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Commutators of Singular Integral Operators
on Morrey Spaces with General Growth Functions

IWERFEEZE KR FEE (Takahiro Mizuhara)
Abstract of the Talk

The talk will be concerned with the boundedness of the commutators of Calderon-
Zygmund singular iniegra,l operdtors on Morrey spaces L»®(R™) with growth functions
®(z, r) satisfying the condition ; there exists a constant C, independent of (z,r) € RrH,
such that for any (z,7) € R*

1) | / 1@ (z, t)/t*Hdt < C(z,r)/r®, for some a > 0.

In this case, we write ® € G, simply. We denote by L»*(R"), 0 < p < oo, the space
of locally integrable functions f, defined on R", for which there exists a constant C,
independent of balls B = B(x, r), such that

@ Joe, H WPy < 72z, 7)

for all balls B = B(x,r). Let || f|l,o be the smallest constant C satisfying (2). Then the
space LP®(R"™) becomes a quasi-Banach space with quasi-norm || - ||, In particular, if
1 < p < 00, then the space L»*(R") becomes a Banach space with norm || - ||, 4.

Let BMO(R™) be the space of all functions of bounded mean oscillation and let
Aa(R"), 0 < a < m, be the space of all Lipschitz continuous functions of order o.. Let M
‘be the Hardy-Littlewood maximal operator. We need two variants of M. For 0<g<oo
let M, f(z) = {(M|f]|?)(z)}*9. The sharp maximal function f!(z) is defined by

) =igg|3|»“1 /Blf(y) — faldy, where fp=|B|™! /Bf(y)dy-

Let T' be a Calderon-Zygmund singular integral operator defined by T'f = k % f with
the kernel k satisfying the conditions :

Ikl <C, |k(@)| <Cla|™ for 0#£ =€ R,
|k(z) — k(z —y)| < Clyl/I=™" for |y| < |al/2.

Let I, 0 < a < n, be the Riesz potential of order o defined by

(LhE = [ T 4

|z — g
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Related to I.f, the fractional maximal function M;,,,f(z) is defined by

* — f* — ) 1
2jof @) = faa(@) = 0B o [ 16l

For a locally integrable function b and an operator S, we define the commutator [6, 5],
between the operator S and the multiplication operator by b, by [b, S] = bS — Sb.
We have proved the following ([Mizs));

Theorem 1(Theorem 2.1.) Let 0 < p < co. We assume that ® € G,. Then there
exists @ constant C = C(p, ®) > 0, independent of f, such that for ol f € LP?(R™) N
L (R")

(3) | 1M fllpe < Cllflne

where LP(R") be the set of all essentially bounded functions on R"™ with compact support.
We use the method due to Di Fazio and Ragusa. Our method is based on weighted

maximal inequality due to Garcia-Cuerva and Rubio de Francia.

From this and the pointwise estimate due to Strémberg ;

{16 TI() Y (=) < Cllbll AM(T)(2) + (Mef) ()}, 1< g, < o0,

for almost all z € R", we obtain the boundedness of the commutators [b, 7] on Morrey
spaces ([Mizg)) ;

Theorem 2(Theorem 2.2.) Let1l < p < co and b € BMO(R"™). We assume that
® € G,. Then the commautator [b, T is bounded in LP®. More precisely, there exists a

constant C = C(p, ®) > 0, independent of b and f, such that for all b € BMO(R"™) and
f e L»*(R") N L (R™)

@ 116, TY(5) e < CIBI N o
Also we can observe the following ([Mizg]) ;

Theorem 3(Theorem 2.3.) Letl<p<g<oo, 0 <a=n(l/p—1/q) <n. We
assume that ® € Gp_po. If b € Ao (R"), then the commutator [b, T) is a bounded operator
from LP®(R™) into LY*"*(R™). More precisely, there ezists a constant C = c (p,q,®) >0,
independent of b and f, such that for all b € A,(R") and f € LP»*(R") N L®(R™)

(5) | N6, Tl f g gare < ClbllAaam | £ llp,0-
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This follows from the result (due to Naki [N]) of the boundedness of Riesz potential

on Morrey spaces and the pointwise estimate ;

(6, T15) ()] < fm |6(x) — b(y)l|k(z — 9)II.f W)ldy < ClIbl|aacrm (| 1) ().

Further we obtain the following result ([Miz;]) from the boundedness of the fractional

maximal operator M, on Morrey spaces and the pointwise estimate due to Strémberg ;

{[b, LI H(@) < ClbllAMulLnf) () + (Mol /1) ()}
for almost all z € R™, where 1 < u,t < p < n/a.

Theorem 4(Theorem 3.1.) Let1 <p<g <00, 0 < a =n(l/p—1/g) < n.
We assume that ® € Gn_po and Y2 € G,. If b € BMO(R"), then the commutator
[5, 1] is a bounded operator from LP»*(R™) into L%*"*(R"). More precisely, there ezists
a constant C = C(p,q,®) > 0, independent of b and f, such that for all b € BMO(R")
and f € LP*(R™) N LP(R™)

(6) 18, Za] fllg@are < ClIBl: ]| fllp,-

Similarly we can show the following ([Mizy)) ;

Theorem 5(Theorem 3.2.) Letl < p<g<o0, 0 <a, 3 0 < a+f =
n(l/p—1/q) <n, 1 <p < n/(a+pf). We assume that ® € Gp_parp). Ifb € AL(R™),
then the commutator [b, Ig] is a bounded operator from LP®(R™) into L% (R"). More
precisely, there exists a constant C = C(p, ¢, ®) > 0, independent of b and f, such that
Jor dll b € AL (R™) and f € LP*(R™) N LP(R")

(7) 118, Zs]fllgaare < Clibllaacam | flpa-

Our results (Theorems 1, 2 and 4) generalize partly the classical results due to Di
Fazio and Ragusa [DiFRag]. Also we obtain the new results (Theorems 3 and 5).

Acknowledgements. We wish to thank Professor Hideo Kozono for his kindness to

invite me as a speaker of this Congress.
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1. Introduction.

Let ® = ®(z,r), be a growth function on RT* = R"x R, that is, a positive and non-
decreasing function with repect to » > 0. We say that the growth function ®(z, r) satisfies
the As-condition (or doubling condition) for » > 0 if there exists constant D = D(®) > 1,
independent of (z,r), such that

(1'1) o @(I, 27’) < D@(:L‘, "')1 : (:L‘, 7') € Rl-rllr_'_l:
or equivalently,
&(x,2r)/D < ®(z,7) < ®(z,2r), (=,7) € R}

In this case, we write & € Ay simply. We consider the following functions in Ag;
®(z,r) = U(z)r*{log(l + )}, ¥(z) € L®(R*), 0< A< 00, —00 < £ < 00.

Remark. Nakai [Nak] assumed a slightly weak condition on ®(z,r) replacing (1.1) ;
there exists a constant C' > 0 such that, for all (z,r) € R,

(1.2) r<t<2r=C'<0(,t)/®r)<C.

However, for simplicity, we describe the results on the asumption of (1.1). Of course our

results are also valid under the condition (1.2).

Function Spaces. Let R” be the n-dimensional Euclidean space and let B = B(z, r)
be the ball centered at z € R® and with radius » > 0. Let Q = Q(z,r) be the cube
centered at x € R™ and with sides of length r > 0, where the cube will always mean a
compact cube with sides parallel to the axes and nonempty interior. |B] and |Q)] stand

for the Lebesgue measures of ball B and cube @), respectively. Let 0 < p < co.

Definition 1.1 (Morrey spaces). (Confer Mizuhara [Miz,]). We denote by LP® =

LP®(R™) the space of locally integrable functions f, defined on R™, for which there exists
a constant C, independent of balls B = B(z,r), such that '

ws) L, F@)Pdy < CP2(z,7)

for all balls B = B(z,r). Let || f||p.» be the smallest constant C satisfying (1.3). Then the
space LP?® becomes a quasi-Banach space with quasi-norm || - ||p.& in the sense of Triebel
[Tri]. In particular, if 1 < p < 00, then the space L»® becomes a Banach space with norm
Il - lp2. The balls B = B(x,r) in (1.3) can be replaced by cubes Q = Q(z,r).
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When &(z,7) = r*, A >0, then LP™ is the classical Morrey space denoted by LA
simply. The classical Morrey spaces LP*, 0 < A < n, were originally introduced by
Morrey [Mor] in 1938 and used by himself and the others in the problems related to the
calculus of variations and the theory of elliptic PDE’s. We refer to Campanato [Cam],
Giaguinta (Gia], Kufner-John-Fuéik [KufJohFuc] and Peetre [Py].

The some properties of LP* are known ; If1 < p < oo, then [P0 = LP(R™) and
LP" = L*®(R") isometrically. If n < X, then LP* = {0}. If 1< p <00 and 0 < )\ < n,
then LP* does not include nonzero constants. Hence, in the classical Morrey spaces, L
for 0 < A < n is interesting. Also Hélder’s inequality implies the imbedding theorem ; if
(n—A)/qg=(n—p)/p, p<gq, then L+ C [P~

Let BMO(R") be the John-Nirenberg space of all functions of bounded mean oscilla-

tion (see John-Nirenberg [JoN]), that is, BMO(R™) is a Banach space, modulo constants,
with norm || - ||, defined by

Iblle = sup B~ [ 1b(s) —boldy, where b =151 [ by)dy.

The space BMO(R") is identified with the dual space of the Hardy space H' (R") in the
sense of Fefferman-Stein ([FeS;]).

Let Ao(R"), 0 < a < n, be the space of all Lipschitz continuous functions of order
o on R". The space A,(R") is homogeneous in the sense of dilations. The dual space of
HP(R") can be identified with the Lipschitz space Aq(R"), a = n(l/p—1).

Classical opérators. Let f be a locally integrable function on R®. The Hardy-
Littlewood maximal operator M is defined by

Mf(@)=sup Bl [ |£(y)ldy

where the supremum is taken over all balls B containing z and | B| is the volume of the

ball B. We introduce two variants of M. Let 0 < ¢ < 0o and

Mof(2) = {(M|f %) (@)}

Then Holder’s inequality shows that Mf = My f < M,fif1 < q < ocoand M,f <
Mif=Mf if 0 < ¢ <1. The sharp maximal function J¥(z) is defined by

o) = supl B [176) ~ faldus whero fp =15 [ f)y.
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Let T be a Calderon-Zygmund singular integral operator T'f = k * f defined by the

kernel k satisfying the conditions;
IEl, €C, |k(z)] £ Clz|™ for 0#2z € R",
|k(z) — k(z — y)| < Clyl/|=|™" for |y| < |=]/2.
For € > 0, put
Ti@) = [ ko)f@—y)dy and T*f(@) = sup|Tf (@)l
lyl>e - €0

Let .Ia, 0 < a < n, be the fractional integral operator (or Riesz potential operator) of

order o defined by
LN@ = [, 0=

for a suitable function f. Related to I,f, the fractional maximal function M oS (Z),
which appeared in [MucWhe] as f; ;(z), is defined by

dy

* ‘ * 1
Myynf(@) = F2a(@) =99 Toere [ 1FWldy.

We define the commutator [b, S] between an operator S and the multiplication operator
by a locally integrable function b, by [b, S] = bS — Sb. |

In this note we show the boundednesss of the commutator [b, T , for b € BMO(R")
or b € A,(R"), on Morrey spaces LP»®(R") with some growth function ®. Our results
(Theorems 2.1, 2.2, 3.1) generalize partly the recent results due to Di Fazio and Ragusa
[DiFRag] on the classical Morrey spaces LP*(R"),0 < A < n,1 < p < oco. Further
we obtain the new results (Theorems 2.3 and 3.2). The letters C’s will denote positive

constants, which may have different values in each line.

2. Commutators between Calderon-Zygmund singular integral operators
and multiplication operator by a function b € BM O(R") U A (R™).

G,-condition. We consider the following condition on growth function ®(z,r) ;

o (=, )

ja € L ([r00),dt/t)

for all » > 0 and any z € R™, and, in addition, there exists a constant C, independent of
(z,7) € R}*, such that

21) [T10@ o/ < Coe ), (@) € R,
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for some a > 0. In this case, we write ® € G, simply.
~ We can observe the folloWing property of G4, a > 0 ;

Lemma 2.1. (i) If0 <a <a' <n, then G, C G, C G, C A..

(ii) If ® € Ay with doubling constant D, 1 < D < 2", then ® € G,,. |

(i) Ifa > 0, then G, C'Ga,, for some~y, 0 <~y < 1. More precisely, if ® € G,, a > 0,
there exist constants v = y(C,a), 0 < v < 1, and C' = C’'(C, a,7v) > 0 such that for any
(z,r) € R |

(2.2) | / [0z, ) /15t < C'B (=, r) /.

Proof. (i), (ii) These are easy to see.
(iii) Let
Balzr) = [ [B(x, 1)/t de.
Then (2.1) implies
Qu(z,7r) < CO(z, 1)/

For 0 < r < R, we have, integrating by parts and usihg (2.1),

f R[@(m, t) /e dt = f R[@(z, t)/tetie0-D]de

= [~@a(a, 910" — [~ @u(a, a(t 7

R
= —®,(z, )R 4 @y (z, r)ret— 4 a(l —v) / [®q(, t)t"(l‘”f)—l]dt

. R
< C(z,r)/r™ + a(l —7)C / [®(x, )/t ds.
Hence we obtain

/ R[‘I’(x t)/t*7Hdt < ¢ O(z,7)/r™
e T1l-a(l-yCc T

and we have (2.2) with
' o

- 1—a(l -—7)0 > 0.
- Thus we have (2.2) for some v such that 1~ (1/aC) < v < 1.

Cl

Q.ED.

First using this Lemma, we show the following ;
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Theorem 2.1. Let 0 < p < co. We assume that ® € G,,. Then there exists a constant
C > 0, independent of f, such that

(2.3) M fllpe < C"fu"p,cb

for all f € LP* N LP(R"), where L (R") is the set of all essentza,lly bounded functions
on R™ with compact support. '

Proof. We use the method due to Di Fazio-Ragusa [DifRag]. We recall the weighted
version of the maximal inequality due to Fefferman-Stein [FS,] ; there exists a constant
C such that

(2.4) | (Mf@Pu@)s <C [ (@) u()ds

for all w € Ay, and all f € L2 (R™), for 0 < p < oo (see Garcia-Cuerva-Rubio de Francia
[GarRub; p.410]) where A,, 1 < ¢ < 00, is the Muckenhoupt class of weight functions.
Let f € L»®* N LP(R") and B a ball. We take w(z) as (Mx)? € A;, 0 < < 1, where
x = xB(x) is the characteristic function of the ball B = B(x, r)
Then we get by (2.4),

fMf@Pds = [ {(Mf@)Pxp@)is
< [ MA@ P Mxa(@)}ds <C [ (@ (MXnton @)

=C {FH(@)P{M xB(z0r ()} dz

B(zo,r)

S (] P \17
+C ; -/B(zo ,2Fr)—B(z0,2%1r) {f (SL')} {MXB(ED’T) (CII) } dx

co{f, e e .

ti Pd
55 [ () z}
< C’"_fu";<I> {@(axo,'r) + Z(g—k)n"/q)(a:o, 2k'r)}
k=1
D (xq, 2°r 0o ®(zg,
<Ol 5 282 o o o [ oD

Since, by Lemma 2.1, the last term is bounded by

of Fid v TETSE
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we have ‘
IMfllpe < Cll e

Thus we have (2.3) for some C > 0, independent of f € L»® N L*(R").
Q.E.D.

Our second aim is to show the following ;

Theorem 2.2. Let1 < p <00, b € BMO(R™) and T be a Calderon- Zygmund singular
integral operator. We assume that ® € G,. Then the commutator [b,T] is bounded in
LP®. More precisely, there exists constant C, independent of b and f, such that ‘

(2.5) 16, TH e < ClblN fllp2
Jor allb € BMO(R") and f € L»* N L(R").
To prove the theorem we need Theorem 2.1 and the following three lemmas ;

Lemma 2.2. Let1l < ¢, s < 00, b € BMO(R") and T be a Calderon-Zygmund
singular integral operator. Then there erists constant C independent of b and f such that

{6 TI(HY (@) < Clbl AM(TF) (@) + (M, f)(z)}
Jor almost all x € R"* and all f € LX(R")

Proof. This is the pointwise estimate due to Stfc’imberg (see [Tor, p.418.] and Janson
[Jan; pp.268-269.]).

Q.E.D.

Lemma 2.3. Let 0 < ¢ < p < c0. We assume that ® € G,. Then the mazimal
operator M, is a bounded operator in LP*(R™) and

1Mefllpe < Cllfllno

Jor some constant C independent of f € LP*(R").

Proof. The proof depends on the weighted maximal inequality due to Fefferman-Stein
[FefSte;]. In the restricted case 1 < ¢ < p < 00, the corresponding result is proved by
Nakai [Nak; Theorem 1]. It is not difficult to extend the result to the case 0 < ¢ < p < 00.
Confer also Chiarenza-Frasca [ChiFra] and Mizuhara [Miz,].
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Q.E.D.

Lemma 2.4. Let 1 < p < 00. We assume that ® € G,,. Then the Calderon-Zygmund
singular integral operator T is a bounded operator in LP®(R") and

(2.6) ITflse < Clifllpe
for some constant C independent of f € LP®(R™).

Proof. This is the result due to Nakai [Nak; Theorem 2] in the setting of more general
growth functions. Confer also Peetre [Pee;|, Chiarenza-Frasca [ChiFra] and Mizuhara
[Miz,].

We note that we can give a short proof following the method of the author [Miz,]
which depends on the weighted maximal inequality due to Cordoba-Fefferman [CorFef]
(see also [GarRub]) ;

there exists constant C, depending only on 7, p and 0 < v < 1, such that

@n | Ti@Ps@)dz <C [ 1f(@)PMe) @)da
for all f anf ¢(z) > 0. A standard proof using (2.7) bimplies (2.6).

Q.E.D.

Proof of Theorem 2.2. We apply the method of Di Fazio-Ragusa [DifRag] to our
case. We suppose that b € BMO(R"). Then Theorem 2.1 and Lemma 2.2 imply that,
forl<g, s<p<oo,

e, T (Mee < 1M {6, T Hlpe
< G TN Ploe < CIbILAIM(TH)lpe + | Maflpe}-

Since, Lemma 2.3 and Lemma 2.4 imply

I1Mo(TH)llpze < CITfllpe < Clifllpe and [[Mefllpe < Clifllpe

we obtain
18, T Nlpe < Clbll fllpe
for b € BMO(R™) and f € IP® 1 [2(R"). Thus we have (2.5).
Q.ED.

When b € Ax(R"), 0 < a < n, we obtain the following :
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Theorem 2.3. Let1 < p < q < o0, 0<a=mn(l/p—1/q9) < n. We assume
that ® € Gppo. If b € Ay(R™), then the commutator [b, T| is a bounded ope'rator Jrom
LP2(R") into L¥***(R"™) and

(2.8) B, T fllg0ere < Cllbl| Aairm | Fllp2
for some constant C indepeﬁdent of b € Ao(R™) and f € [P* N L (R™).
To prove the theorem we need the following lemmsa, ;

Lemma 2.5. Letl <p<g<o0, 0 <a=mn(l/p—1/q) <n. We assume that
® € Gnpo. Then the fractional integral operator I, is a bounded operator from P2 (R™)
into L4¥* (R™) and

(2.9) e fllg ez < Cll fllpe
for some constant C independent of f € LP®.

Proof. This is the result due to Nakai [Nak; Theorem 3].
Q.E.D.

Proof of Theorem 2.3. Let b € A,(R"). Then
(BTING < [ 16) - @)k ~ )17 @)ldy

< Clblla, [, l= =iz = 4l ™17 @)idy = Clbln, L1 1) ().

Hence we have, by Lemma 2.5,

118 T]fllg0a < Cllbllaall Il f Mlgzera < Cllbflall fllp,o-

Thus we have (2.8) for some C' > 0, independent of b € A,(R") and f € LP* N LL(R™).
Q.E.D.

3. Commutators between the fractional integral operator and multiplica-
tion operator by a function b € BMO(E") U A,(R™).

In this section first we show the following when b € BM O(R") ;
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Theorem 3.1. Letl <p<qg<oo0, 0 <a=n(l/p—1/g) <n. We assume that
® € Gppa and ®V? € G,. Ifb € BMO(R™), then the commutator (b, I,] is a bounded
operator from LP*(R") into L% (R™) and
(3.1) 116, L] fllg@are < Clibll I fllpe

for some constant C independent of b € BMO(R") and f € L»® N LP(R").

To prove the theorem, we need the following pointwise estimate and the bounbedness

of the fractional maximal operator ;

Lemma 3.1. Let0 < a <n, 1 <u, t <n/a and b € BMO(R"™). Then there exists
constant C independent of b and f such that '

{5, LIH @) < Clbll M) (@) + (Ml FI)Y ()}
for almost all z € R™ and oll f € LY (R")

Proof. This is the pointwise estimate due to Strémberg (see [Tor, p. 419] and Di
Fazio-Ragusa [DifRag; p.326, Lemma 2.)).
Q.E.D.

-Lemma 3.2. Letl < p<g< o0, 0 <a=mn(l/p—1/q9) < n. We assume
that ® € G, _po. Then the fractional mazimal operator M}, 1is a bounded operator from
LP®(R) into L9 (R™) and |

(3-2) "M; nf ”q,cbq/z’ < C“f ”p,<1>

for some constant C independent of f € LP?.

Proof. Let B(z,r) be any ball centered at z and with radius » > 0 such that z €
B(z,r). Since
L(f)E) = [ @ g [ @,

B |2 — gy " T JB@en |z - ylm

2 ,,.'S—a ./;3( ,r)l <y)‘ Y= IBI?_Q/,; ./B( 'f(y)l p

we have the pointwise estimate ;

(M3 f)(2) < La(|f1)(2)
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for almost all z € R" and all f € LP®. Hence Lemma 2.5 implies the result.
Q.E.D.

Proof of Theorem 3.1. Let b € BMO(R"). Then Theorem 2.1 and Lemma 3.1
imply that, for 1 < 4, ¢ < ¢ < p < 00,

1B, Le](Fllgzare < IM{[b, L) (H)Hgpare < {8 Lal(£)} g gers

S C”b"*{"Mu(Iaf) ”’q,qaq/P + " (M;t/nlflt)l/t"qﬁﬂ/?}-

Also, under the assumption on ®, Lemma 2.3 and Lemma 2.5 imply
"Mu(Iaf)"q,dw/P < C"Iaf"q,qw/z’ < C"f"p,<1>
and Lemma 3.2 imply
Mzl F19) g aare = | Myl £ e

< CIUFONI s = Cllflpe-
Hence we obtain

116y LJ(lgzare < ClIBIL || fllp
for b € BMO(R") and f € L?* N LP(R"). Thus we have (3.1).
Q.E.D.

We close this section showing the following ;

Theorem 3.2. Letl<p<g<oo,0<0a,8, 0< at+B=n(l/p—-1/¢g)<n,1<p<
n/(a+B). We assume that ® € Gy_piars)- If b € Ao(R™), then the commutator [b, Ig] 1s
a bounded operator from LP®(R™) into L%*"*(R") and

(3.3) 11, 6] fllg@are < Cliblla,ll fllpe
for some constant C independent of b € A (R") and f € LP* N L¥(R™).
Proof of Theorem 3.2. Let b € A,(R"). Then

(15, I6] F)(@)| < CllbllaaLass(lF) ().
for almost all z € R". Hence we have, by Lemma 2.5,

118, L6 fllg@ere < Cllbllaall Lats(fDllgaarr < Cliblla, I fllpe-

Thus we have (3.3) for some C' > 0, independent of b € A,(R") and f € LP* N LX(R").
' Q.E.D.



62

References.

[Cam] Campanato,S. Proprieta di una famiglia di spazi funzionali, Ann. Scuola Norm.
Sup. Pisa, 18(1964), 137-160. |

[ChiFra] Chiarenza,F. and Frasca,M. Morrey spaces and Hardy-Littlewood maximal func-
tion, Rend. Mat.(7), 7(1987), 273-279.
- [CorFef] Cordoba,A. and Fefferman,C. A weighted norm inequality for smgulax integrals,
Studia Math. 57(1976), 97-101.

[DifRag] Di Fazio,G. and Ragusa,M.A. Commutators and Morrey spaces, Boll.U.M.L.(7),
5-A(1991), 323-332. :

[FefSte, ] Fefferman,C. and Stein,E.M. Some maximal inequalities, Amer. J. Math. 93(1971),
107-115.

[FefSteg] Fefferman,C. and Stein,E.M. H? spaces of several variables, Acta Math. 129(1972),
127-198.

[GarRub] Garcia-Cuerva,J. and Rubio de Francia,J.L. Weighted norm inequalities and
related topics, North-Holland, 1985. | ‘

[Gia] Giaquinta,M. Multiple integrals in the calculus of variaﬁ(_)ns and nonlinear elliptic
systems, Annals of Mathematics Studies, No.105, Princeton Univ. Press, Princeton, New
Jersey, 1983. /

[Jan] Janson,S. Mean oscillation and commutators of singular integral operators, Ark.
 Mat. 16(1978), 263-270. [KufJohFuc] Kufner,A., John,O. & Fu&ik,S. Function spaces,
Academia, Praha, 1977. _
[Miz; ] Mizuhara,T. Boundedness of some classical operators on generalized Morrey spaces,
Harmonic Analysis (S.Igari, editor), ICM-90 Satellite Proceedings, Springer-Verlag, Tokyo
- (1991), 183-189.

[Mizg] Mizuhara,T. Commutators of singular integral operators on Morrey spaces with
general growth functions, Preprint. (Also Confer: %534 [E1EE G « WEMTEERL
R LS 1995,p60-p77)

[Nak] Nakai,E. Hardy-Littlewood maximal operator, singular integral operators and the
Riesz potentials on generalized Morrey spaces, Math. Nachr. 166(1994), 95-103.

[Pee;] Peetre,J. On convolution operators leaving LP* spaces invariant, Ann. Mat. Pura
Appl.(4), 72(1966), 295-304. |

[Peey] Peetre,J. On the theory of Ly, spaces, J. Funct Anal. 4(1969), 71-87.

[Ste] Stein,E.S. Singular mtegrals and differentiability properties of functions, Princeton



63

University Press, Princeton, New Jersey, 1970.

[Tor] Torchinsky,A. Real-Variable Methods in Harmonic Analysis, Academic Press, Inc.
1986. '

[Tri] Triebel,H. Theory of Function Spaces, Monographs in Math.Vol.78, Birkhéﬂusér, 1983.

TAKAHIRO MIZUHARA :

Department of Mathematical Sciences,
Faculty of Science, Yamagata University,
Yamagata 990-8560, Japan.



