<table>
<thead>
<tr>
<th>Title</th>
<th>A Class of Dirac-Type Operators on the Abstract Boson-Fermion Fock Space and Their Strong Anticommutativity (Development of Infinite-Dimensional Noncommutative Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Arai, Asao</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1999), 1099: 26-35</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63046</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
A Class of Dirac-Type Operators on the Abstract Boson-Fermion Fock Space and Their Strong Anticommutativity

Asao Arai

Department of Mathematics, Hokkaido University
Sapporo 060-0810, Japan

e-mail: arai@math.sci.hokudai.ac.jp

1991 MSC : 81Q10, 47N50, 81Q60, 81R10

Key words : infinite dimensional Dirac-type operator, Boson-Fermion Fock space, strong anticommutativity, supersymmetry

1 Introduction

In a previous paper [4], we introduced a family \(\{Q_S|S \in C(\mathcal{H}, \mathcal{K})\} \) of infinite dimensional Dirac-type operators on the abstract Boson-Fermion Fock space \(\mathcal{F}(\mathcal{H}, \mathcal{K}) \) over the pair \((\mathcal{H}, \mathcal{K}) \) of two Hilbert spaces \(\mathcal{H} \) and \(\mathcal{K} \), where the index set \(C(\mathcal{H}, \mathcal{K}) \) of the family is the set of all densely defined closed linear operators from \(\mathcal{H} \) to \(\mathcal{K} \), and investigated fundamental properties of them. As is shown in [4], this class of Dirac-type operators has a connection with supersymmetric quantum field theory (SQFT) [19]. Namely, \(Q_S \) gives an abstract form of free supercharges in some models of SQFT. Interacting models of SQFT can be constructed from perturbations of \(Q_S \) [4]. For related aspects and further developments, see, e.g., [1], [2], [3], [5], [6], [10], [14], [16], [17], [20], [21].

Generally speaking, Dirac-type operators have something to do with a notion of anticommutativity, because they are related to representations of Clifford algebras, and this aspect may be an essential feature of Dirac-type operators (cf. [7], [8], [9], [11], [12]). A proper notion of anticommutativity, i.e., \textit{strong anticommutativity}, of (unbounded) self-adjoint operators was given in [27] and developed by some authors (e.g., [25], [22], [7], [9], [11], [12]). In a recent paper [15], a theorem on the strong anticommutativity of two Dirac operators \(Q_S \) and \(Q_T \) was established with application to constructing representations on \(\mathcal{F}(\mathcal{H}, \mathcal{K}) \) of a supersymmetry algebra arising in a two-dimensional relativistic SQFT.

The aim of this note is to review fundamental aspects of the theory of infinite dimensional Dirac-type operators on the abstract Boson-Fermion Fock space and to present a summary of the results on their strong anticommutativity obtained in [15].
2 Dirac-type operators on the abstract Boson-Fermion Fock space—a brief review

Let \mathcal{H} be a Hilbert space and $\otimes^n\mathcal{H}$ be the n-fold tensor product Hilbert space of \mathcal{H} ($n = 0, 1, 2, \cdots$; $\mathcal{O}(\mathcal{H}) := \mathcal{C}$). We denote by S_n (resp. A_n) the symmetrizer (resp. the anti-symmetrizer) on $\otimes^n\mathcal{H}$ and by $S_n(\otimes^n\mathcal{H})$ (resp. $A_n(\otimes^n\mathcal{H})$) its range, which is called the n-fold symmetric (resp. anti-symmetric) tensor product of \mathcal{H}. The Boson Fock space $\mathcal{F}_b(\mathcal{H})$ and the Fermion Fock space $\mathcal{F}_f(\mathcal{H})$ over \mathcal{H} are respectively defined by

$$\mathcal{F}_b(\mathcal{H}) := \bigoplus_{n=0}^{\infty} S_n(\otimes^n\mathcal{H}), \quad \mathcal{F}_f(\mathcal{H}) := \bigoplus_{n=0}^{\infty} A_n(\otimes^n\mathcal{H}) \tag{2.1}$$

(e.g., [23, §II.4], [18, §5.2]). Let \mathcal{K} be a Hilbert space. Then the Boson-Fermion Fock space $\mathcal{F}(\mathcal{H}, \mathcal{K})$ associated with the pair $(\mathcal{H}, \mathcal{K})$ is defined by

$$\mathcal{F}(\mathcal{H}, \mathcal{K}) := \mathcal{F}_b(\mathcal{H}) \otimes \mathcal{F}_f(\mathcal{K}), \tag{2.2}$$

the tensor product Hilbert space of the Boson Fock space over \mathcal{H} and the Fermion Fock space over \mathcal{K}. We denote by $C(\mathcal{H}, \mathcal{K})$ the set of densely defined closed linear operators from \mathcal{H} to \mathcal{K}.

We first present the definitions of basics objects in the Boson Fock space and the Fermion Fock space. More detailed descriptions on Fock space objects can be found, e.g., in [23, §II.4, Example 2], [24, §X.7] and [18, §5.2].

For each vector $\Psi = \{\Psi^{(n)}\}_{n=0}^{\infty} \in \mathcal{F}_b(\mathcal{H})$ ($\Psi^{(n)} \in S_n(\otimes^n\mathcal{H})$), we use the natural identification of $\Psi^{(n)}$ with $\{0, \cdots, 0, \Psi^{(n)}, 0, \cdots\} \in \mathcal{F}_b(\mathcal{H})$. The same applies to vectors in other infinite direct sums of Hilbert spaces.

For a subset V of a Hilbert space, we denote by $L V$ the subspace algebraically spanned by all the vectors of V.

Let $\Omega_b := \{1, 0, 0, \cdots\} \in \mathcal{F}_b(\mathcal{H})$, the boson Fock vacuum in $\mathcal{F}_b(\mathcal{H})$. For a subspace D of \mathcal{H}, we define

$$\mathcal{F}_{b, \text{fin}}(D) := L \{\Omega_b, S_n(f_1 \otimes \cdots \otimes f_n)|n \in \mathbb{N}, f_j \in D, j = 1, \cdots, n\}. \tag{2.3}$$

If D is dense, then $\mathcal{F}_{b, \text{fin}}(D)$ is dense in $\mathcal{F}_b(\mathcal{H})$.

For each $f \in \mathcal{H}$, there exists a unique densely defined closed (unbounded) linear operator $a(f)$ on $\mathcal{F}_b(\mathcal{H})$, called boson annihilation operators (its adjoint $a(f)^*$ is called a boson creation operator), such that (i) for all $f \in \mathcal{H}$, $a(f)\Omega_b = 0$, (ii) for all $n \in \mathbb{N}$, $f_j \in \mathcal{H}$, $j = 1, \cdots, n$,

$$a(f)S_n(f_1 \otimes \cdots \otimes f_n) = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} (f, f_j)_{\mathcal{H}} S_{n-1}(f_1 \otimes \cdots \hat{f}_j \otimes \cdots \otimes f_n),$$

where \hat{f}_j indicates the omission of f_j, and (iii) $\mathcal{F}_{b, \text{fin}}(\mathcal{H})$ is a core of $a(f)$. We have

$$S_n(\otimes^n\mathcal{H}) = \overline{\{a(f_1)^* \cdots a(f_n)^*\Omega_b|f_j \in \mathcal{H}, j = 1, \cdots, n\}}, \tag{2.4}$$

where $\overline{\{\cdot\}}$ denotes the closure of the set $\{\cdot\}$. The set $\{a(f), a(f)^*|f \in \mathcal{H}\}$ satisfies the canonical commutation relations

$$[a(f), a(g)^*] = (f, g)_{\mathcal{H}}, \quad [a(f), a(g)] = 0, \quad [a(f)^*, a(g)^*] = 0.$$
for all \(f, g \in \mathcal{H} \) on \(\mathcal{F}_{\text{fin}}(\mathcal{H}) \).

A similar consideration can be done in the Fermion Fock space \(\mathcal{F}_f(\mathcal{K}) \). The fermion Fock vacuum \(\Omega_f \) in \(\mathcal{F}_f(\mathcal{K}) \) is defined by \(\Omega_f := \{1, 0, 0, \cdots\} \in \mathcal{F}_f(\mathcal{K}) \). For a subspace \(D \) of \(\mathcal{K} \), we define
\[
\mathcal{F}_{\text{fin}}(D) := \mathcal{L}\{ \Omega_f, A_n(u_1 \otimes \cdots \otimes u_n) | n \geq 1, u_j \in D, j = 1, \cdots, n \}. \tag{2.5}
\]

If \(D \) is dense, then \(\mathcal{F}_{\text{fin}}(D) \) is dense in \(\mathcal{F}_f(\mathcal{K}) \).

For each \(u \in \mathcal{K} \), there exists a unique bounded linear operator \(b(u) \) on \(\mathcal{F}_f(\mathcal{K}) \), called fermion annihilation operators on \(\mathcal{F}_f(\mathcal{K}) \) \((u, v)_{\mathcal{H}} \) called a fermion creation operator, such that (i) for all \(u \in \mathcal{K}, b(u)\Omega_b = 0 \), (ii) for all \(n \in \mathbb{N}, u_j \in \mathcal{K}, j = 1, \cdots, n \)
\[
b(u)A_n(u_1 \otimes \cdots \otimes u_n) = \frac{1}{\sqrt{n}} \sum_{j=1}^{n}(-1)^{j-1}(u, u_j)_{\mathcal{H}} S_{n-1}(u_1 \otimes \cdots \otimes \hat{u}_j \otimes \cdots \otimes u_n).
\]

We have
\[
A_n(\otimes^n \mathcal{K}) = \mathcal{L}\{ b(u_1)^* \cdots b(u_n)^* \Omega_f | u_j \in \mathcal{K}, j = 1, \cdots, n \}.
\tag{2.6}
\]

The set \(\{ b(u), b(u)^* | u \in \mathcal{K} \} \) satisfies the canonical anti-commutation relations
\[
\{ b(u), b(v)^* \} = (u, v)_{\mathcal{K}}, \quad \{ b(u), b(v) \} = 0, \quad \{ b(u)^*, b(v)^* \} = 0
\]
for all \(u, v \in \mathcal{K} \), where \(\{ A, B \} := AB + BA \).

The Fock vacuum in the Boson-Fermion Fock space \(\mathcal{F}(\mathcal{H}, \mathcal{K}) \) is defined by
\[
\Omega := \Omega_b \otimes \Omega_f. \tag{2.7}
\]

The annihilation operators \(a(f) \) and \(b(u) \) are extended to operators on \(\mathcal{F}(\mathcal{H}, \mathcal{K}) \) as
\[
A(f) := a(f) \otimes I, \quad B(u) := I \otimes b(u), \tag{2.8}
\]
where \(I \) denotes identity operator.

For a linear operator \(A \), we denote by \(D(A) \) its domain. Let \(S \in \mathcal{C}(\mathcal{H}, \mathcal{K}) \). Then we define
\[
D_S := \mathcal{L}\{ A(f_1)^* \cdots A(f_n)^* B(u_1)^* \cdots B(u_p)^* \Omega | n, p \geq 0, f_j \in D(S), j = 1, \cdots, n, u_k \in D(S^*), k = 1, \cdots, p \}, \tag{2.9}
\]
\[
= \mathcal{F}_{b,\text{fin}}(D(S)) \otimes_{\text{alg}} \mathcal{F}_{f,\text{fin}}(D(S^*)), \tag{2.10}
\]
where \(\otimes_{\text{alg}} \) denotes algebraic tensor product. It follows that \(D_S \) is dense in \(\mathcal{F} \). The following proposition is proved in [4].

Proposition 2.1 There exists a unique densely defined closed linear operator \(d_S \) on \(\mathcal{F}(\mathcal{H}, \mathcal{K}) \) with the following properties: (i) \(D_S \) is a core of \(d_S \); (ii) for each vector \(\Psi \in D_S \) of the form
\[
\Psi = A(f_1)^* \cdots A(f_n)^* B(u_1)^* \cdots B(u_p)^* \Omega, \tag{2.11}
\]
d_S acts as
\[
\begin{align*}
 d_S \Psi &= 0 \quad \text{for } n = 0, \\
 d_S \Psi &= \sum_{j=1}^{n} A(f_1)^* \cdots A(f_j)^* \cdots A(f_n)^* B(S f_1)^* B(u_1)^* \cdots B(u_p)^* \Omega \quad \text{for } n \geq 1,
\end{align*}
\]
where $A(f_j)^*$ indicates the omission of $A(f_j)^*$. Moreover the following (a)-(d) hold:

(a) $d_S^2 = 0$.

(b) For each complete orthonormal system (CONS) $\{e_n\}_{n=1}^{\infty}$ of \mathcal{K} with $e_n \in D(S^*)$,
\[
d_S \Psi = \sum_{n=1}^{\infty} A(S^* e_n) B(e_n)^* \Psi, \quad \Psi \in D_S,
\]
where the convergence is taken in the strong topology of $\mathcal{F}(\mathcal{H}, \mathcal{K})$.

(c) For each CONS $\{\phi_n\}_{n=1}^{\infty}$ of \mathcal{H} with $\phi_n \in D(S)$, we have
\[
(\Phi, d_S \Psi)_{\mathcal{F}(\mathcal{H}, \mathcal{K})} = \lim_{N \to \infty} \left(\Phi, \sum_{n=1}^{N} A(\phi_n) B(S \phi_n)^* \Psi \right)_{\mathcal{F}(\mathcal{H}, \mathcal{K})}, \quad \Phi, \Psi \in D_S.
\]

(d) $D_S \subset D(d_S^*)$ and
\[
d_S^* \Psi = \sum_{k=1}^{p} (-1)^{k-1} A(S^* u_k)^* A(f_1)^* \cdots A(f_n)^* B(u_1)^* \cdots B(u_k)^* \cdots B(u_p)^* \Omega
\]
for vectors Ψ of the form (2.11) with $p \geq 1$. In the case $p = 0$, we have $d_S^2 \Psi = 0$.

A Dirac-type operator on $\mathcal{F}(\mathcal{H}, \mathcal{K})$ is defined by
\[
Q_S = d_S + d_S^*
\]
with $D(Q_S) = D(d_S) \cap D(d_S^*)$.

Let A be a self-adjoint operator on a Hilbert space \mathcal{X}. Then there is a unique self-adjoint operator A_n on $\otimes^n \mathcal{X}$ such that $\otimes^n_{\text{alg}} D(A)$ is a core of $D(A_n)$ and, for all $f_j \in D(A)$, $j = 1, \ldots, n$, $A_n(f_1 \otimes \cdots \otimes f_n) = \sum_{j=1}^{n} f_1 \otimes \cdots \otimes f_{j-1} \otimes A f_j \otimes f_{j+1} \otimes \cdots \otimes f_n$ ([23, §VIII.10, Corollary]). Putting $A_0 = 0$, one can define a self-adjoint operator
\[
d \Gamma(A) := \bigoplus_{n=0}^{\infty} A_n
\]
on $\bigoplus_{n=0}^{\infty} \otimes^n \mathcal{X}$, called the second quantization of A ([23, §VIII. 10, Example 2], [18, §5.2]). It is easy to show that $d \Gamma(A)$ is reduced by $\mathcal{F}_{\#}(\mathcal{X})$ ($\# = b, f$). We denote the reduced part of $d \Gamma(A)$ to $\mathcal{F}_{\#}(\mathcal{X})$ by $d \Gamma_{\#}(A)$. We put
\[
N_{\#} := d \Gamma_{\#}(I),
\]
called the number operator on \(\mathcal{F}_\#(\mathcal{X}) \).

Let
\[
\Gamma_\# = (-1)^{I \otimes N_\#}.
\]

(2.15)

We introduce an operator
\[
\Delta_S := d\Gamma_b(S^*S) \otimes I + I \otimes d\Gamma_f(SS^*)
\]

(2.16)

acting in \(\mathcal{F}(\mathcal{H}, \mathcal{K}) \), which is nonegative and self-adjoint (cf. [23, §VIII.10, Corollary]). For a linear operator \(A \) on a Hilbert space, we set
\[
C^\infty(A) := \cap_{n=1}^\infty D(A^n).
\]

Let
\[
\mathcal{D}_{S}^\infty = \mathcal{L}\left\{ A(f_1)^* \cdots A(f_n)^* B(u_1)^* \cdots B(u_p)^* \Omega \middle| n, p \geq 0, \quad f_j \in C^\infty(S^*S), \quad j = 1, \ldots, n, \quad u_k \in C^\infty(SS^*), \quad k = 1, \ldots, p \right\}.
\]

(2.17)

Theorem 2.2 [4]

(i) The operator \(Q_S \) is self-adjoint, and essentially self-adjoint on every core of \(\Delta_S \). In particular, \(Q_S \) is essentially self-adjoint on \(\mathcal{D}_{S}^\infty \).

(ii) The operator \(\Gamma_\# \) leaves \(D(Q_S) \) invariant and
\[
\Gamma_\# Q_S + Q_S \Gamma_\# = 0
\]
on \(D(Q_S) \).

(iii) The following operator equations hold:
\[
\Delta_S = Q_S^2 = d_S^* d_S + d_S d_S^*.
\]

Remark 2.1 The operators \(d_S \) and \(d_S^* \) leave \(\mathcal{D}_{S}^\infty \) invariant and so does \(Q_S \).

Because of part (iii) of Theorem 2.2, we call the operator \(\Delta_S \) the Laplacian associated with the Dirac-type operator \(Q_S \).
3 Strong anticommutativity of the Dirac-type operators

Let A and B be self-adjoint operators on a Hilbert space. We say that A and B strongly commute if their spectral measures commute. On the other hand, A and B are said to strongly anticommute if $e^{itB}A \subset Ae^{-itB}$ for all $t \in \mathbb{R}$ ([27], [22]). It turns out that this definition is symmetric in A and B [22].

For various Dirac-type operators, the notion of strong anticommutativity plays an important role ([7], [8], [10], [11]).

For each $S \in C(\mathcal{H},\mathcal{K})$, the operator

$$L_S := \begin{pmatrix} 0 & S^* \\ S & 0 \end{pmatrix}$$

acting in $\mathcal{H} \oplus \mathcal{K}$ is self-adjoint. This operator is an abstract Dirac operator on the Hilbert space $\mathcal{H} \oplus \mathcal{K}$ [26, Chapter 5].

The strong anticommutativity of Q_S and Q_T ($S, T \in C(\mathcal{H},\mathcal{K})$) is characterized as follows.

Theorem 3.1 Let $S, T \in C(\mathcal{H},\mathcal{K})$. Then Q_S and Q_T strongly anticommute if and only if L_S and L_T strongly anticommute. In that case, $S \pm T \in C(\mathcal{H},\mathcal{K})$ and $Q_{S \pm T} = Q_S \pm Q_T$.

This theorem is one of the main results of the paper [15], which establishes a beautiful correspondence between the strong anticommutativity of L_S and L_T and that of Q_S and Q_T.

To prove Theorem 3.1, we need some fundamental facts in the theory of strongly anticommuting self-adjoint operators [27, 22] as well as its applications, together with the following lemma. For the details, see [15].

Lemma 3.2 Let $S, T \in C(\mathcal{H},\mathcal{K})$. Suppose that L_S and L_T strongly anticommute. Then the following (i)-(v) hold:

(i) $S \pm T \in C(\mathcal{H},\mathcal{K})$ and $(S \pm T)^* = S^* \pm T^*$.

(ii) $|S|$ and $|T|$ strongly commute.

(iii) $|S^*|$ and $|T^*|$ strongly commute.

(iv) $D(S^*S) \cap D(T^*T) \subset D(T^*S) \cap D(S^*T)$ and, for all $f \in D(S^*S) \cap D(T^*T)$,

$$ (T^*S + S^*T)f = 0. $$

(v) $D(SS^*) \cap D(TT^*) \subset D(TS^*) \cap D(ST^*)$ and, for all $u \in D(SS^*) \cap D(TT^*)$,

$$ (TS^* + ST^*)u = 0. $$

The authors of [27] and [22] call this notion simply anticommutativity, but, to be definite, we call it strong anticommutativity.
In terms of S and T, a necessary and sufficient condition for L_S and L_T to strongly anticommute is given as follows.

Proposition 3.3 Let $S, T \in C(H, \mathcal{K})$. Then L_S and L_T strongly anticommute if and only if the following (i) and (ii) hold:

(i) $S \pm T \in C(H, \mathcal{K})$ and $(S \pm T)^* = S^* \pm T^*$.

(ii) For all $f, g \in D(S) \cap D(T)$ and $u, v \in D(S^*) \cap D(T^*)$,

$$(Sf, Tg) + (Tf, Sg) = 0, \quad (S^*u, T^*v) + (T^*u, S^*v) = 0.$$

4 Application to constructing representations of a supersymmetry algebra

We consider Fock space representations of the algebra A_{SUSSY} generated by four elements Q_1, Q_2, H, P with defining relations

$$Q_1^2 = H + P, \quad Q_2^2 = H - P, \quad Q_1Q_2 + Q_2Q_1 = 0. \quad (4.1)$$

This algebra is called a supersymmetry algebra, which arises in a relativistic SQFT in the two-dimensional space-time ([19], [13]). The elements H, P and Q_j ($j = 1, 2$) are called the Hamiltonian, the momentum operator and the supercharge, respectively.

We recall a definition from [13]. Let \mathcal{F} be a Hilbert space, \mathcal{D} a dense subspace of \mathcal{F}, and H, P, Q_1, Q_2 be linear operators on \mathcal{F}. We say that $\{\mathcal{F}, \mathcal{D}, H, P, Q_1, Q_2\}$ is a symmetric representation of A_{SUSSY} if H, P, Q_1 and Q_2 are symmetric and leave \mathcal{D} invariant satisfying (4.1) on \mathcal{D}. A symmetric representation $\{\mathcal{F}, \mathcal{D}, H, P, Q_1, Q_2\}$ of A_{SUSSY} is said to be integrable if (i) H, P, Q_1 and Q_2 are essentially self-adjoint (denote their closures by $\mathcal{H}, \mathcal{P}, \mathcal{Q}_1$ and \mathcal{Q}_2, respectively); (ii) $\{\mathcal{H}, \mathcal{P}, \mathcal{Q}_1\}$ and $\{\mathcal{H}, \mathcal{P}, \mathcal{Q}_2\}$ are families of strongly commuting self-adjoint operators, respectively; (iii) \mathcal{H} and \mathcal{P} satisfy the relativistic spectral condition

$$\pm \mathcal{P} \leq \mathcal{H}. \quad (4.2)$$

Suppose that L_S and L_T strongly anticommute. Then, by Lemma 3.3(ii) and (iii), S^*S and T^*T strongly commute, and SS^* and TT^* strongly commute. Hence $S^*S + T^*T$ and $SS^* + TT^*$ are nonnegative, self-adjoint, and $S^*S - T^*T$ and $SS^* - TT^*$ are essentially self-adjoint. Therefore we can define self-adjoint operators

$$H_{S,T} := \frac{1}{2} \{d_{\Gamma_{b}}(S^*S + T^*T) \otimes I + I \otimes d_{\Gamma_{f}}SS^* + TT^*)\}, \quad (4.3)$$

$$P_{S,T} := \frac{1}{2} \{d_{\Gamma_{b}}(S^*S - T^*T) \otimes I + I \otimes d_{\Gamma_{f}}(SS^* - TT^*)\}^{-}, \quad (4.4)$$

where for a closable linear operator A, \mathcal{A} (or A^-) denotes its closure. Note that $H_{S,T}$ is nonnegative, but $P_{S,T}$ may be neither bounded below nor bounded above.

For a self-adjoint operator A, we denote by E_A its spectral measure. Let

$$\mathcal{D}_{S,T} := \mathcal{L}(E_{|Q_1|}([a, b])E_{|Q_2|}([c, d])\Psi\Psi \in \mathcal{F}(H, \mathcal{K}), 0 \leq a < b < \infty, 0 \leq c < d < \infty). \quad (4.5)$$

We can prove the following theorem (for the proof, see [15]).
Theorem 4.1 Let $S, T \in C(\mathcal{H}, \mathcal{K})$ and suppose that L_S and L_T strongly anticommute. Then $\{\mathcal{F}(\mathcal{H}, \mathcal{K}), D_{ST}, H_{ST}, P_{ST}, Q_S, Q_T\}$ is an integrable representation of A_{SUSY}.

We give only one basic example from SQFT (for other examples, see [19], [4]).

Example Let $\mathcal{H} = \mathcal{K} = L^2(\mathbb{R})$ and $\mathbb{R} \ni \omega(p)$ be a nonnegative function on \mathbb{R} which is Borel measurable, almost everywhere (a.e.) finite with respect to the Lebesgue measure on \mathbb{R}, and satisfies

$$|p| \leq \omega(p), \quad \text{a.e. } p \in \mathbb{R}.$$

Let

$$\nu(p) = \sqrt{\lambda p + \omega(p)}$$

with $\lambda \in [0, 1]$ (a constant parameter) and $\theta(p)$ be an a.e. finite real-valued Borel measurable function on \mathbb{R}. Define the operators S and T on $L^2(\mathbb{R})$ to be the multiplication operators by the functions

$$S(p) := i\nu(p)e^{i\theta(p)}, \quad T(p) := \nu(-p)e^{i\theta(p)},$$

respectively. Then it is easy to see that S and T satisfy the conditions (i) and (ii) in Proposition 3.3 with $D(T) = D(S) = D(S^*) = D(T^*)$ and

$$S^*S = SS^* = \lambda p + \omega, \quad T^*T = TT^* = -\lambda p + \omega,$$

$$S^*T = TS^* = -i\sqrt{\omega^2 - \lambda^2 p^2}, \quad T^*S = ST^* = i\sqrt{\omega^2 - \lambda^2 p^2}.$$

Hence, by Proposition 3.3, L_S and L_T strongly anticommute. Therefore, by Theorem 4.1, $\{\mathcal{F}(L^2(\mathbb{R}), L^2(\mathbb{R})), D_{ST}, H_{ST}, P_{ST}, Q_S, Q_T\}$ with these S and T is an integrable representation of A_{SUSY}. We have

$$H_{ST} = d\Gamma_b(\omega) \otimes I + I \otimes d\Gamma_f(\omega),$$

$$P_{ST} = \lambda\{d\Gamma_b(p) \otimes I + I \otimes d\Gamma_f(p)\}.$$

Note that H_{ST} and P_{ST} are independent of θ.

If $\omega(p) = \sqrt{p^2 + m^2}$ with a constant $m \geq 0$, $\lambda = 1$ and $\theta = 0$, then H_{ST} and P_{ST} are respectively the Hamiltonian and the momentum operator of a free relativistic SQFT in the two-dimensional space-time, called the $N = 1$ Wess-Zumino model (cf. [19]).

References

