<table>
<thead>
<tr>
<th>Title</th>
<th>A note on the Rankin-Selberg method for Siegel cusp forms of genus 2 (Automorphic Forms and L-Functions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Horie, Taro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1103: 169-181</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63192</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A note on the Rankin-Selberg method
for Siegel cusp forms of genus 2

Taro Horie*

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602
e-mail:t-horie@math.nagoya-u.ac.jp

1 Introduction and Notations

In [K-S] Kohnen and Skoruppa introduced and studied a new type of Dirichlet series, which
is associated with the Fourier-Jacobi expansion of a pair \(F, G \) of Siegel cusp forms of the same
weight and genus 2. The proof is based on the Rankin-Selberg method. In particular, it was
shown that this Dirichlet series is equal to the Spinor zeta function attached to \(F \) up to constant
on condition that \(F \) is a Hecke eigenform and \(G \) is in the "Maass space".

In the present note we extend a part of results in [K-S] to the case of any level. As an
application, we give a new proof of meromorphic continuation of the Spinor zeta function
attached to a Siegel cusp form \(F \) of any level (on a condition for Fourier coefficients of \(F \)), and
find certain functional equation satisfied by the Spinor zeta function of any level \(> 1 \). We also
prove the Spinor zeta function of \(F \) times a simple meromorphic function is entire if \(F \) is not
in a certain Maass space, which was proved in the level 1 case in [Ev 2], [K-S], [O].

We remark that it is relatively easy to study Kohnen-Skoruppa's Dirichlet series, even in the
case of higher level (or even in the case of half-integral weight), because of its simple integral
representation.

Notations. We use standard notations, found in [Ei-Z]. We let \(\Gamma^g := \text{Sp}_g(Z) \) be integral
symplectic \(2g \times 2g \)-matrices and set

\[
\Gamma^g_0(N) := \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^g | C \equiv O \pmod{N} \right\},
\]

where \(A, B, C, D \) are \(g \times g \)-matrices. We let \(\Gamma^1, J(N) \) be the semi-direct product of \(\Gamma^1_0(N) \) and
\(\mathbb{Z}^2 \) (see [Ei-Za, p.9]), which is called the Jacobi group of level \(N \).

\(\mathcal{H}_g \) denotes the Siegel upper half space of genus \(g \) consisting of complex \(g \times g \)-matrices with
positive definite imaginary part. We often write

\[
Z = \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in \mathcal{H}_2, \quad X = \text{Re}(Z) = \begin{pmatrix} u & x \\ x & u' \end{pmatrix}, \quad Y = \text{Im}(Z) = \begin{pmatrix} v & y \\ y & v' \end{pmatrix}.
\]

*Partly supported by Research Fellowship of the Japan Society for promotion of Science for Young Scientists.
We usually set $|Y| = \det Y$.

Let k be an even integer > 2. Γ^2 acts on \mathcal{H}_2 by

$$\gamma(Z) := (AZ + B)(CZ + D)^{-1} \quad \left(\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^2, \ Z \in \mathcal{H}_2 \right),$$

and acts on any function $F(Z)$ on \mathcal{H}_2 by

$$F|_{k\gamma}(Z) := \det(CZ + D)^{-k}F(\gamma(Z)).$$

$\Gamma^{1,J}(N)$ acts on any function $\phi(\tau, z)$ on $\mathcal{H}_1 \times \mathbb{C}$ by

$$\phi|_{k,m\gamma}(\tau, Z) := \frac{1}{(c\tau+d)k}\exp\left(-\frac{4\pi my^2}{c\tau+d}\right)\phi\left(\frac{a\tau+b}{c\tau+d}, \frac{z+\lambda(a\tau+b)}{c\tau+d}+\mu\right)$$

$$(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \lambda, \mu) \in \Gamma^{1,J}(N), \ (\tau, z) \in \mathcal{H}_1 \times \mathbb{C},$$

where m denotes an integer ≥ 0.

We write simply $\exp(*)$ for $\exp(2\pi i*)$.

Definition. Let χ be a Dirichlet character modulo N. A Siegel modular form of integral weight k, level N and character χ is a holomorphic function on \mathcal{H}_2 satisfying

(i) $F|_{k\gamma} = \chi(\det D)F$ \quad $$(\forall\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^2(N))$$

and the vector space of all such functions F is denoted by $M_k(N, \chi)$. If $F \in M_k(N, \chi)$ satisfies

(ii) $\Phi(F|_{k\gamma}) = 0$ \quad $$(\forall\gamma \in \Gamma^2, \ \Phi \text{ is the Siegel operator, cf. [A, p.75]})$$

F is called a Siegel cusp form and the vector space of all such functions F is denoted by $S_k(N, \chi)$. A Jacobi cusp form ϕ of weight k, level N, character χ and index m is a holomorphic function on $\mathcal{H}_1 \times \mathbb{C}$ satisfying

(i) $\phi|_{k,m\gamma} = \chi(\det D)\phi$ \quad $$(\forall\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \lambda, \mu) \in \Gamma^{1,J}(N))$$

(ii) $\phi|_{k,0}\gamma = \sum_{n, r \in \mathbb{N}} \sum_{D=c^2-4mn<0} c(D, r)q^n\zeta^r$ \quad $$(\forall\gamma \in \Gamma^1, \ N_\gamma \text{ is a natural number depending on } \gamma)$$

and the vector space of all such functions ϕ is denoted by $J_{k,m}^{cusp}(N, \chi)$.

The Petersson inner product on these spaces are normalized by

$$\langle F,G \rangle_N := \int_{\mathcal{H}_2} F(Z) \overline{G}(Z) |Y|^{k-3} dX dY$$

$$(F, G \in M_k(N, \chi), \ Z = X + iY \in \mathcal{H}_2, \ \text{One of } F, G \text{ is in } S_k(N, \chi)), \ \langle \phi, \psi \rangle_N := \int_{\mathcal{H}_1 \times \mathbb{C}} \phi(\tau, z) \overline{\psi}(\tau, z) \mu^{k-3} \exp\left(-\frac{4\pi my^2}{v}\right) du dv dx dy$$

$$(\phi, \psi \in J_{k,m}^{cusp}(N, \chi), \ \tau = u + iv \in \mathcal{H}_1, \ z = x + iy \in \mathbb{C}).$$
2 Statement of Result

Definition. Take $F \in S_k(N, \chi)$, $G \in M_k(N, \chi)$ and a natural number M which divides N. For $\gamma \in \Gamma^2 = \mathrm{Sp}_2(\mathbb{Z})$, we write the Fourier-Jacobi expansions of $F|_{k\gamma}$ and $G|_{k\gamma}$ by

$$F|_{k\gamma} = \sum_{n \geq 1} \phi_{n,\gamma}(\tau, z) e\left(\frac{n\tau'}{N}\right) \text{ and } G|_{k\gamma} = \sum_{n \geq 1} \psi_{n,\gamma}(\tau, z) e\left(\frac{n\tau'}{N}\right).$$

Then we define a Dirichlet series $D_{F,G,M}(s)$ as $\zeta(2s - 2k + 4)$ times

$$\sum_{n \geq 1} \left\{ \int_{\gamma \in \Gamma^2(N) \setminus \Gamma^2_0(M)} \phi_{n,\gamma}(\tau, z) \overline{\psi}_{n,\gamma}(\tau, z) \exp\left(-\frac{4\pi n y^2}{vN}\right) v^{k-3} dv dx dy \right\} n^{-s},$$

(1)
on the assumption that $D_{F,G,M}(s)$ converges for sufficiently large $\Re(s)$, where \mathcal{F} is a fundamental domain $\Gamma^1,J(M) \setminus \mathcal{H} \times \mathbb{C}$. We define its gamma factor by

$$D_{F,G,M}^*(s) := (2\pi)^{-2s} \Gamma(s) \Gamma(s - k + 2) D_{F,G,M}(s).$$

In a special case of $M = N$, the Dirichlet series above is an obvious generalization of Rankin’s Dirichlet series in the case of genus 1 (cf. [R]). In fact, if we write the Fourier-Jacobi expansions of F and G by

$$F(Z) = \sum_{n \geq 1} \phi_n(\tau, z) e(n\tau') \text{ and } G(Z) = \sum_{n \geq 1} \psi_n(\tau, z) e(n\tau'),$$

then

$$D_{F,G,N}(s) = \frac{1}{N^s} \zeta(2s - 2k + 4) \sum_{n \geq 1} \frac{\langle \phi_n, \psi_n \rangle_N}{n^s}. \zeta(2s - 2k + 4)$$

On the other hand, if $F(Z) \in S_k(N, \chi)$ is a Hecke eigenform with

$$T(n)F = \lambda_F(n)F$$

for all the Hecke operators $T(n)$ with $(n, N) = 1$, we can associate with F the Spinor zeta function $Z_F(s)$ which has an Euler product of the form

$$Z_F(s) := \prod_{p \text{ prime}} Q_{F,p}(\chi(p)p^{-s}) \text{ (Re}(s) \gg 0),$$

$$Q_{F,p}(t) := \left\{ 1 - \lambda_F(p)t + (\lambda_F(p)^2 - \lambda_F(p^2) - \chi(p^2)p^{2k-4})t^2 - \chi(p^2)p^{2k-3} + \lambda_F(p^4)p^{4k-6}t^4 \right\}^{-1},$$

(2)

see [A, (4.3.35), Proposition 3.3.35, Exercise 3.3.38 and (4.4.21)]. We define its gamma factor by

$$Z_F^*(s) = (2\pi)^{-2s} \Gamma(s) \Gamma(s - k + 2) Z_F(s).$$

Note that the gamma factor of $D_{F,G,M}(s)$ concides with that of $Z_F(s)$.
The modular forms which play an important role in relating (1) to (2) are Poincaré series. First, for a negative discriminant $D = r^2 - 4n$, we define the D-th Jacobi Poincaré series $P_{D,N}^{\tau}(\tau, z)$ of level N and index 1 by

$$\lambda_{k,D}P_{D,N}^{\tau}(\tau, z) := \sum_{\gamma \in \Gamma^1(J)(\infty) \backslash \Gamma^1(J(N))} \bar{\chi}(\gamma)\mathbf{e}(n\tau + rz)|_{k,1}\gamma \in J_{k,1}^{\text{cusp}}(N, \chi),$$

where we write $\lambda_{k,D} := \frac{1}{2}\Gamma(k-\frac{3}{2})(\pi|D|)^{-k+3/2}$, $\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$, $\lambda, \mu \in \Gamma^1(J(N))$ and $\Gamma^1(J(\infty)) := \left(\begin{array}{cc} \pm 1 & b \\ 0 & \pm 1 \end{array} \right), 0, \mu \in \Gamma^1(J(N))$. Next, we define a Siegel modular form $P_{D,N}^{\tau}(Z) \in M_k(N, \chi)$ as the image of $P_{D,N}^{\tau}(\tau, z)$ under the Maass lifting (for the definition, see (6) in the section 3).

Now let us state our main result.

Theorem. Let F be a Siegel cusp form in $S_k(N, \chi)$ (k: even integer > 2). For a natural number M dividing N such that χ is defined modulo M, we define a trace of F by

$$\text{Tr}^M_{T}(F) := \sum_{\gamma \in \Gamma_0^M(M) \backslash \Gamma_2^M(M)} F|_{k}\gamma(Z) \in S_k(M, \chi).$$

Suppose that $\text{Tr}^M_{T}(F)$ is a non-zero Hecke eigenform. Then for any negative fundamental discriminant D and a Siegel modular form $P_{D,M}^{\tau}(Z) \in M_k(M, \chi)$ defined above, we have a relation

$$D_{F,P_{D,M}^{\tau}}(s) = d_{\text{Tr}^M_{T}(F),D}(s)Z_{F}(s).$$

Here for $\text{Tr}^M_{T}(F)(Z) = \sum_{Q>0} \tilde{A}(Q)e(\text{tr}QZ)$, by writing the indices of Fourier coefficients by integral ideals of some order in quadratic fields, we define a Dirichlet series

$$d_{\text{Tr}^M_{T}(F),D}(s) := \frac{1}{N^s} \sum_{\mathfrak{A}(\mathfrak{Z})|N^{\infty}} \tilde{A}(\mathfrak{Z})N^{-s(k+2)}(\text{Re}(s) \gg 0),$$

where \mathfrak{Z} runs through all integral ideals of the maximal order in $\mathbb{Q}(\sqrt{D})$ such that each of the prime ideals which divides \mathfrak{Z} also divides M and $N\mathfrak{Z}$ denotes the norm of \mathfrak{Z}. This Dirichlet series is also defined by a following meromorphic function on the whole s-plane:

$$d_{\text{Tr}^M_{T}(F),D}(s) := \frac{1}{N^s h(D)} \sum_{\xi} \prod_{p|M} \left(1 - \frac{\xi(p)}{N\mathfrak{Z}_{p}^{-k+2}} \right)^{-1} \xi(\mathfrak{Z})\tilde{A}(\mathfrak{Z}),$$

where $h(D)$ denotes the class number of $\mathbb{Q}(\sqrt{D})$, \mathfrak{Z} runs through all prime ideals dividing M of the maximal order in $\mathbb{Q}(\sqrt{D})$, $\{\mathfrak{Z}_i\}_{i=1,\ldots,h(D)}$ denotes a set of representatives of ideal class group and ξ runs through all ideal class characters.

We shall write down our relation (4) in the special case of $M = N$. Let

$$F(Z) = \sum_{T>0} A(T)e(trTZ) = \sum_{m>0} \phi_m(\tau, z)e(m\tau') \in S_k(N, \chi)$$

be a non-zero Hecke eigenform for all the Hecke operators $T(n)$ with $(n, N) = 1$, then for any negative fundamental discriminant D we have an explicit relation

$$\zeta(2s - 2k + 4) \sum_{n \geq 1} \frac{\langle \phi_n, P_{D,N}(V_n)|_N \rangle}{n^s} = \sum_{\mathfrak{Z}|N^\infty} \frac{A(\mathfrak{Z})}{N\mathfrak{Z}^{s-k+2}} \times Z_F(s),$$

where V_n denotes the n-th Hecke operator which maps $J_{k,1}^{\text{cusp}}(N, \chi)$ to $J_{k,n}^{\text{cusp}}(N, \chi)$ (see below).
3 Proof

The proof proceeds along the lines of the second proof of [K-S], which uses the “Maass lifting” of Jacobi Poincaré series and “Andrianov’s formula”.

We generalize Maass lifting as follows:

Theorem-Definition ([Saito-Kurokawa]-Maass lifting). (cf. [Ei-Za] and [M-Ra-V]) Let $\phi(\tau, z)$ be a Jacobi cusp form of index 1 in $J_{k,1}^{\text{cusp}}(N, \chi)$. Then we have a lifting map from $J_{k,1}^{\text{cusp}}(N, \chi)$ to $M_{k}(N, \chi)$ via

$$\phi(\tau, z) \mapsto \operatorname{Lift}(\phi) := \sum_{m \geq 1} \phi|V_{m}(\tau, z)e(m\tau'),$$

where V_{m} is the m-th Hecke operator which maps $J_{k,1}^{\text{cusp}}(N)$ to $J_{k,m}^{\text{cusp}}(N)$ and defined by

$$(\phi|V_{m})(\tau, z) := m^{k-1} \sum \chi(a)(cr + d)^{-k} e\left(\frac{-mcz^{2}}{cr + d}\right) \phi\left(\frac{a\tau + b}{c\tau + d}, \frac{mz}{c\tau + d}\right).$$

We call this map the Maass lifting. We call the image $\operatorname{Lift}(J_{k,1}^{\text{cusp}}(N, \chi))$ the Maass space of level N and character χ.

Before the proof, we give a definition.

Definition. We define the Jacobi subgroup of level N of $\Gamma_{0}^{2}(N)$ by

$$C_{2,1}(N) := \left\{ \left(\begin{array}{ccc} a & b & \mu \\
\lambda' & 1 & \mu' \kappa \\
c & d & -\chi \\
0 & 0 & 1 \end{array} \right) \in \Gamma_{0}^{2}(N) \right\}, \quad (\lambda', \mu') = (\lambda, \mu) \left(\begin{array}{cc} a & b \\
c & d \end{array} \right)$$

which is a central extension of $\Gamma^{1,J}(N)$ by \mathbb{Z}.

Proof. The proof is a direct generalization of [Ei-Z, Theorem 6.2 and Theorem 4.2]. By straightforward calculations, we see $\phi|V_{m}$ transforms like a Jacobi form of index m. Therefore

$$\phi|V_{m}(\tau, z)e(m\tau')$$

transforms like a Siegel modular form under the action of $C_{2,1}(N)$, hence a sum $\operatorname{Lift}(\phi)$ also does.

On the other hand, if we write the Fourier expansion of ϕ by

$$\phi(\tau, z) = \sum_{n, r \in \mathbb{Z}} c(r^{2} - 4n, r)q^{n}\zeta^{r} \quad (q := e(\tau), \, \zeta := e(z)),$$

then a standard calculation shows

$$\phi|V_{m}(\tau, z) = \sum_{n, r \in \mathbb{Z}} \left(\sum_{a | (n, r, m)} \chi(a)a^{k-1}c\left(\frac{r^{2} - 4mn}{a^{2}}, \frac{r}{a}\right) \right)q^{n}\zeta^{r},$$
hence we have
\[
\text{Lift}(\phi)(\frac{\tau}{z}) = \sum_{(n, r, m) > 0} \left(\sum_{a(n, r, m)} \chi(a) a^{-1} \zeta^{r} p^{m} \right) q^{n} \zeta^{r} p^{m} \quad (p := e(\tau')).
\]

Also we can easily see \text{Lift}(\phi) is symmetric in \(n \) and \(m \), so we deduce that \text{Lift}(\phi) transforms like a Siegel modular form with respect to the matrix
\[
V = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.
\]

Therefore \text{Lift}(\phi) satisfies the transformation law of Siegel modular forms by using Lemma 1 below on generators for \(\Gamma_{0}^{2}(N) \).

\[\square\]

Remark. We have not succeeded in proving \text{Lift}(\phi) is a cusp form \(\in S_{k}(N, \chi) \) in general.

Lemma 1. \(\Gamma_{0}^{2}(N) \) is generated by \(C_{2,1}(N) \) (the Jacobi subgroup of level \(N \)) and the element
\[
V = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.
\]

Proof. Any integral primitive vector \(X = (x_{1}, x_{2}, x_{3}, x_{4}) \) could be reduced by the left multiplication by the element of type
\[
M(x, y, z) = \begin{pmatrix} 1 & 0 & 0 & x \\ y & 1 & x & z \\ 0 & 0 & 1 & y \\ 0 & 0 & 0 & 1 \end{pmatrix}
\]
to a vector with \(\text{g.c.d.}(x_{2}, x_{4}) = 1 \). Next using the element of type
\[
\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & a & 0 & b \\ 0 & 0 & 1 & 0 \\ 0 & c & 0 & d \end{pmatrix}, \quad c \equiv 0 \pmod{N},
\]
we may reduce the primitive vector \(X \) with \(N|x_{3}, x_{4} \) to \(X = (x_{1}, x_{2}, x_{3}, 0) \). Moreover \(X \) reduces to \((x_{1}, 1, x_{3}, 0) \) by using a matrix of type \(M(x, y, z) \), and then by the left multiplication by the element of type
\[
\begin{pmatrix} a & 0 & b & 0 \\ 0 & 1 & 0 & 0 \\ c & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad c \equiv 0 \pmod{N},
\]
X could be reduced to $X = (x_1, 1, 0, 0)$ (note that g.c.d.$(x_1, x_3) = 1$ and $N|x_3$).

For any element $\gamma = (X_1, X_2, X_3, X_4) \in \Gamma_0^2(N)$, we reduce the 2-th column vector X_2 to the form $^t(x_1, 1, 0, 0)$ and multiplying an element $VM(x, y, z)V$ finally to $(0, 1, 0, 0)$. It is easily shown that this type matrix belongs to the parabolic subgroup $C_{2,1}(N)$, so Lemma 1 is proved.

We define a Siegel modular form as the Maass lifting of Jacobi Poicaré series defined in (3), i.e.

$$P_{D,M}(Z) := \operatorname{Lift}(P_{D,M}) = \sum_{m \geq 1} (P_{D,M}|V_m)(\tau, z)e(m\tau') \in M_k(M, \chi).$$

(6)

Now, we recall an important property of Jacobi Poicaré series:

Lemma 2. $P_{D,N}(\tau, z)$ (the D-th Jacobi Poicaré series in $J_{k,1}^{\text{cusp}}(N, \chi)$ defined in (3)) is characterized by

$$\langle \phi, P_{D,N} \rangle_N = c(D, r) \quad (\forall \phi \in J_{k,1}^{\text{cusp}}(N)),$$

where $c(D, r)$ denotes the (D, r)-th Fourier coefficient of ϕ, i.e.

$$\phi(\tau, z) = \sum_{\substack{\nu, \tau' \in \mathbb{Z} \quad \nu^2 - 4\nu < 0 \quad n \in \mathbb{Z}}} c(D, r)q^n \zeta^{\nu/2} \quad (q := e(\tau), \ z := e(z)).$$

(Note that $c(D, r)$ depend only on $D = r^2 - 4n$ and $r \pmod 2$).

Proof. This is proved using the unfolding trick, in the same way of [G-K-Z, p.520].

For a half integral symmetric matrix $T = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ with $D := b^2 - 4ac$, we can associate with T a binary quadratic form

$$Q(x, y) = [a, b, c](x, y) = ax^2 + bxy + cy^2$$

of discriminant D, and a proper o-ideal of some order o of the quadratic field $\mathbb{Q}(\sqrt{D})$:

$$\mathfrak{O} = a\mathbb{Z} + \frac{-b + \sqrt{D}}{2}\mathbb{Z}.$$

We occasionally write $A(Q)$, $A(a, b, c)$ or $A(\mathfrak{O})$ instead of $A(T)$ for Fourier coefficients of Siegel modular forms.

Proof of Theorem. We put the assumption that $D_{F, P_{D,M}}(s)$ converges sufficiently large $\operatorname{Re}(s)$ and put forward calculations, and later will remove the assumption by the convergence of Spinor zeta functions. Write the Fourier and the Fourier-Jacobi expansion of $\operatorname{Tr}^{N}_{M}(F)$ by

$$\operatorname{Tr}^{N}_{M}(F)(Z) = \sum_{T > 0} \tilde{A}(T) e(\text{tr}TZ) = \sum_{m > 0} \tilde{\phi}_m(\tau, z) e(m\tau')$$

respectively, where T runs over all positive definite half integral matrices.
We recall the definition (6) of the Siegel modular form $\mathcal{P}_{D,N}(Z) \in M_{k}^{*}(N, \chi)$. We note that for any $\gamma \in \Gamma_{0}^{2}(M)$

$$\mathcal{P}_{D,M}|_{k\gamma}(Z) = \mathcal{P}_{D,M}(Z) = \sum_{m>0} P_{D,M}|V_{m}(\tau, z)e(m\tau'),$$

so in the notations of (2) in Definition

$$\psi_{n,\gamma} = \begin{cases} 0 & \text{if } n \text{ is not divisible by } N \\ P_{D,M}|V_{n}(\tau, z) & \text{if } n = Nm \end{cases}$$

Therefore the Nm-th coefficient of $\zeta(2s - 2k + 4)^{-1}D_{F,\mathcal{P}}M(D,M,s)$ is equal to

$$\int_{\mathcal{F}} \sum_{\gamma \in \Gamma_{0}^{2}(M)\setminus \Gamma_{0}^{2}(N)} \phi_{Nm,\gamma}(\tau, z) \overline{\psi}_{Nm,\gamma}(\tau, z) \exp\left(\frac{-4\pi my^{2}}{v}\right) v^{k-3} du dv dx dy = \left\langle \sum_{\gamma} \phi_{Nm,\gamma}, P_{D,M}|V_{m}\right\rangle_{M}.$$

We remark that $\sum_{\gamma} \phi_{Nm,\gamma}(\tau, z) = \tilde{\phi}_{m}(\tau, z)$ is nothing but the m-th Fourier-Jacobi coefficient of $\text{Tr}_{M}^{N}(F)$ and it is a Jacobi form of index m and level M. Hence we can rewrite the above as

$$\langle \tilde{\phi}_{m}, P_{D,M}|V_{m}\rangle_{M} = \langle \tilde{\phi}_{m}|V_{m}^{*}, P_{D,M}\rangle_{M},$$

where $V_{m}^{*} : J_{k,m}^{\text{cusp}}(M, \chi) \rightarrow J_{k}^{\text{cusp}}(N, \chi)$ denotes the adjoint operator of $V_{m} : J_{k,1}^{\text{cusp}}(M, \chi) \rightarrow J_{k,m}^{\text{cusp}}(N, \chi)$. Now we must calculate the action of V_{m}^{*} on Fourier coefficients explicitly.

Proposition 1. Let $V_{m}^{*} : J_{k,m}^{\text{cusp}}(N, \chi) \rightarrow J_{k,1}^{\text{cusp}}(N, \chi)$ be the adjoint operator of $V_{m} : J_{k,1}^{\text{cusp}}(N, \chi) \rightarrow J_{k,m}^{\text{cusp}}(N, \chi)$ with respect to the Petersson inner products. Then we have

$$\left\langle \tilde{\phi}_{m}|V_{m}^{*}, P_{D,M}\right\rangle_{M} = \sum_{D<0, r \in \mathbb{Z}} c(D, r)e\left(\frac{r^{2} - D}{4m}\tau + rz\right) |V_{m}^{*}|.$$

(Here, $c(D, r)$ denotes the Fourier coefficient of a Jacobi form of index m and note that $c(D, r)$ depends only on D and $r \pmod{2m}$.)

Proof. In our general case (i.e. level $N \geq 1$ and with character χ), we can proceed along the same calculation on [K-S, p.554-557].

Using Proposition 1 and the characterization of $P_{D,M}$ in Lemma 2, we have

$$\langle \tilde{\phi}_{m}|V_{m}^{*}, P_{D,M}\rangle_{M} = \sum_{d|m, (m/d, M)=1} \tilde{\chi}(m/d)d^{k-2} \sum_{s \pmod{2d}, s^{2} \equiv D \pmod{4d}} \tilde{A}\left(\frac{m}{d} \left(\frac{s^{2} - D}{4d}, s, d\right)\right).$$
where \(\tilde{A}(*) \) denotes the Fourier coefficients of \(\text{Tr}^N_M(F) \). Let \(\{Q_i\}_{i=1,\ldots,h} \) be a set of representatives of binary quadratic forms of discriminant \(r^2 - 4n \) and let

\[
n(Q_i; d) := \# \left\{ s \pmod{2d} \mid s^2 \equiv D \pmod{4d}, \frac{s^2 - D}{4d}, s, d \sim Q_i \right\}
\]

be the number of \(s \pmod{2d} \) such that \(s^2 \equiv D \pmod{4d} \) and the quadratic form \(Q(x,y) = \frac{s^2 - D}{4d}x^2 + sxy + dy^2 \) is equivalent to \(Q_i \). Then we have

\[
\langle \tilde{\phi} | V_m^*, P_{D,M} \rangle_M = \sum_{i=1}^h \sum_{md|} \overline{x}(m/d) dk - 2n(Q_i; d) \tilde{A}(\frac{m}{d} Qi).
\]

By [Z, Proposition 3 (i)] we can see

\[
\sum_{n \geq 1} n(Q_i; n)n^{-s} = \zeta_{Q_i}(s) \zeta(2s)^{-1},
\]

where \(\zeta_{Q_i}(s) \) is the (partial) zeta function of the class of \(Q_i \) (= the zeta function of the ideal class of \(\mathbf{Q}(\sqrt{D}) \) corresponding in the usual way to the class of \(Q_i \)), so we obtain

\[
D_{F,P_{D,M},M}(s) = N^{-s} \sum_{i=1}^h \zeta_{Q_i}(s - k + 2) R_{Q_i,\text{Tr}^N_M(F),M}(s),
\]

with

\[
R_{Q_i,\text{Tr}^N_M(F),M}(s) := \sum_{n \geq 1, (n,M)=1} \overline{\chi}(n) \tilde{A}(nQ_i)n^{-s}.
\]

We now recall Andrinov's formula, which is mentioned in [A, Theorem 4.3.16] in a most general form. Take any negative fundamental discriminant \(D \) and any Hecke eigenform \(F(Z) = \sum Q A(Q) \mathbf{e}(\text{tr}QZ) \in S_k(M, \chi) \). Then for any class character \(\xi \) of the class group \(H(D) \) and any completely multiplicative function \(\omega \) on \(N_{(M)} := \{ n \in \mathbf{N} | (n,M) = 1 \} \), it holds that

\[
A_{\xi}(s) \prod_{\text{p prime ideal (p,M)=1}} \left(1 - \zeta \frac{(N\mathbf{p})\omega(N\mathbf{p})\xi(p)}{(N\mathbf{p})^{s-k+2}} \right) \prod_{\text{p prime (p,M)=1}} Q_{F,p}(\omega(p)p^{-s})
\]

\[
= \sum_{i=1}^{h(D)} \xi(Q_i) \sum_{n \in N_{(M)}} \frac{\omega(n) A(nQ_i)}{n^s},
\]

with

\[
A_{\xi}(s) := \sum_{i=1}^{h(D)} \xi(Q_i) A(Q_i),
\]

where \(h = h(D) = \# H(D) \) is the class number of discriminant \(D \). Inverting this,

\[
\sum_{n \in N_{(M)}} \frac{\omega(n) A(nQ_i)}{n^s}
\]

\[
= \frac{1}{h} \prod_{(p,M)=1} Q_{F,p}(\omega(p)p^{-s}) \sum_{i=1}^{h(D)} \xi(Q_i) A_{\xi}(s) \prod_{\text{p prime ideal (p,M)=1}} \left(1 - \zeta \frac{(N\mathbf{p})\omega(N\mathbf{p})\xi(p)}{(N\mathbf{p})^{s-k+2}} \right).
\]
Instituting this formula for $F = \operatorname{Tr}^N_M(F)$, $\omega = \chi$ in (7), we have

\[
D_{F,\mathcal{P}_{D},M}(s) = \frac{Z_{\operatorname{Tr}^N_M(F)}(s)}{N^s h} \sum_{i=1}^{h} \zeta_i Q_i(s - k + 2) \sum_{\xi} \overline{\xi}(Q_i) \tilde{A}_\xi(s) \prod_{\text{prime ideal } (\wp,M) = 1} \left(1 - \frac{\xi(\wp)}{(N\wp)^{s-k+2}}\right),
\]

since, by writing the above Euler product by $L(s, \xi)$, it holds $L(s, \overline{\xi}) = L(s, \xi)$.

We note that

\[
d_{F,D}(s) = \frac{1}{N^s h} \sum_{\xi} \prod_{\wp|M} \left(1 - \frac{\overline{\xi}(\wp)}{N\wp^{s-k+2}}\right)^{-1} \tilde{A}_\xi(s)
\]

is a meromorphic function on the whole s-plane. Expanding the right hand side we get

\[
D_{F,\mathcal{P}_{D},M}(s) = \frac{Z_{\operatorname{Tr}^N_M(F)}(s)}{N^s h} \sum_{i=1}^{h} \tilde{A}(Q_i) \sum_{\xi} \sum_{\wp|M} \frac{\xi(\wp)^{-1}}{N\wp^{s-k+2}},
\]

and summing up for ξ's, we have the relation (4) and the expression (5).

Now we can remove the assumption on convergence of $D_{F,\mathcal{P}_{D},M}(s)$ for sufficiently large $\operatorname{Re}(s)$ by using convergence of $Z_F(s)$. This completes the proof of Theorem.

\[\square\]

4 Applications

We summarize the known facts about the analytic properties for $D_{F,G,M}(s)$'s. We define Eisenstein series of Klingen-Siegel type of weight 0 and level N by

\[
E_{s,N}(Z) := \sum_{\gamma \in C_2(N) \backslash \Gamma_0(N)} \left(\frac{\det \operatorname{Im} \gamma(Z)}{\operatorname{Im} \gamma(Z)}\right)^s,
\]

where $C_2(N)$ stands for the Jacobi subgroup of level N (see Definition in the section 3) and Z_1 denotes the left upper entry of $Z \in \mathcal{H}_2$. We define its gamma factor by

\[
E_{s,N}^\gamma(Z) := \pi^{-s} \Gamma(s) \zeta(2s) \prod_{p \mid N} \left(1 - \frac{1}{p^{2s}}\right) E_{s,N}(Z).
\]

In this last section, for Siegel modular forms $F \in S_k(N,\chi), G \in M_k(N,\chi)$ and a natural number M dividing N, we put

\[
D_{F,G,M}(s) := \prod_{p \mid M} \left(1 - \frac{1}{p^{2(s-k+2)}}\right) D_{F,G,M}(s), \quad D_{F,G,M}^\gamma(s) := \prod_{p \mid M} \left(1 - \frac{1}{p^{2(s-k+2)}}\right) D_{F,G,M}^\gamma(s),
\]

\[
Z_{F,N}(s) := \prod_{p \mid N} \left(1 - \frac{1}{p^{2(s-k+2)}}\right) Z_F(s), \quad Z_{F,N}^\gamma(s) := \prod_{p \mid N} \left(1 - \frac{1}{p^{2(s-k+2)}}\right) Z_F^\gamma(s).
\]

Then $D_{F,G,M}(s)$ has a following integral representation:
Lemma 3 ([H 1, Lemma 2]). We have
\[N^s D_{F,G;M}^s(s) = \pi^{-k+2} \langle FE_{s-k+2;M}^s, G \rangle_N. \]

Also we can prove functional equations of Eisenstein series \(E_{s,N}(Z) \) for arbitrary level:

Lemma 4. Let \(N \) be a natural number. Then, the function \(E_{s,N}^*(Z) \) has a meromorphic continuation to \(\mathbb{C} \) with possible simple poles at \(s=0,2 \) and satisfies a functional equation
\[
\frac{1}{N^{2-s}} \sum_{d|N} d^{2(2-s)} E_{s-N,d}^*(Z) = \frac{1}{N^s} \sum_{d|N} d^{2s} E_{s,d}^*(Z),
\]
or equivalently
\[
E_{2-s,N}^*(Z) = \frac{1}{N^{2}} \sum_{d|N} e^{2s} \prod_{p|d} (1 - p^{2s-2}) E_{s,d}^*(Z).
\]

Proof. (For details, see [H 3].) We will prove for any natural numbers \(m \) and \(N \) the formula
\[
N^s E_{s,m}(NZ) = - \sum_{1 \neq M \mid N \atop (m,M)=1} \mu(M) \sum_{d \mid M} \mu(d) (N/M)^s E_{s,l,c.m.(m,d)}(\mathbb{C}(N/M)Z) + N^2 E_{s,m,N}(Z),
\]
where \(\mu(*) \) denotes the Möbius function. We note that for a square-free number \(M \) with \((m,M) > 1 \)
\[
\sum_{d \mid M} \mu(d) E_{s,l,c.m.(m,d)}((N/M)Z) = \sum_{d_1 \mid M/(m,M)} \mu(d_1) \sum_{d_2 \mid (m,M)} \mu(d_2) E_{s,m,d_1}((N/M)Z) = 0,
\]
then we have
\[
N^s E_{s,m}(NZ) = - \sum_{1 \neq M \mid N \atop (m,M)=1} \mu(M) \sum_{d \mid M} \mu(d) (N/M)^s E_{s,m,d}(\mathbb{C}(N/M)Z) + N^2 E_{s,m,N}(Z).
\]

Now by using the assumption of induction on \(N \), we have
\[
N^s E_{s,m}(NZ) = - \sum_{1 \neq M \mid N \atop (m,M)=1} \mu(M) \sum_{d \mid M} \mu(d) \prod_{p \mid e} (p^{2s} - 1) \prod_{p \mid m} p^{2s} \prod_{f \geq 1} p^{2fs} E_{s,m,d}(\mathbb{C}(N/M)Z) + N^2 E_{s,m,N}(Z).
\]
Now we can see the sum of the first and third lines on the RHS is equal to 0 by using the following Claim and get the formula (8).

Claim. We fix natural numbers d, e, m and N such that $de|N$, $(d,m) = 1$ and d is square-free, then we have

$$
\sum_{M \in \mathbb{N}, \, d|N, \, (e,M) = 1} \mu(M) = \begin{cases}
\mu(d) & \text{if } de = N \\
0 & \text{if } de < N
\end{cases}.
$$

Then the assertions for meromorphic continuation and poles are obvious by (8) and induction on N, and the symmetric functional equation follows by specializing (8) to the case $m = 1$ and using the functional equation $E_{s-1}(Z) = E_{s,1}(Z)$ (cf. [K-S, Main Lemma]). We can easily prove the other functional equation from the symmetric one.

By Lemma 3 and 4, we can deduce

Proposition 2 ([H 1, Proposition 1 and the section 4] and [H 3]). All $D_{F,G;M}(s)$'s with $M|N$ have a meromorphic continuation to \mathbb{C}, are entire if $(F, G)_N = 0$ and otherwise has a simple pole at $s = k$ as its only singularity with the residue

$$
\text{Res}_{s=k}D_{F,G;M}(s) = \frac{4^k \pi^{k+2}}{(k-1)!N^k M^2} \prod_{p|N} (1 - \frac{1}{p^2}) (F, G)_N.
$$

Furthermore there exists a functional equation

$$
N^{2(k-s)}D^*_{F,G;N}(2k - 2 - s) = \sum_{M|N} M^{2(s-k+2)} \prod_{p|N/M} (1 - p^{-2(s-k+1)}) D^*_{F,G;M}(s).
$$

Using Proposition 2 and Theorem in the case of $M = N$ we have

Corollary 1. Let $F \in \mathcal{S}_k(N, \chi)$ be a non-zero Hecke eigenform of level N. Suppose that $d_{F,D}(s)$ defined by (5) is not identically zero for some fundamental discriminant D. Then $Z_{F,N}(s)$ has a meromorphic continuation to the whole s-plane, the possible poles of $d_{F,D}(s)Z_{F,N}(s)$ are $s = k$. If $d_{F,D}(k)(F, P_{N,D})_N \neq 0$, then we have

$$
\frac{1}{\pi^{k+2}(F, P_{N,D})_N} \text{Res}_{s=k}Z_{F,N}(s) = \frac{4^k}{(k-1)!N^{k+2} d_{F,D}(k)} \prod_{p|N} \left(1 - \frac{1}{p^2}\right) \in \mathbb{Q}(F, \mathbb{e}(1/h(D))),
$$

where $\mathbb{Q}(F, \mathbb{e}(1/h(D)))$ is the field generated by the Fourier coefficients of F and a primitive $h(D)$-th root of unity over \mathbb{Q}.

Furthermore there exists a functional equation satisfied by the Spinor zeta function $Z_{F,N}(s)$ and the Dirichlet series $D_{F,P_{M,D},M}(s)$'s with $M|N$. Explicitly, it holds

$$
N^{2(k-s)}d_{F,D}(2k - 2 - s)Z^*_{F,N}(2k - 2 - s) = \sum_{M|N} M^{2(s-k+2)} \prod_{p|N/M} \left(1 - p^{2(s-k+1)}\right) D^*_{F,G;M}(s).
$$
Remark. Similar results of Corollary 1 are given in [Ma] by the different method. For principal congruence subgroups. Similar results pf Corollary 1 are reported in [Ev 1, English transl. p.457] (without proof).

Cororally 2. (cf. [Ev 2], [K-S], [O].) Let $F \in S_k(N, \chi)$ be a non-zero Hecke eigenform. Suppose F is in the orthogonal compliment of $\text{Lift}(J_{k,1}^\text{cusp}(N, \chi))$ (the Maass space, see the section 3), then $d_{F,D}(s)Z_{F,N}(s)$ is holomorphic for all s.

References

[Ev 1] S. A. Evdokimov, Euler products for congruence subgroups of the Siegel group of genus 2, Math. Sb. 99 (1976), 483-513; English transl. in Math. USSR-Sb. 28 (1976), No.4, 431-458

[Ev 2] -, A characterization of the Maass space of Siegel cusp forms of second degree, Math. USSR. Sb. 112 (1980), 133-142; English transl. in Math. USSR-Sb. 40 (1981), No.1, 125-133

[H 3] -, Functional equations of Eisenstein series of degree 2, preprint

[R] R. A. Rankin, Contributions to the theory of Ramanujan’s function $\tau(n)$ and similar arithmetical functions I, II, Proc. Cambridge Phil. Soc., 36 (1939), 351-356, 357-372