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Chaotic Translation Semigroups of Linear Operators
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1 Introduction

Hypercyclic or chaotic operators are consistent with topologically transitive or chaotic,
respectively in topological spaces defined by Devaney [6]. The property of hypercyclic
and chaoticlope_ra;tors has been studied by some people [1, 2, 7, 8, 10, 11]. C. Read has
developed the theory of hypercyclic and chaotic bounded linear operators in connection
with the invariant subspace problem of Hilbert spaces [10]. W. Desch, W. Schappacher
and G. F. Webb gave a necessary and sufﬁcienﬁ condition for a semigroup to be hypercyclic
in a séparéble Banach space [2]. The theory of hypercy(;lic semigroups is applied to the
scattering theory for a linear transport equation [3]. Concerning to the chaotic semigroup,
a sufficient condition for a semigroup to be chaotic is given in a separable Banach space
[2]. In [9], chaotic semigroups are associated with the idea of exactness and applied to
partial differential equations.
In this paper, we give necessary and sufficient conditions for the translation semigroup
to be chaotic in weighted function spaces Lf and Cj,,. We aléo investiga,f,e properties of
~orbits of the translation semigroup when the set éf periodic points is dense in weighted
function spaces, and give an example which shows that some solutions of partial dif-
ferential equations become chaptic semigroups. We shall define hypercyclic and chaotic

semigroups.



Deﬁnif,ion 1. Let X be a Banach space and {T'(t)} be a strongly continuous semigroup
in X. The semigroup {T'(t)} is called hypercyclic if there exists z € X such that the
set {T(t)x | ¢ > 0} is dense in X. The semigroup {T'(t)} is called chaotic if {T(t)} is
hypercyclic and the set of periodic points X, = {z € X | 3¢t > 0 s.t. T'(t)z = z} is dense

in X.

We define an admissible weight function in order to construct weighted function spaces.
Let I be (—o0,00) or I = [0,00). By an admissible weight function in I we mean a

measurable function p: I — R satisfying the following, conditions:
(i) p(1) >0  forall T € I;

(ii) there exist constants M > 1 and w € R such that p(7) < Me“*p(t + 7) holds for all

7€ landallt>0.

With an admissible weight function, we construct the following function spaces.

Definition 2.

IA(I,C) = {u :I->Clu measumble,/|u(7)|”p(7) dr < oo}
1

P
)

with ) = ( [ 1utr)Pcr) ar )
I
Co,(,C) = {u : I = C | u continuous, Erﬂrzloo p(T)u(r) = 0}
with [[u]] = sup Ju(r) (7).

Let X be Co,(I) or L5(I) and Xg be the set of all functions with compact support
in X. Then X, is dense in X. We consider the translation semigroup {T'(t)}:>o in X as

follows:
[T(t)ul(r) = u(r +t) forue X.

A condition for this translation semigroup to be hypercyclic is given in [2].



10

Theorem A [2]. Let X be IZ(I) or Co,(I) with an admissible weight function p.

Then the following (1) and (2) are equivalent:
(1) The translation semigroup {T'(t)} in X is hypercyclic;

(2) @) If I =10,00), then liminf, ,o p(t) = 0 holds.

(ii) If I = (—o0,0), then for each 0 € R there exists a sequence {t;}32, of positive

real numbers such that

}i}ﬁ‘o p(t;+6) = jlirglo p(—t; +6) =0.

2 Chaotic translation semigroups

We shall give necessary and sufficient conditions that translation semigroups are chaotic
in weighted function spaces and also explain an result aboﬁt the property of the orbit
of translation semigroups when the set of periodic points is dense in weighted function
spaces. Though the conditions for the translation semigrbﬁp to be hypercyclic depend on
whether I = (—00,00) or I = [0, 00), the condition to be chaotic depends on whether the

space is L} or Cy,,. For the case of L, we have the following theorem.

Theorem 2.1. Let I = (~00,00) (resp. I = [0,00)) and let X be L3(I). Then the
translation semigroup {T'(t)} is chaotic if and bnly if for all e > 0 and for alll > 0, there
exist P > 0 such that
o0}
Z p(l +nP) < e. (resp. Zp(l + nP) < e).
nez\{0} n=1
Proof. The condition is necessary. Suppose {T'(¢)} is chaotic and p satisfies that p(7) <
Me“tp(t +t) for r€ I and t > 0. Take € > 0, > 0 and 2z € X such that ||z]| = 1 and

supp(z) C [l,1 + 6] for some 6 > 0.
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Take positive € satisfying the following condition:

2?M2p(l+6) 20 |~

Since X, is dense in X, there exists v € X, such that
|z —v| < €.
For v € X, there exists P > 0 such that
v=T(nP)v forallneN.

So we obtain ||z — T'(nP)v|| < €. By replacing P with mP for enoughly large m € N, we
can choose P such as P > . The following assertion holds for each positive integer n.

Let w, be the restriction of v to the interval [[ + nP,l + nP + 6]. Then
supp(T(nP)w,) C [I,1 + 6]
and
|z — T(nP)wy|| < €

hold by relations supp(z) C [I,! + 6] and ||z — T(nP)v|| < €. So

Nzl = IT(rP)wn|l < €.

[T(nP)wnll > 1-¢ (ll2ll =1)
1 1

1->=2

2 2
Next we calculate ||T(nP)w,||. From the necessary and sufficient condition for hyper-

cyclicity of {T'(¢)} in Theorem A and the property of an admissible weight function, w

must be positive.



So we obtain the following inequality:

IT PP = / " o) [T PYwa(r)P dr

l4+nP+6
= [ blr=nP) - a0l dr
I+nP .
[+nP+8 '
< / Me*® - p(l +6) - [wa(7)[? dr
l4+nP
‘ I+nP+8
= M-e“’o-p(l+9)/ [wa (T)|P dT.
l4+nP
Therefore
I+nP+0 l+nP+0 e—w0
v'rpdT=/ wy (T dT_——————-—-—.
/l+nP ()l l+nP ()P 2?Mp(l +6)
If n € Z~, then

/-l+nP+0
+nP

il

1+6
/ p(7) - |wn (T + nP)|P dr
!

—wB

i+6
P dr = [ P ar 2 grt s

from T(nP)v = v. Since supp(2) C [[,1+ 6],

(€)Y >

Vv

v

\Y

So we obtain

2.

neZ\{0}

The condition is sufficient.

llz = oll?

I+nP+0
> [ e ar
neZ\{0}
1 I+nP+0
> aretst+nP) [ P dr
’ILEZ\{O} I+TLP
Z e 29 . p(l + nP)
2M2p(l+6) -

neZ\{0}

p(l +nP) < (€Y -2 . P71 M2p(l +6) < e.

12

It is clear that {T'(¢)} is hypercyclic by Theorem A. So we

only have to show that the set of periodic points X, is dense in X.

Since the set Xp o of all the functions with compact support is dense in X, we shall show



13

that X, is dense in Xgo. Take € > 0 and 2 € Xpo. Then there exists / > 0 such that

supp(z) C [, 1].

By the condition and the property of an admissible weight function, w must be positive.

So we obtain that for all o € 1
%e“%’p(a) < p(r) < Me*'p(oc +2l) forT € [o,0+21].

Take € such as

e p(=1)

0<¢é < .
S VEI TP

From the assumption, there exists P > 0 such that
Z p(l+nP) < ¢€.
neZ\{0}
By replacing P with mP for enoughly large m € N, we can obtain P > 2.
We shall construct v, in the following way: “

Vp = ZZ(T — nP).

neZ
Then clearly T'(P)v, = vy, S0 v, € X,,.

We calculate ||z — vp]|.

lz=wll = | 3 2(r—nP)
nezZ\{0} v
< ¥ [ ) letr-np) ar
neZ\{0} -

l+nP
= Z /+ p(7) - |2(r — nP)| dr

nEZ\{O} ~l+nP

= e T — —-M T—n T
= B [ gy e =P
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Z M?2e*!p(l + nP)

< Jl=ll
n€Z\{0} p(=)
M2e*! ]| )
. o(l +nP)
p(=1) n€Z\{0}
< e

(In the case of I = [0, 00), replace —I, 2I, Z and Z \ {0} with 0, [, Z* and N.)

So X, is dense in X. Therefore {T'(t)} is chaotic. o
For the case of Cy,, we have the following theorem.

Theorem 2.2. Let I = (—0c0,00) (resp. I = [0,00)) and let X be Cy,(I). Then the

following assertions are equivalent:
(i) the translation semigroup {T'(t)} in X is chaotic;

(ii) for all e > 0 and for alll > 0, there exists P > 0 such that

p(l+nP) < e foralln e Z\ {0} (resp. n € N);

iii) there exists {;}2, C RY whose limit is infinity, such that for all e > 0 and for all
i=1

1 € N, there exists P > 0 such that

p(li +nP) < e for alln € Z\ {0}(resp. n € N).

Proof. (i) = (ii): Suppose {T'(t)} is chaotic and p satisfies that p(T) < Me“p(t + t) for
re€landt>0. Takee>0,!> 0 and z € X with compact support such that z(l) # 0.

Take € such as
e- p(l) - |2(1)]
p() +e

Because X, is dense in X, there exists v € X, such that

0<é<

||z -] < €.
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- For v € X, there exists P > 0 such that

v=T(nP)v forallneN.

Then
€>llz—v| = sTté?p(T‘)IZ(T) — ()]
s sup p(r) (|2(r)] - [o(r)
> o) (20 - @)
So

()| > [2(0)] - p—@

By replacing P with mP for enoughly large m € N, we can choose P > 0 such that [+nP
(resp. [ 4+ nP)¢ supp(z) for all n € Z \ {0}. Then we obtain the following inequalities for
each n € Z \ {0}(resp. n € N).
¢ >llz=oll = supplr)la(r) —v(r)

> p(l+nP) - |v(l+nP)]

= p(l+nP)-|v(l)|

> p(l+nP)- ( z(l )

@+nP)- (=001 - =

So

ol+nP) < ¢f (Iz(l)l——@)

< €
Therefore for all [ > 0 and for all € > 0, there exists P > 0 such that
p(l+nP)<e forallneZ\{0}(resp. n € N).
(ii) = (iii): It is obvious.
| (iii) = (ii): Ta.ke € > 0 and [ > 0. Then there exists iy € N such that

L€ [lig-1, li)-
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Let L be l;; — 1. Take 0 < ¢ < e—'-;'l—l“‘ Theri from the assumption, there exists P > 0 such
that

p(li, + nP) <€ forallne Z\ {0} (resp. n € N).

So we infer

p(l+nP) < Me“Ep(l+nP+1L)
= Me“*o(l +nP +1;, — 1)
< Me“*!p(l;, + nP)
< Me“t¢

—wlL
< MeE® ¢

M

(ii) = (i): We obtain the conclusion by a similarly way to the proof of Theorem 2.1. O

Though the condition ”lim,_, p(7) = 0” is only a sufficient but not necessary condition
for the translation semigroup to be chaotic in Gy, it is a necessary condition in LP. So

" we obtain an equivalent condition to lim,_,., p(7) = 0.

Theorem 2.3. Let I be (—o0,00) (resp. I = [0,00)), and let X be Cy,(I).Then for a

translation semigroup {T(t)}, the following conditions are equivalent:
(i) Yim, 100 p(7) =0 (resp. T — 00);

(il) {T(¢)} is chaotic. In addition, for all € > 0 and for all x € X there exists ty, for all

t > to there exists v; € X, such that

lz—v)l <e and T(t)v = vs.

The next theorem shows that when I is a half line, the denseness of the set of periodic

points implies the hypercyclicity.
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Theorem 2.4. Let I be [0,00) and X be LA(I) or Cy,(I). Then the set X, of periodic

points is dense in X if and only if {T(t)} s chaotic.

The next example is an application of Theorem 2.3.

Ezample 1. Let Cy([0,00)) be the space of continuous functions on [0, c0). which vanish

at infinity. We shall consider the following partial differential equation on the space

Co([0, 00)):
92 = QE - wu <0
) 5t ~ oz “
w(0,2) = f(z)  feC}([0,00)).
Then the solution is

u(t,z) = e ' f(z + t).

If we define an operator T'(t) on Cy([0, 00)) by T'(t) f(z) = u(t, z), then {T(t)} becomes a

chaotic semigroup.
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