the above results, we obtain

$$\mathbf{P}\Big\{F(K) \int \int_{C(t)} \Psi(s,y) \, dM\Big\} = \lim_{l \to \infty} \mathbf{P}\Big\{\Big(F \circ W[l]\Big)(K) \int \int_{C(t)} \Psi(s,y) \, dM\Big\} \\
= \lim_{l \to \infty} \mathbf{P} \int \int_{C(t)} Pr[F \circ W[l]] \, \gamma(s,y) \Psi(s,y) \, K_s(dy) ds \\
= \mathbf{P} \int \int_{C(t)} Pr[F](s,y) \, \gamma(s,y) \Psi(s,y) \, K_s(dy) ds,$$

which concludes Theorem 3.

§8.2 Stochastic Integration by Parts: Proof of Theorem 2

Since the complete proof is longsome and tiresome, computation in details will be sacrificed for the sake of simplicity and clearness. The basic idea is due to §7 in [Dk99a].

Thanks to (A.1), it suffices to verify the integral formula for a special $\{\gamma_N, a_N, b_n, 0\}$ -historical process $K_{\cdot \wedge T_N}$ under \mathbf{Q}_N instead of the generalized K (GHP) with \mathbf{P} . Indeed, since $d\mathbf{P} = \mathcal{E}(t \wedge T_N)^{-1}d\mathbf{Q}_N$, what we have to show is as follows:

(The Modified Stochastic Integration By Parts Formula)

$$\mathbf{Q}_{N} \quad \left\{ \mathcal{E}(t \wedge T_{N})^{-1} \cdot \Phi(K_{\cdot \wedge T_{N}}) \int \int_{C(t)} \Psi(s, y) dM(s, y) \right\} \\
= \quad \mathbf{Q}_{N} \left\{ \mathcal{E}(t \wedge T_{N})^{-1} \int \int_{C(t)} Pr[\Phi](s, y) \gamma(s, y) \Psi(s, y) K_{s \wedge T_{N}}(dy) ds \right\}.$$

Note that both sides above are well-defined by virtue of (A.4). Notice that Eq.(12)-(14) remains valid even for $\varphi = \Psi \cdot \mathcal{E}^{-1}$. Hence, by the auguments on exponential martingale

formalism for the historical process, $\Lambda[\Psi \cdot \mathcal{E}^{-1}](t)$ is a \mathcal{H}_t -martingale and the measure $\mathbf{Q}_N[\Psi \cdot \mathcal{E}^{-1}]$ is given by $\mathbf{Q}_N[\{\cdot\}\Lambda[\Psi \cdot \mathcal{E}^{-1}]]$. Then it follows from Dawson's Girsanov theorem (Proposition 2 in §7) that, for any positive ε ,

$$\mathbf{Q}_N\{\Phi(K_{\cdot \wedge T_N})\} = \mathbf{Q}_N[\varepsilon \Psi \mathcal{E}^{-1}] \Big\{ \Phi(K_{\cdot \wedge T_N}[\varepsilon \Psi \mathcal{E}^{-1}]) \Big\}.$$

Immediately,

$$\mathbf{Q}_{N} \quad \left\{ \Phi(K_{\cdot \wedge T_{N}}) \cdot (\Lambda[\varepsilon \Psi \mathcal{E}^{-1}](t) - 1) \right\} \\
+ \quad \mathbf{Q}_{N} \left\{ \left(\Phi(K_{\cdot \wedge T_{N}}[\varepsilon \Psi \mathcal{E}^{-1}]) - \Phi(K_{\cdot \wedge T_{N}}) \right) \cdot (\Lambda[\varepsilon \Psi \mathcal{E}^{-1}](t) - 1) \right\} \\
= \quad \mathbf{Q}_{N} \left\{ \Phi(K_{\cdot \wedge T_{N}}) - \Phi(K_{\cdot \wedge T_{N}}[\varepsilon \Phi \mathcal{E}^{-1}]) \right\}.$$

For simplicity we denote by I_1 (resp. I_2) the first (resp. second) term at the left hand side of the above equality, and put

 I_3 = the right hand side with the minus sign.

Then we find that the convergence

$$\varepsilon^{-1} \cdot (\Lambda[\varepsilon \Psi \mathcal{E}^{-1}](t) - 1) \to \int \int_{C(t)} \Psi(s, y) \ \mathcal{E}(t \wedge T_N)^{-1} \ dM(s, y), \qquad \mathbf{Q}_N - a.s. \quad (\varepsilon \to 0)$$

is true (cf. Lemma 8, [Dk99a]). Hence we readily obtain

$$\lim_{\varepsilon \downarrow 0} \varepsilon^{-1} \ I_1 = \mathbf{Q}_N \left\{ \Phi(K_{\cdot \wedge T_N}) \cdot \int \int_{C(t)} \Psi(s,y) \ \mathcal{E}(t \wedge T_N)^{-1} \ dM(s,y) \right\}.$$

Paying attention to the fact that

$$\lim_{\varepsilon \downarrow 0} K^*[\varepsilon \Psi \mathcal{E}^{-1}; C](t) = 0, \qquad \mathbf{Q}_N - a.s.,$$

we can show that $\lim_{\varepsilon\downarrow 0} \varepsilon^{-1} I_2 = 0$, as well.

It remains to treat the third term I_3 . In order to discuss the convergence of I_3 divided by ε , we need the following:

Key Lemma (cf. Lemma 12, [Dk99a])

$$\mathbf{Q}_{N} \int \int \left\{ \Phi(\mathcal{M}[s,y]K_{\cdot \wedge T_{N}}) - \Phi(K_{\cdot \wedge T_{N}}) \right\} \Lambda_{\Psi \cdot \mathcal{E}^{-1}}(ds \otimes dy)$$

$$= - \mathbf{Q}_{N} \int \int Pr[\Phi]\gamma(s,y)\Psi(s,y)\mathcal{E}^{-1}(t \wedge T_{N})dK_{s \wedge T_{N}}(y)ds.$$

On the other hand, for $\varepsilon > 0$ we have

$$\mathbf{Q}_{N}[\Phi(K[\varepsilon\varphi]) - \Phi(K) / \mathcal{F}]$$

$$= \varepsilon \cdot e^{-\varepsilon \Lambda_{\varphi}((\tau,\infty) \times C)} \int \int_{C(\infty)} \{\Phi(\mathcal{M}[s,y]K) - \Phi(K)\} \Lambda_{\varphi}(ds \otimes dy) + R(\varepsilon,\Phi,\varphi) \quad (18)$$

where the residue function R satisfies $|R(\varepsilon, \Phi, \varphi)| \leq o(\varepsilon)$. From (18) we get the convergence

$$\lim_{\varepsilon \downarrow 0} \varepsilon^{-1} I_3 = -\mathbf{Q}_N \int \int_{C(t)} Pr[\Phi] \gamma(s, y) \cdot \Psi \mathcal{E}^{-1} dK_{s \wedge T_N} ds.$$
 (19)

In fact, a simple application of the above-mentioned Key Lemma yields the required result. To complete the proof, we have only to combine the above results.

§8.3 Cluster Representation Argument: Proof of Key Lemma

For the proof of Key Lemma, although it is very technical, we are based on the cluster representation argument [D93] (see also [DP91]). For the details, we refer to the arguments stated in §8 in [Dk99a]. The following lemmas are merely essential parts of the discussion.

For any $y \in C^s$, R(s, t, y) denotes the canonical measure (cf §4) in the theory of cluster random measures (e.g. [D93], [DP91]). Actually, R is a σ -finite measure such that

$$R(s,t,y;M_F(C))=r_{s,t}.$$

Here the crucial point is that the total mass $r_{s,t}$ does not depend on y. So $r_{s,t}^{-1}dR(s,t,y)$ becomes a probability measure. It is interesting to note that K_t is a sum of independent nonzero clusters with laws $r_{s,t}^{-1}R(s,t,y;dh)$, conditional on L[s,t] (see §5). Furthermore, conditional on \mathcal{F}_s , L[s,t] can be regarded as a Poisson point process with intensity $r_{s,t}\gamma(s)K_s$. This is one of the most important points for the computation in terms of clusters growing from the points of $L[s,t_{l+1}]$ in what follows. We define a measure S by the following equation: for $\forall g \in b\mathcal{B}([M_F(C)]^{k-l} \to \mathbf{R})$,

$$\int g(\eta_{l+1}, \cdots, \eta_k) S_{s,y}(d\eta_{l+1} \otimes \cdots \otimes d\eta_k)$$

$$= \int g(h(t_{l+1}), \cdots, h(t_k)) \cdot \mathbf{I}\{h(t_{l+1}) \neq 0\} Q(s, y; dh)$$

where Q(s, y; dh) is a σ -finite measure on $C(M_F(C))$ (cf. Eq.(7) in §4). $S_{s,y}^*$ is the normalization of $S_{s,y}$, given by $dS_{s,y}^* := r_{s,t_{l+1}}^{-1} dS_{s,y}$. Moreover, we define

$$\Xi(s;E) := \int \int \cdots (k-l) \cdots \int \varphi(K(t_1), \cdots, K(t_l), \sum_{i=1}^m \eta_{l+1}^i, \cdots, \sum_{i=1}^m \eta_k^i) \times \bigotimes_{i=1}^m S_{s,y}^* (d\eta_{l+1}^i \otimes \cdots \otimes d\eta_k^i),$$

where $E = \{y_1, \dots, y_m\} (\neq \emptyset)$.

Take the mass φ as $(\Psi \mathcal{E}^{-1})(s,y)$ at each point y (cf. §5). For simplicity we set

$$\Delta[\Phi](\mathcal{M}; s, y, K) := \Phi(\mathcal{M}[s, y]K_{\cdot \wedge T_N}) - \Phi(K_{\cdot \wedge T_N}).$$

Recall the assumption (A.3). Immediately we can get

$$\mathbf{Q}_{N} \int \int_{C(\infty)} \Delta[\Phi](\mathcal{M}; s, y, K) \Lambda_{\Psi \mathcal{E}^{-1}}(ds \otimes dy)
= \mathbf{Q}_{N} \int_{a+}^{b} \int_{C} \Delta[\Phi](\mathcal{M}; s, y, K) \lambda_{s}[\Psi \mathcal{E}^{-1}](dy) ds
= \int_{a+}^{b} ds \mathbf{Q}_{N} \left\{ \sum_{y \in L[s, u]} \Delta[\Phi](\mathcal{M}; s, y, K) \cdot (\Psi \mathcal{E}^{-1})(s, y) \right\}.$$

In the following calculation, we may take much advantage of those concepts such as i) the Markov property of K_t ; ii) the infinite divisibility of the law of historical process; iii) the Poisson nature of the location $L[s, t_{l+1}]$. Hence we can proceed with the computation. In fact,

$$\mathbf{Q}_{N} \left\{ \sum_{\boldsymbol{y} \in L[s,\boldsymbol{u}]} \Delta[\Phi](\mathcal{M}; s, \boldsymbol{y}, K) \cdot (\Psi \mathcal{E}^{-1})(s, \boldsymbol{y}) \right\} \\
= \mathbf{Q}_{N} \left\{ \mathbf{P} \left[\sum_{\boldsymbol{y} \in L[s,\boldsymbol{u}]} \mathbf{P} \{ \Delta[\Phi] \cdot \Psi \mathcal{E}^{-1} | \mathcal{F}_{s} \bigvee \sigma(L[s,\boldsymbol{u}]) \} \middle| \mathcal{F}_{s} \right] \right\} \\
= \mathbf{Q}_{N} \left\{ \mathbf{P} \left[\sum_{\boldsymbol{y} \in L[s,\boldsymbol{u}]} \{ \Xi(s; L[s,\boldsymbol{u}] \setminus \{\boldsymbol{y}\}) - \Xi(s; L[s,\boldsymbol{u}]) \} \cdot \Psi \mathcal{E}^{-1} \middle| \mathcal{F}_{s} \right] \right\} \tag{20}$$

It is easy to see the following lemma.

Lemma 4. The last expression of (20) is equivalent to

$$\mathbf{Q}_{N} \int_{C} (\Psi \mathcal{E}^{-1})(s, y) \cdot r_{s, t_{l+1}} \gamma(s, y) K_{s \wedge T_{N}}(dy) \left[\exp\left(-r_{s, t_{l+1}} K_{s}(C)\right) \cdot \right]$$

$$\times \sum_{m=0}^{\infty} \frac{1}{m!} \int_{C} \cdots (m) \cdots \int_{[C]^{m}} \left\{ \Xi(s; \{y_{1}, \cdots, y_{m}\}) - \Xi(s; \{y_{1}, \cdots, y_{m}, y\}) \right\} \cdot \left[(r_{s, t_{l+1}})^{m} K_{s}^{\otimes m}(dy_{1}, \cdots, dy_{m}) \right].$$

A simple computation implies that the integral expression in Lemma 4 is also equal to

$$\mathbf{Q}_{N} \int_{C} (\Psi \mathcal{E}^{-1})(s, y) \gamma(s, y) K_{s \wedge T_{N}}(dy) \cdot \left[\int \int \cdots(k - l) \cdots \int_{[M_{F}(C)]^{k - l}} \right] \times \mathbf{P} \{ \varphi(K(t_{1}), \cdots, K(t_{k})) - \varphi(K(t_{1}), K(t_{l}), K(t_{l+1}) + \eta_{l+1}, \cdots, K(t_{k}) + \eta_{k}) | \mathcal{F}_{s} \} \times r_{s, t_{l+1}} \cdot S_{s, y^{s}}^{*}(d\eta_{l+1} \otimes \cdots \otimes d\eta_{k}) \right].$$
(21)

While, taking (7), (8) in §4, the Campbell measure theory, and predictable section argument into consideration, we readily obtain

Lemma 5. The followinf equality holds for all s, y:

$$Pr \quad [\Phi](s,y) = \int \int \cdots (k-l) \cdots \int r_{s,t_{l+1}} \cdot S_{s,y^{s-}}^*(d\eta_{l+1} \otimes \cdots \otimes d\eta_k) \cdot \times \mathbf{P} \left\{ \varphi(K(t_1), \cdots, K(t_l), K(t_{l+1}) + \eta_{l+1}, \cdots, K(t_k) + \eta_k) - \varphi(K(t_1), \cdots, K(t_k)) | \mathcal{F}_s \right\}.$$

Therefore, an application of the above proposition with Lemma 4 implies

$$- \mathbf{Q}_{N} \int \int_{C(t)} Pr[\Phi](\gamma \cdot \Psi \mathcal{E}^{-1})(s, y) dK_{s \wedge T_{N}} ds$$

$$= \int_{\tau_{+}}^{t} ds \left\{ \mathbf{Q}_{N} \int_{C} (-Pr[\Phi]) \gamma \cdot \Psi \mathcal{E}^{-1} dK_{s \wedge T_{N}} ds \right\} = \int_{\tau_{+}}^{t} Eq.(21) ds = \int_{\tau_{+}}^{t} Eq.(20) ds$$

$$= \mathbf{Q}_{N} \int \int_{C(t)} \Delta[\Phi](\mathcal{M}; s, y, K) \Lambda_{\Psi \mathcal{E}^{-1}} (ds \otimes dy),$$

which completes the proof.

§9. Itô-Clark Formula: Proof of Theorem 4

Since $\mathbf{P}[K_t(C)^2]$ is uniformly bounded on compact intervals, our major premise guarantees the finiteness of the quantity $\mathbf{P}[F(K)^2]$. Therefore we can apply Theorem 1 (§3) for F(K) to obtain that

$$F(K) = \mathbf{P}[F(K)] + \int_{\tau}^{\infty} \int_{C} f(s, y) dM^{K}(s, y), \mathbf{P} - a.s.$$
 (22)

holds for some f in $L^2_{\infty}(K, \mathbf{P})$. While, it follows from the covariance formula in the theroy of stochastic integration that

$$\mathbf{P} \left[\left(\int \int_{C(\infty)} f(s, y) dM^{K}(s, y) \right) \left(\int \int_{C(t)} \Psi(s, y) dM^{K}(s, y) \right) \right]$$

$$= \mathbf{P} \left[\int_{\tau}^{t} \int_{C} f(s, y) \Psi(s, y) \gamma(s, y) K_{s}(dy) ds \right]$$
(23)

for all $t > \tau$ and Ψ in $b\mathcal{P}(\mathcal{C}_t \times \mathcal{F}_t)$. Rewriting the left hand side of Eq.(23) we get

$$\mathbf{P}\left[F(K)\int_{\tau}^{t}\int_{C}\Psi(s,y)dM^{K}(s,y)\right] \tag{24}$$

by employing the predictable representation property (22). Hence we may apply Theorem 3 (§6) to rewrite (24), because the stochastic integration by parts formula is valid for any bounded ($C_t \times \mathcal{F}_t$)-predictable functions. So that, from (23)

$$\mathbf{P}\int\int_{C(t)}f(s,y)\Psi(s,y)\gamma(s,y)dK_{s}ds=\mathbf{P}\int\int_{C(t)}Pr[F](s,y)\Psi(s,y)\gamma(s,y)dK_{s}ds.$$

On this account, the general theory of Hilbert spaces shows that

$$\mathbf{P}\int_{\tau}^{t}\int_{C}\{f(s,y)-Pr[F](s,y)\}^{2}\gamma(s,y)K_{s}(dy)ds=0.$$

Therefore the uniqueness argument allows us to conclude that $\int \int_{C(t)} f dM$ is equivalent to $\int \int_{C(t)} Pr[F] dM$, P-a.s. Note that Pr[F](s,y) become null for K_s -a.s. y, for any s > t, by its construction, as long as we choose t largely enough for the support of m to be contained in $[\tau, t]$. Consequently, the above integral $\int \int Pr[F] dM$ can be replaced by $\int \int_{C(\infty)} Pr[F] dM$, which completes the proof. This goes quite similarly as in the proof of Theroem 2.5 in [EP95].

References

[D93] D.A. Dawson: Measure-valued Markov processes, *Lecture Notes in Math.* **1541** (1993, Springer-Verlag, Berlin), 1-260.

[DIP89] D.A. Dawson, I. Iscoe and E.A. Perkins: Super-Brownian motion: path properties and hitting probabilities, *Probab. Th. Rel. Fields* 83(1989), 135-205.

[Dk97] I. Dôku: Nonlinear SPDE with a large parameter and martingale problem for the measure-valued random process with interaction, J.SU Math.Nat.Sci.46-2(1997), 1-9.

[Dk98a] I. Dôku: A note on a certain stochastic integration by by parts formula for superprocesses, J. SU Math. Nat. Sci. 47-1(1998), 1-11.

[Dk98b] I. Dôku: On some integration formulae in stochastic analysis, *RIMS Kokyuroku* (Kyoto Univ.) 1035(1998), 66-81.

[Dk99a] I. Dôku: On a certain integral formula in stochastic analysis, to appear in *Proc.* of Conference on Quantum Information, Nov.4-8, 1997, Meijo Univ., Nagoya, (1999), 20p.

[Dk99b] I. Dôku: A version of Evans-Perkins type stochastic representation formula for historical superprocess, to appear in *Proc. Colloquium on Stoch. Anal. M-VSP*, (1999).

[Dk99c] I. Dôku: An overview of the studies on catalytic stochastic processes, to appear in *Proc. Colloquium on Stoch. Anal. M-VSP*, (1999), 14p.

[DkTS98] I. Dôku and H. Tamura: The Brownian local time and the elastic boundary value problem, J. SU Math. Nat. Sci. 47-2(1998), 1-5.

[DkTn98] I. Dôku and F. Tanuma: Examples of representation of quadratic variation processes related to the historical martingale problem, *J.SU Math.Nat.Sci.*47-2(1998), 7-16.

[DP91] D.A. Dawson and E.A. Perkins: Historical processes, *Mem. Amer. Math. Soc.* **93**(1991), 1-179.

[E82] R.J.Elliot: Stochastic Calculus and Applications, Springer-Verlag, New York, 1982. [EP94] S.N. Evans and E.A. Perkins: Measure-valued branching diffusions with singular interactions, Can. J. Math. 46(1994), 120-168.

[EP95] S.N. Evans and E.A. Perkins: Explicit stochastic integral representations for historical functions, *Ann. Probab.* **23**(1995), 1772-1815.

- [F88] P.J. Fitzsimmons: Construction and regularity of measure-valued Markov branching processes, *Israel J. Math.* **64**(1988), 337-361.
- [J77] J. Jacod: A general theorem of representation for martingales, *Proc. Symp. Pure Math.* XXXI(1977, AMS), 37-54.
- [JS87] J. Jacod and A.N. Shiryaev: Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 1987.
- [P92] E.A. Perkins: Measure-valued branching diffusion with spatial interactions, *Prob.* Th. Rel. Fields, 94(1992), 189-245.
- [P95] E.A. Perkins: On the martingale problem for interactive measure-valued branching diffusions, *Mem. Amer. Math. Soc.* **115**(1995), 1-89.
- [U95] A.S. Üstünel: An Introduction to Analysis on Wiener Space, Lecture Notes in Math. Vol.1610, Springer-Verlag, Berlin, 1995.
- [W86] J.B. Walsh: An introduction to stochastic partial differential equations, *Lecture Notes in Math.* 1180(1986, Springer-Verlag), 265-439.