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Geometric study on smoothing effects for dispersive

evolution equations

EEAEKEREEMAHN +/E — (Shin-ichi Doi)

1. Introduction

Let M be a C ménifold with C™ positive density p, and put ‘H =
L*(M,p) = L*(M). Denote by ¥°(M) the set of all pseudodifferential
operators of type (1,0) of order s on M. For a function f € C}(T*M) (or
T*M \ 0), indicate by Hy the Hamilton vector field of f: in a canonical
chart (z,€), Hy = 9, (%5% — (%%a%,) :

Let H € U™ (M) (m > 1) be a properly supported, formally self-adjoint
operator with positivel‘y. homogeneous principal symbol 0ppin(H) = h > 0

on T*M\ 0, whose Hamilton vector field H}, is complete on T*M \ 0. Let
®, be the H,-flow in T*M \ 0, where ¢ = hl/ ™. Assume that |

(HO)  H|cse(u) is essentially self-adjoint. -

Denote its self-adjoint extension by the same symbol H. _

A typical example is the Laplace-Beltrami operator —H = A, (< 0) on
a C* complete Riemannian manifold (M, g) with the associated density
{4 = pg, where m = 2. In this case, H|cz(ur) is essentially self-adjoint,
and ®; is the geodesic flow. |

'This report discusses the relationship between smoothing effects of the

quantum flow exp (—itH) and the global behavior of the classical flow



<I>t We shall explain: first, propagation of smodthing eﬁécts along the
Hamilton’ﬂdv? ®, in the poéitive direction; second, abée_nce of smoothing
effects at every point 20 € S*M = {z € T*M; h(z) = 1} such that for
every neighborhood U of it, = sup,ics.50 |{t € R;®,(2') € U}| = o0,
where | - | is the 1-dimensional 'Lebesgﬁe measure; third, absfract the-
ory of smoothing effects for a paif of self-adjoint operators in a Hilbert
space. Combining all resulfs, we shall conclude that the smoothing ef-
fects hold at every point nontrapped backwards, and fail at almost every
point trapped backwards, by the Hamilton flow under certain global con-
ditions. This approach is applicable to the Séhrédinger equations associ-
ated with complete Riemannian metrics. having strittly convex functions
near infinity: (i) asymptotically Euclidean metric, (ii) conformally com-
pact metric, (iii) generalized scattering metric, (iv) metric of sépafation
of variables near infinity. The details are discussed in [Do4,5].

Now we explain some related works. For the ‘Svchrc'idinger evolution
equation with non-flat principal syinbol, there are works such as Craig-
Kappeler-Strauss [CKS], Craig [Cr], Doi [Do1-3], Kapiﬁanski—'Safarov [KS];
Wunsch [Wul,2]; Kajiténi-Wakabayashi [KW], Robbiano—Zﬁily [RZl,2]
(analytic class); Kajitani [Ka] (Gevrey class). For the Schr'édinger evo-

lution equation related with the (quadratic) potential term, there are
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works such as Kapitanski-Rodianski [KR], Yajima [Yal,2], Zelditch [Ze], | |

Kapitanski-Rodianski-Yajima [KRY], Wunsch [Wu2]. For the nonlinear
Schrodinger equation, see, for example, Chihara [Ch], and Kenig-Ponce-

Vega [KPV].

Notation. N = {1,2,3,...}; Z, = {0,1,2,...}; R, = (0,00). For
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topblogi;:al vector spaces X, Y, L(X,Y) denotes the set of all continuous

linear operators from X to Y, and L(X) = L(X,X). For z € R4,
(z) = (1 + |z|*)/2. For pseudodifferential 6perators, see [Ho, Chapter

18]. We quote only the definition of S (m, g). For positivé functions m

and g; (7 = 1,...,n) on R™, the symbol class S(m,g) consists of all

functions f € C*(R") such that for every k = 0, 1,. .

1lesma = 3 sup (m(2)g(2)*) 182 £(2)] < oo,

la|<k ZER”

where g = Y7, 9;(2)%dz} and g(2)* = g1(2)™ - - - gn(2)*. Set S =
SMR) = S({t)*, (t)2dt?) (A € R), where t € R.
2. Propagation of smoothing effects.

First, we fix the notation. An operator in ¥¥(M) is called compactly
éupported if its distribution kernel has a compact support; ‘indicate by
W, (M) the set of all compactly supported operators in Ué(M). For P €
U*(M), the eésential support of P, denoted by ess-supp P or by W F(P),
is the smallest closed conic set of T*M \ 0 such that P is of order —co in
the complement (see [HO, Chapter 181]) For a subset U‘ of S*M, denote

by ¥3(U) the set of all P € ¥i(M) satisfying ess-supp P N'S*M C U,
where U, = V¥, U,. | |

Now we state our propagation theorem.

Theorem 2.1. Let U be an open subset of S* M, and put T’ = Up<;<7®;(U)
(T >0). Let s€ R,r 20, N >> 1. For every A; = Aj € ‘I’Z;}(m—l)j(r)
(4 = 0,1,7r + 1), there exist P, = P; € ¥},(T), Bjy1 = B}, €

\IIZ;("Z—I)("H)(U) (j = 0,7), and C > 0 such that the estimate below



holds for every t > 0, and ug € NpenD(H™)

(Ao 1t 4. )u(®),u(®) + [[((4s + 1 Arar) u(r), u(r) i

< (Fou(0), u(0) + [ ((By + 1" Braa) u(r), u(r) b
+C(L+ )| (1 + |H|) N/ myq |J2.

Here u(t) = e *Hy,,.

- ~ Theorem 2.1 means that thé smoothing effect associated with the time-
dependent weight (1 +¢(&)™ 1) (¢)* propagetes along the Hamilton flow
in the positive directoh. The proof is reduced to the Euclidean ca,seA
(M, ) = (R?, |dz|), and is based on the construction of a time-dependent

nonnegative observable P(t) (¢ > 0) satisfying

—(8 +1dadm) P(t) > Qu(t) — Qa(2) - R@ (t > 0);
P(t),Q:1(t),@2(t) > 0 (t20); R(t): an error term

in the framework of the Weyl-Hoérmander calculus associated with the
time-dependent symbol class S((1+¢(&)™ ) (€)°, |dz |2+ (£)%|d¢|?) (¢ >
0) (see [Ho, Chapter 18]). |

3. Lack of smoothing effects

- Let ¢5 > 0 be fixed, and set 7 = [0, ty]. For a point 2y € S*M, consider

the assertions (1), and (i), (r > 0).

(), There is an open neighborhood U of 2z in S* M such that for every

Ae \Ilg,f(l/ 2))(m*l)(U ) the mapping below is continuous:

L2,(M) 5 uws [t Ae~*Hu € L2(I; L3(M)).
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(41), There is an open neighborhood U of z, in S* M such that for every

A€ \Ifzgn_l)(U ) the mapping below is continuous:

L2,(M) 3 u s |t]" Ae™*u € C(I; LA(M)).

The assertions are 6pen in the sehse‘thatvif they hold at z,, then they
hold at every point near z,. By interpolation, if (i)o and (3), hold, then
(2), holds for every 0 < ' < r; similarly, if (¢7), holds, then (i), holds

for every 0 < 7’ < r, because (i) is always valid. Theorem 2.1 gives

Corollary 3.1. If (i)o and (i), are valid at z, then (i) and (i) are

~ valid at ®,(z) for everyt > 0and 0 <7’ <.

We prepare some notions related with the claésical mecanics (S* M, @t)

Every 1-form 6 satisfying OAdh = $0in T*M\ 0 induces the unique
®,-invariant measure on S*M, denoted by meas;,. Here o is the canonical
2-form on T*M,‘a,nd d=dim M. | |

Denote by Scpt';: the set of all z € S*M such that {®;(z)}+:50 is rela-
tively cbmpact.

Indicate by Sy + the set of all z € S*M such that there are 2’ € S*M
and a sequence of real numbers {t;};cn satisfying &;,(2') — z and t; —
+o0 as j — oo (i.e., z is a positive (resp. negé.tive) limit point of z').

The set Sy consists of all z € S*M such that for every neighbor—
" hood U of z, SUP,esar | {t € R;®:(2") € U}| = oo, where | - | is
the 1—dimensiohal Lebesgue measure. It is closed, and ®,-invariant; and |
Stim,+ U Stim~ C So C {nonwandering points} (see [Do2, Proposition
1.2]). So, if meaéh(S*M) < 00, then Spnm, + = S = S*M.



Theorem 3.2. All the assertions (i), (r > 0) and (ii), (r > 0) fail at
every point of Sy. |

The proof is by contradictin as well as [Do2, Proof of Theorem 1.5];
assuming the smoothing -estimate, we derive from it another estimate
depending on a large parameter A, and choose a A-dependent initial data,

which proves to break the estimate derived above as ) — 00 by virtue of

an Egorov-type lemma containing A.
4. Abstract theory of smoothing effects

Let H be a Hilbert space, and A and B a pair of self-adjoint oper-

ators on H satisfying A > 1, B > 1. We prepare first the weighted

Sobolev spaces associated with A and B. Put D®*) = D(B*A%) (t,s >
0), S = ‘htyszoD(”s);' D®9) has a natural Hilbert space structure with
norm ||u|| pes = || B A%u||. Assume (A1) and (A2) with 0 < v < 1 being
~ fixed.

(A1) Forzé¢o(A),(z—A)le L(D(B)).
- (A2) D(A) N D(B) is dense in D(B'™"); the multiple commutator
ad) B, firstly defined as a quadratic form on D(4) N D(B), is extended
to an operator in L(D(Bl"’),D(BO)) inductively on N € N; further,
ad) B € L(D(B**'¥), D(B)) for every t >0,and N e N.
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Here ad4B = B, adsB = [A,B] = AB — BA. Then S has a natural

Fréchet space structure, and is dense in D9 (¢,5 > 0); and A%, Bt €

L(S) (t,s € R) so that D®) = {u € §'; B'A*u € H} is well-defined for

every t,5 € R, where &' is the set of continuous anti-linear functionals

on S. Set H®*) = D(‘"js),’ m=1/v>1,A = BYm,
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Next we introduce a new operator class Q®% and its subclass R®)
in the spirit of Gérard, Isozaki and Skibsted [GIS], which corresponds
roughly to the class of péeudodifferential operators associated with the

symbol clasg S((€)2(z)®, (z)~?|dz|2 + (£)7?|d¢|?) (cf. [H5, Chapter 18]).

Definition 4.1. P®® is the set of all P € L(S) N L(S') such that
P € L(HFbstel H®9) for every t,s € R.

Definition 4.2. Q®% is the set of all P € P®a such that for every
Ne{1,2,..},In, -, Ly € {A, B} |
ady, ---ady, P € petAm-Neta—N)
Here a = #{1 < j < N;L; = A}, = #{1<j < N;L; = B}.
By d«eﬁnitioﬁ,'it fﬁllows easily that . |
QU . Q(b'.,a’) C Qb+ ata), (Q(b,a)); c é(b,a).

However, we can not expect that [Q®®) Q@) ] ¢ QE+Y-Lata'~1) he.
cause Q% is, in some sense, a dual object of the algebra generated by A

and B, which could be too small in general. So let us consider the biggest

subspace R of Q®9) such that [R®®), Q%) ¢ Qb+¥-Lata’~1) -

Definition 4.3. R(®9 is the set of all P € Q®% such that for every
V,a eR, Q € QW) |

adpQ € QUHY-Lata-1),
Then we have

R(b,a) . R(b"ar) C R‘(b-}-b"a-}-a');' (R(b,a))* C R(b;a);

[R(b,a),R(i)',;z')} C R(b-l—b'—il,a-}-a'_—-l).
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We assume (A3) as a compatibility condition:

_(A3) A€ QO B ¢ QO that is, for every N € {0,1,...},
Lo,-++, Ly € {A, B}

. adL;\' .o a‘dL1 Lo c P(ﬂm_N’a_N)-

Here a =#{0<j < N;L; = A}, 6=#{0<j < N;L; = B}.

Technically, we need to develop an analogy of Weyl-Hérmander calcu-

lus associated with the symbol class

S(((@) + ™) (6)X(2)°, (2) 2 daf? + (¢)%|de]?)

depending uniformly"on the time-parameter ¢ > 0, which we do not
explain here.

Let X > 1 and H > 0 be a pair of self-adjoint operators on H, satisfy-
ing (A1)-(A3) with A = X and B = 1+ H, and a Mourre-type condition

near infinity with respect to X.

(A4) There exist R > 0,6 > 0,K > 0 such that as a quadratic
form on S the following estimate holds for every real-valued function

a € S°(R) with suppa C (R, o0)

a(X)[iH, [iH, X?]]a(X) > 252a(X)A2(’"‘1)a(X)—2Kd(X)A2’""3a(X).

Here A = (1 + H)Y™. Introduce
E = A=/, XA/ ¢ RO.0)

Let f,f1,9,91 € C®°(R;R) such that f(t) = 1fort >> 1, fy =1in a

neighborhood of supp f, supp f1 C (R, ), g =11in a neighborhood of
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(—o0, ;5], g1 = 1 in a neighborhood of supp g, supp g1 C (—o0,0). Then |

one of our main results is:

Theorem 4.4. Fora > 0, b E R, N >>1, € >0, there exists C > 0

such that the following estimate holds: for everyt > 0 and u € S

o] ACHDD2 () g(B)eHu |
+ /t Ta” A(b+(m—]f)(a+1))/2X_(1+€)/2f(X)g(E)6_iTH'U. “2d7'
' 0 . o

< O AY2XPf(X)gi(B)u|? + C(1 + | AC=M2y) 2

The proof is based on the construction of a time-dependent nonnega-
tive observable P(t) (t > 0) with nonpositive Heisenberg derivative with

respect to H in the framework of commutator calculus above:

~(8, + iadg) P(t) > Q(t) — R(t) (¢ > 0);

P(t), Q(t) >0 (¢t >0); R(t): an error term.

5. Global picture of smoothing effects

We return to the manifold setting in Sections 2 and 3. Let X | be a
multiplication operator by a function r € C*(M) such tha.t r > 1, and
that {z € M;r(z) < L}is compacf for every L > 0. Assume (H1) and
(H2) in addition to (HO).

(H1) Forevery N €{0,1,...},Lo,--,Lny € {X,H}, & €R,

AN-Bm y N-a—o' (adLN . .. a'dLl LO)Xalng"(M)

extends to an operator in L(H). Herea=#{0<j < N;L; = X}, 8=
#{0<j<N;L; = H}.



(H2) There exist R > 0,6 > 0, K > 0 such that as a quadratic form
on C§°(M) ‘the following estimate holds for every real-valued function

a € S°(R) with suppa C (R, )
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a(X)[iH, [iH, X%]]a(X) > 252a(X)A2(’"-1)a(X)—zKa(X)A2m-3a(X). |

The conditions (Hl) and (H2) imply (A1)-(A4), and hence Theorem 4.4
holds in this setting. Moreover, the Mourre- type condition (H2) implies
the classical correspondence:

(HZ)’ Hi(r?) > 26% in {z = (z,¢) € S*M;r(z) > R}.
Here R, ¢ are the same as in (H2). For R’ > R and 0 < ¢’ < §, define
S_(R,§') = {z = (z,6) € S*M;r(z) > R', —Hpr(z) > §'}. Then we

have

Lemma 5.1. (1) 8,5_(R,&) C S_(R', &) (t < 0);

(2) For every zy & Sy, there is T > 0 such that ®,(z9) € S_(R',§') if

t< —T.

So it is reasonable to call S_(R/, 5 ) incoming region.

Now we translate the abstract results ih Section 4. Recall that E =
AU=m/Z[H, X]A=™)/2, The operator f(X)g(E) in Theorem 4.4 belongs
to ¥%(M), and its principal symbol is represented by f(r)g(rl~™H A7) in
{z € T*M;h(z) > 1/2}. Hence it is elliptic in a suitable incoming region
S_(R',8'). So Theorem 4.4 implies that (), and (ii), hold at every point
zp € S_(R',¢'). Combining this With Theorem 2.1 and Lemma 5.1, we
have that (1), and (i), are valid at every point 2y € S*M\ S, _. On the
other hand, Sg _ is equal to Sy modullo a null set under the condition

(H2)’. Our conclusion is
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| Theorem 5.2. The assertions (¢),.(r > 0) and (3¢),.(r > 0) hold at every

point 29 ¢ Se.—, and fail at almost every point zy € Sept -
6. Application
' 6.1. Asymptotically Euclidean metric on R?

Let g = 31— gjx(z)dz! @dz* be a C> Riemannian metric on M = R4,

Assume

(i) with C > 1: C~Ydz|? < g < C|dz|? in RY,
(i) 16°9;4(a)| < Ca(l+]al)"™, o € R¥ for all a € 24,1 < j,k < d
(iii) there is f € S({z)*, (z)"?|dz|?), f > 1, such that Hess,f > g

outside a compact set.

Then H = —Ay, X = /T satisfy (A1)-(A4) with B=1+H, A = X,
'm =1/v = 2. Remark that (iii)’ implies (iii) with f(z) = 1+ |z|%

(i)’ |8;g;1(z)| = o(|z|™) as |z| — oo for all 1 < i, 7,k < d.

: 6.2. Conformally compact metric

| Let M be a C* compact manifold with boundary M, and let z €
C>*(M,R) bea defining function of 8M; that is, M := M \ OM = {z >
0}, OM = {z = 0},dz # 0 on M. Let go'v be a C*™ Riemannian metric
on _]V._f, and define the Riemannian metric on M by g = a(z) 2go, where
a € C*(R4+,Ry). Then g is complete if and only if J3 a(s)"tds = co.

Put b(t) = [/° a(s)'ds + 1, where to > sup ¢, z(p). Assume

(i) b(+0) =0 (ie,gis cdmplete);,

(i) |a®(t)| < Cha(t)(a(®)b(t)) ™, 0 <t <ty, fork=1,2,...;
(i) Hminfs,o a'(£)b(t) > 0. |
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Then H = —Ay, X = boz satisfy (A1)-(A4) with B=1+H, A = X,
m=1/v=2. '

Remark. Clearly, a(t) = t" (r > 1) satisfies (i)-(iii).

6.3. Generalized scattering metric

Let M be a C* compact manifold with boundary M, and let ¢ €
C*(M, R) be a defining function of OM; that is, M := W/I_\ oM =
{z >0}, M = {2z = 0},dz # 0 on OM. Choose an open neighborhood
U of OM in H,. and y € C*(U;0M) so that U > p — (z(p),y(p)) €
[0,€) x OM is diffeomorphic (0 < € << 1), by which we identify U and
- [0,e) x OM. Let g be ‘a C* Riemannian metric on M = M \ M such
that on (0,¢) x OM

G(zy) = h(ZE) Y, dx/m27 dy/x)

where h(z, y, dz, dy) is a C*° Riemannian metric on [0,€) x M. Assume

further there is § > 0 such that
Hess,(1/2%) > 6g near infinity.

Then X = 1/z (néar infinity), H = —A, satisfy (A1)-(A4) with 4 =
X,B=H+1m=1/v=2. |
| The metric g on M is called a scattering metric if g takes the following

form near infinity: (z,y) € (0,¢) x oM

?

_dz)? | ¢(z,y,dz,dy)
Jaw) = g T oz

where ¢’ is a C> symmetric tensor field of type (0,2) on [0,€) x OM sat-
isfying that ¢'(0,y, 0, dy) is a C> Riemannian metric on &M (cf. '[Wul]).
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In our notation, h(z,y, dz, dy) = |dz|>+¢'(z,y, zdz, dy). In this case, the
convexity of 1/z? is satisfied. See [Wul] for sharper results concerning

the scattering metric.
6.4. Metric of separation of variables near infinity

Let (M, g) be a C* Riemannian manifold. Assume that. there exist a
C* compact Riemannian manifold (N,w), and a C* diffeomorphism x

from (0,00) x N to an open subset U of M satisfying
x'g=dt®@dt+ f(t)’w; M\ x((1, oo) X N) is compact,

where f € C*((0,00);R) satisfies

@) 1fO@/ @) <Ot t>1/8(k=0,1,...);

(i) with 6§ >0, tf'(t)/f(t) > 6(t >>1).
Then H = —A,, X = r satisfy (A1)-(A4) with A= X,B=1+ H,m =
1/v = 2. Here r € C*(M,R) satisfies r > 1 and x*r =t (t > 2).
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