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A note on the Rankin-Selberg method
for Siegel cusp forms of genus 2
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1 Introduction and Notations

In [K-S] Kohnen and Skoruppa introduced and studied a new type of Dirichlet series, which
is associated with the Fourier-Jacobi expansion of a pair F,G of Siegel cusp forms of the same
weight and genus 2. The proof is based on the Rankin-Selberg method. In particular, it was
shown that this Dirichlet series is equal to the Spinor zeta function attached to F up to constant
on condition that F' is a Hecke eigenform and G is in the “Maass space”

In the present note we extend a part of results in [K-S] to the case of any level. As an
application, we give a new proof of meromorphic coutinuation of the Spinor zeta function
attached to a Siegel cusp form F of any level (on a condition for Fourier coefficients of F), and
find certain functoinal equation satisfied by the Spinor zeta function of any level > 1. We also
prove the Spinor zeta function of F times a simple meromorphic function is entire if F' is not
in a certain Maass space, which was proved in the level 1 case in [Ev 2], [K-S], [O].

We remark that it is relatively easy to study Kohnen-Skoruppa’s Dirichlet series, even in the
case of higher level (or even in the case of half-integral weight), because of its simple integral
representation. '

Notations. We use standard notations, found in [Ei-Z]. We let 'Y := Sp,(Z) be integral
symplectic 2g X 2g-matrices and set

Fg(N):={(é’ g)EI‘g]CEO (modN)},

where A, B,C, D are g X g-matrices. We let T'1:7 (N ) be the semi- dlrect product of I'} (N ) and
Z? (see [Ei-Za, p.9]), which is called the Jacobi group of level N,

Hgy denotes the Siegel upper half space of genus g consisting of complex ¢gxg-matrices with
positive definite imaginary part. We often write

Z:(: f,) EHz,X=Re(Z)=(Z z,),Yr-—hn(Z):(Z i”,)
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We usually set |Y| = detY.
Let k be an even integer > 2. I'? acts on Hs by

A B '
HWZ) = (AZ—+-B)(C’Z+D)—1 (’y= ( c D ) er?, ZEH2> ,
and acts on any function F(Z) on Ha by
Flxy(Z) := det(CZ + D) "*F(v(Z)).

T'LJ(N) acts on any function ¢(7,z) on Hy x C by

1 —cz? at +b 2Xz ar +b z+ Mar +b)
= A2
Plem (7 2) (cT+d)ke(m(CT+d+ c7'+d+c7'+z)) ¢(c7+d’ et +d +,u)

(y = ((Z Z) ,A,p) € TH (), (r,2) € Hy x C),

where m denotes an integer > 0.

We write simply e(x) for exp(27ix).

Definition. Let y be a Dirichlet character modulo N. A Siegel modular form of integral
weight k, level N and character x is a holomorphic function on H3 satisfying

() Fley = x(detD) F (vy = ( g

) € T3(N))

and the vector space of all such functions F is denoted by My(N,x). If F' € My(N, X) satisfies
(ii) ®(Flzy) =0 (Vy € I'?, @ is the Siegel operator, cf. [A, p.75]),

F is called a Siegel cusp form and the vector space of all such functions F is denoted by Sp(N,x).
A Jacobi cusp form ¢ of weight k, level N, character x and index m is a holomorphic function
on Hi X C satisfying

0 by =x@¢ rr=((2 1) um) eI

(i) ¢lkor =2 nrerZ e(D,r)g*¢" (Vy €T, N, is a natural number depending on 7)

D=r2—4mn<0

and the vector space of all such functions ¢ is denoted by J. )P (N, x).

m
The Petersson inner product on these spaces are normalized by

(F,G)y :=/ F(2)G(2) [Y |2 dX dY
TR (V)\Ha

(F,G€Mp(N,x), Z=X~+iY € Hy, One of F,G isin Sk(N,x)),

47rmy2

()N 1=/

TLI(N)\H1 xC

¢(7,2) P(7, 2) vF 3 exp (—- ) du dv dx dy

(qS,z,bEJ,Z:;ip(N,X), T=u+iv € Hy, z=z+iyeC).
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2 Statement of Result

Definition. Take F € Si(N,x), G € My(N,x) and a natural number M which divides N.
For v E I'? = Sp,(Z), we write the Fourier-Jacobi expansions of F ley and G|y by

Flyy = Z ¢n7(r,z)e( ) and Glgy = Zzﬁnﬂ(T,z)e (%—l—) .

n>1 n>1

Then we define a Dirichlet series Dp g p(s) as ((2s — 2k + 4) times

2
/ Z Py (T 2) Yo (7, 2) exP (—m) v* S dudvdady y n*, (1)
n>1 vN

7€F2(N)\1‘2(M)

on the assumption that D 1(s) converges for sufficiently large Re(s), where F is a funda-
mental domain T/ (M)\'H; x C. We define its gamma factor by

Dy u(s) = (20) 7> T(s)T(s — k +2) Dra,m(s).

In a special case of M = N, the Dirichlet series above is an obvious generalization of Rankin’s
Dirichlet series in the case of genus 1 (cf. [R]). In fact, if we write the Fourier-Jacobi expansions
of F and G by

F(Z)= Zgén (r,2)e(nt’) and G(Z) = Z'(/Jn('r, )e(nt’),

n>1 n>1

then

'n>1 n

On the other hand, if F(Z) € Sp(N, x) is a Hecke eigenform with
T(n)F = Ap(n)F

for all the Hecke operators 7'(n) with (n, N) = 1, we can associate with F the Spinor zeta
function Zp(s) which has an Euler product of the form

Zr(s) =[] Qra(x(@)p™) (Re(s)>>0),

p:prime

(.‘P N)=1
_ Qryp(t) == {1 - Ar(p)t + ()\F(P)z — Ar(p?) = x(p*)p*F4)2
— XA r ()3 + x(ph)p )T, @)

see [A, (4.3.35), Proposition 3.3.35, Exercise 3.3.38 and (4.4.21)]. We define its gamma factor
by
Zp(s) = 27) 72T (s)['(s —k+2)Zr(s).

Note that the gamma factor of Dr g a(s) concides with that of Zp(s).
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The modular forms which play an important role in relating (1) to (2) are Poincaré series.
First, for a negative discriminant D = 72 — 4n, we define the D-th Jacobi Poincaré series
Pp n(7,z) of level N and index 1 by

Ak:,DPD,N(T? Z) = Z )_C(’Y)e(n’" + 'I‘Z)|k,1’)’ € qusp(Na X), (3)
7€T1T (00)\I'-/(N)

b
where we write A\ p 1= %F(k*%)(w|l)])“k+3/2, v = ((Z d) Jh#) € I'M/(N) and T (o0) =

+1 b
(( 0 :ﬂ) 707/1‘) C I'"Y(N). Next, we define a Siegel modular form Pp ny(Z) € My(N,x) as

the image of Pp y(7,z) under the Maass lifting (for the definition, see (6) in the section 3).
Now let us state our main result.
Theorem. Let F be a Siegel cusp form in Si(N,x) (k:even integer> 2). For a natural
number M dividing N such that x is defined modulo M, we define a trace of F' by

Tehy (F) = Y Flev(Z) € Sp(M,x).
yel2(N)\I'Z(M)

Suppose that Ted;(F) is a non-zero Hecke eigenform. Then for any negative fundamental dis-
criminant D and a Siegel modular form Pp,u(Z) € Mip(M,x) defined above, we have a relation

Drpp . a(s) = dﬁﬁ(F),D(S)ZTI%(F)(S)' (4)
Here for Tri (F)(Z) = Q>0 A(Q)e(trQZ), by writing the indices of Fourier coefficients by
integral tdeals of some order in quadmtic fields, we define a Dirichlet series

dpy (p),p(8) = — Y A(S)Ng(ek+2) (Re(s) > 0), (5)
‘?IM"

where S runs through all integral ideals of the mazimal order in Q(v/D) such that each of the
prime ideals which divides S also divides M and NS denotes the norm of . This Dirichlet

series is also defined by a following meromorphic function on the whole s-plane:
- ~1 k(D)
() SN
dngy(,0(9) = ForD) Z: H ( otz ) 2 S80AR

where h(D) denotes the class number of Q(\/—E), © runs through all prime ideals dividing M
of the mazimal order in Q(\/ﬁ), {Si}iz1,.n(p) denotes a set of representatives of ideal class
group and & runs through all ideal class characters.
We shall write down our relation (4) in the special case of M = N. Let
F(Z2)=Y AT)e(trTZ) = Y ¢m(7,2)e(m7') € Sp(N,x)
T>0 m>0

be a non-zero Hecke eigenform for all the Hecke operators T'(n) with (n, N) = 1, then for any
negative fundamental discriminant D we have an explicit relation

(dn, PD.N|Vn) w A(S
(o=t +a) Y Pl 5o AR g,
n>1 SN

where V,, denotes the n-th Hecke operator which maps qu P(N,x) to JgP(N, x) (see below).
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3 Proof

The proof proceeds along the lines of the second proof of [K-S], which uses the “Maass lifting”
of Jacobi Poincaré series and “Andrianov’s formula”.

We generalize Maass lifting as follows:

Theorem-Definition ({Saito-Kurokawa-)Maass lifting). (cf. [Ei-Za] and [M-Ra-V]) Let
¢(7,2z) be a Jacobi cusp form of index 1 in Jr1 (N,x). Then we have a lifting map from

cusp(N,X) to My(N,x) via

¢(7,2) = Lift(9) == Y ¢|[Viu(r, 2)e(mr'),

m>1

where Vi, is the m-th Hecke operator which maps J;'*(N) to J;;P(N) and defined by

(@|Vim) (7, 2) 1= m*~1 3 x<a><w+d)-’°e(’mc”‘2)¢("””, i )

b cT +d ct+d et +d
(a )EP})(N)\Mz(Z)
c d

ad—be=m, ¢|N, (a,N)=1
We call this map the Maass lifting. We call the image Lift(J. CusP(N ,X)) the Maass space of level
N and character .
Before the proof, we give a definition.
Definition. We define the Jacobi subgroup of level N of TZ(N) by

a 0 b u

N1 4y & a b
CoaW)i= S | 7B e b, o =0, m(c d)

0 0 0 1

which is a central extension of I'/(N) by Z.
Proof. The proof is a direct generalization of [Ei-Z, Theorem 6.2 and Theorem 4.2]. By
straightforward calculations, we see ¢|V,,, transforms like a Jacobi form of index m. Therefore

S| Vim(7, 2)e(mr')

transforms like a Siegel modular form under the action of C51(N), hence a sum Lift(¢) also
does. '
On the other hand, if we write the Fourier expansion of ¢ by

b2 = S el —dn,r)g"C (g = e(r), ¢ =e(2)),
n,red

'1'2-—4'u<0
then a standard calculation shows

7'2'*' mn T
Hm(r2) = 3 (Z x<>k(—§———)) "¢,

n,reds al(n,r,m)
r2 —dmn<0
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hence we have

Lift($) (T z,) = > ( > x(a)ab e (ii—i‘m, g)) ¢"¢"p™ (p = e(r)).
=7 ( n r/2)>0 al(nrm)
r/2 m

Also we can easily see Lift(¢) is symmetric in n and m, so we deduce that Lift(¢) transforms

like a Siegel modular form with respect to the matrix

0 0

QO M=
o OO =
= =]

0
0
1

<

Therefore Lift(¢) satisfies the transformation law of Siegel modular forms by using Lemma 1
below on generators for T'Z(N).

Remark. We have not succeeded in proving Lift(4) is a cusp form € Si(NN,x) in general.
Lemma 1. T2(N) is generated by C21(N) (the Jacobi subgroup of level N)) and the element

0100
V= 10 00
0 0 01
0010

Proof. Any integral primitive vector X =' (z1,z2,23,24) could be reduced by the left multi-
plication by the element of type

1 0 0 =z
-y 1 z z
M(z,y,z) = Oy 01y
0 0 0 1

to a vector with g.c.d.(z2,z4) = 1. Next using the element of type

,c=0 (mod N),

o O O =
o © 8 <
O = OO
QO o O

we may reduce the primitive vector X with N|z3, x4 to X =! (z1,z9,73,0). Moreover X reduces
to (z1,1,z3,0) by using a matrix of type M(x,y,z), and then by the left multiplication by the
element of type

,c=0 (mod N),

[en RN TN e S S
o O = O
O a o o
—-_- o O O
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X could be reduced to X = (z1,1,0,0) (note that g.c.d.(zy,23) = 1 and N|z3).

For any element v = (X1, X2, X3, X4) € I'3(N), we reduce the 2-th column vector X» to the
form tl(wl,l,O, 0) and multiplying an element VM (z,y,2)V finnaly to (0,1,0,0). It is easily
shown that this type matrix belongs to the parabolic subgroup Cs1(N), so Lemma 1 is proved.

]

We define a Siegel modular form as the Maass lifting of Jacobi Poicaré series defined in (3),
ie. ‘

Pou(Z) :=Lift(Pp ) = Y (Pp,u|Vi) (7, 2)e(m7’) € My(M, x). (6)
m>1

Now, we recall an important property of Jacobi Poincaré series:
Lemma 2. Pp y(1,z) (the D-th Jacobi Poincaré series in J;,ulsP(N,X) defined in (3)) is
characterized by

(¢, Pp,w)nv =c(D,r) (V¢ € TP (N)),
where ¢(D,r) denotes the (D,r)-th Fourier coefficient of ¢, i.e.

Brz)= Y o(D,r)g"(" (g:=e(r),  :=e(2)).
w,red ~

D=r2 —4n<o

(Note that ¢(D,r) depend only on D = r? — 4n and v (mod 2)).

Proof. Tis is proved using the unfolding trick, in the same way of [G-K-Z, p.520].
O

a b/2

with D := b2 — 4ac, we can associate
b/2 ¢ ’

For a half integral symmetric matrix T = (

with T a binary quadratic form
Q(z,y) = [a,b,c|(z,y) = az® + bay + cy”
of discriminant D, and a proper o-ideal of some order o of the quadratic field Q(vD):

—b++/D
+ —%—‘/—z‘

I =aZ

We occasionally write A(Q), A(a,b,c) or A(S) instead of A(T") for Fourier coefficients of Siegel
modular forms.

Proof of Theorem. We put the assumpsion that Dppy, ., 1(s) converges sufficiently large
Re(s) and put forward calculations, and later will remove the assumpsion by the convergence
of Spinor zeta functions. Write the Fourier and the Fourier-Jacobi expansion of Tr}, (F) by

Tr]]g[(F) (Z) = Z A(T)e(trTZ) = Z q;m('r,z) e(m7’)
T>0 m>0

respectively, where 7" runs over all positive definite half integral matrices.
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We recall the definition (6) of the Siegel modular form Pp x(Z) € Mg (N,x). We note that
for any v € ['3(M)

Po,ukv(Z) = Pp,u(Z) = Z Pp 11| Vin (7, 2)e(m7'),

m>0
so in the notations of (2) in Definition
_ {0 n is not divisible by N
¢n,’y PD,MIVm ifn=Nm )

Therefore the Nm-th coefficient of ((2s — 2k + 4) ' Drp, 5, m(s) is equal to

- —4 2
f § , ¢Nm,'y(7a z) ¢Nm,'y('r; z)exp (——ﬂTL—y-) v* 3 dudv dz dy
v

YeLZ(MN\TE(N

= <Z ¢Nm,'y7 PD,Mle>M
Y

We remark that 32, ¢nmy(7,2) = ¢m(T, z) is nothing but the m-th Fourier-Jacobi coefficient
of Tr);(F) and it is a Jacobi form of index m and level M. Hence we can rewrite the above as

(Gm» Pp st [Ven) it = (G| Vi, Pp,aa ) 115

where V : cuSp(J\/I ,X) — ,iufp(M x) denotes the adjoint operator of Vi, Jc“sP(M ,X) —
J cusp( ,x) . Now we must calculate the action of V5 on Fourier coeflicients explicitly.

Proposition 1. Let V : cusP(N xX) — C“sp(N X) be the adjoint operator of Vi,
e (N, x) — Toml (N, x) with respect to the Petersson inner products. Then we have

2 _
Z e(D,r)e (T D’T + rz) [V
4m

D<ol
D=2 (mod 4m)

2 2_p ‘
- X(m/d)d*~? (2D, Zs) e i’ T4+rz).
X d? d 4
D<o,re’Z dim s (mod 2d)
D=r?2 (mod 4) s2=D (mod 4d)

(Here, ¢(D,r) denotes the Fourier coefficient of a Jacobi form of index m and note that c(D,r)
depends only on D and 7 (mod 2m).)

Proof. In our general case (i.e. level N > 1 and with character x), we can proceed along the
same calculation on [K-S, p.554-557].

Using Proposition 1 and the characterization of Pp » in Lemma 2, we have

5 i — - - ~fm (s2=D
<¢m’Vm7PD,M>M - Z X(m/d)dk 2 Z A (_(}- ( 4d 787d>) )

dlm,(m/d,M)=1 s (mod 2d), s2=D(mod 4d)
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where fi(*) denotes the Fourier coefficients of 'I‘rjv,_,(F) Let {Q:}i=1,. 1 be a set of representa-
tives of binary quadratic forms of discriminant 72 — 4n and let

2
n(Qiid) = #{s (mod 20)| * = D (mod 4d), =2, 5,4 ~ 0.}

be the number of s (mod 2d) such that s> = D (mod 4d) and the quadratic form Qz,y) =
524_dD z% + szy + dy? is equivalent to ;. Then we have

(BIV, Poar) e ZZx(m/d)dk 2n(Q,,d>A( )

i=1djm

By [Z, Proposition 3 (i)] we can see

> n(Qin)n™ = (g (s)¢(2s) 7,

n>1
where (g, (s) is the (partial) zeta function of the class of Q; (= the zeta function of the ideal
class of Q(+/D) corresponding in the usual way to the class of Q);), so we obtain

Dppp y,u(s) =N~ Z (Qi(s —k+ 2)RQ1<,T1%(F),M(3)9 (M)

with
Ry, v (py,u(s) == > x()A(nQ)n*
n>1,(n,M)=1
We now recall Andrinov’s formula, which is mentiond in [A, Theorem 4.3.16] in a most
general form. Take any negative fundamental discriminant D and any Hecke eigenform F(Z) =
Y0 A(Q)e(trQZ) € Sp(M, x). Then for any class character ¢ of the class group H (D) and any
completely multiplicative function w on N7 := {n € N|(n, M) = 1}, it holds that

Ae(s) T] (k"“ﬁﬁl‘ﬁfﬁﬁ‘”) ) II QF,p(w(p) )

piprime ideal piprime
(p.M)=1 (2, M)=1
R(D)

w(n)A(nQ;)
=2 Q) Y ———

t=1 nEN(M)

with
h(D)

Agls) = Z §(Qi)A(Q0),
where h = h(D) = §H(D) is the class number of discriminant D. Inve;ting this,

z w(n)A(nQ;)

ns
nEN(M)

[ et teonn 1T (1- g0k

giprime ideal
(p,M)=1 £ s

i

S =
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Instituting this formula for F = Tr};(F), w = ¥ in (7), we have

Z N
Dy aa(s) = 202 Zc s—k+2)Z£(Q)A¢(S) I (1—(*1\755"_—),@).
e de

Zm N _1~
_ Znun(®) ZHGW%%)&@

since, by writing the above Euler product by L(s, ), it holds L(s,&) = L(s,£). We note that

d ‘ f(@) _121
FD ' Ns Z H Nps N o5—k+2 E(S)

is a meromorphic function on the whole s-plane. Expanding the right hand side we get

Z
DF,'PD,M,M('S) TIM(F) ZA Q )Z Z Nc\s“'s k—l—l’

and summing up for £’s, we have the relation (4) and the expression (5).
Now we can remove the assumption on convergence of Dppy, 1, m(s) for sufficiently large

Re(s) by using convergence of Zr(s). This completes the proof of Theorem.

4 Applications

We summarize the known facts about the analytic properties for Dp g m(s)’s.
We define Eisenstain series of Klingen-Siegel type of weight 0 and level N by

. detImv(Z)\*
Bv@= S (o)
~EC 1 (N\TZ(N)

where Cy 1 (N) stands for the Jacobi subgroup of level N (see Definition in the section 3) and
71 denotes the left upper entry of Z € Hs. We define its gamma factor by

e TT (1— L
() = w0z [T (1- =) B,

In this last section, for Siegel modular forms F € Si(N,x),G € Mi(N,x) and a natural
number M dividing N, we put

1 . 1
Drau(s) =[] (1 - m) Dru(s), Digu(s):=]1 (1 - 2—(5:7;;2—)> Drau(s)
plM P oM p
. 1 1 )
Zrn(s) =[] (l e Zp(s), Zpy(s)=]] (1 - W) Zp(s).

pIN pIN

Then Dp g ur(s) has a following integral representation:
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Lemma 3 ([H 1, Lemma 2]). We have

NsD},G;M(S) = 7r_k+2<FEf~k+2;M: Gin.

Also we can prove functional equations of Eisenstein series E; y(Z) for arbitrary level:
Lemma 4. Let N be a natural number. Then, the function E*N(Z) has a meromorphic

continuation to C with possible simple poles at s = 0,2 and satisfies a functional equation

N2-—s S d*CEs , i(2) = Z d*E3 4(Z),
dN v

or equivalently

By on(2) = Z e* [ A -p*"?)E; (2).

e|N p|N/e

Proof. (For details, see [H 3].) We will prove for any natural numbers m and N the formula

NBm(NZ)= 3 I &*-0)]II»* I »**E.ma(2) (8)
(m,N)|d|N eld »ld ;.f+1”dg
(m,N/d)=1 (p,m)=1 plm 71

by induction on N, and later specilize the formula (8) tom =1.
By the reduction method found in [H 1, section 4], we can easily prove

NsEs,m(NZ) = Z M(M) 2 /L(d)(N/M)éEs,l.c.m.(m,d)((N/MV)Z) +N28Es,mN(Z)7
: 1£MIN dM
where p(*) denotes the Mébius function. We note that for a square-free number M with

(m,M)>1
S MDEemma((N/M)Z) = S wld) S () Bamay (N/M)Z) = 0,

d|M dy |M/(m,M) da |(m., M)

then we have

N'Esm(NZ) =~ 3 w(M)} u(d)(N/M)*Eyma((N/M)Z) + N*E, oy (Z).
| 1MV d
(e, M)=1

Now by using the assumption of induction on N, we have

N°E, n(NZ) -
Yoop()Y wd > II e*-vIIr* I »”Eimae(2)
1#M|N d|M (md,N/M)|e|N/M ple »le pf e
(e, M)=1 S (md,N/(Me))=1 (p,md)=1 plmd 1
+N%E, mn(Z)
}: p(M) Z p(d Z H p2s H pzfsEs mde(Z)
M|N dlM (m,tI N/M)|e{N/M ple 1f+1”(,
(m,M)=1 (med, N/(Me)) 1 plmd >
+ > I &*-0]Ir* II r¥Eime(2)
(m,N)|eI]N  ple ple pf+1jje
(m,N/e)=1 (p,m)=1 pim 21

+N*E; mn(2).
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Now we can see the sum of the first and third lines on the RHS is equal to 0 by using the
following Claim and get the formula (8).

Claim. We fiz natural numbers d, e, m and N such that de|N, (d,m) =1 and d is square-
free, then we have

_[p(d) ifde=N
2 “(M)”{o ifde < N

MeN, d|M|N, (m,M)=1
(md,N/M)|e|N/M, (md,N/(Me))=1
Then the assertions for meromorphic continuation and poles are obvious by (8) and induction
on N, and the symmetric functional equation follows by specilizing (8) to the case m =1 and
using the functional equation E§_371(Z) = E}(Z) (cf. [K-S, Main Lemmal). We can easily
prove the other functional equation from the symmetic one.

a

By Lemma 3 and 4, we can deduce

Proposition 2 ([H 1, Proposition 1 and the section 4] and [H 3}). All Dr,g;m(s)’s with M|N
have a meromorphic continuation to C, are entire if (F,G)ny = 0 and otherwise has a simple
pole at s = k as its only singularity with the residue

AR k42 1
Res—kDrain(s) = —yieaze 11 (1 - p—2> (F,G)x-
) pIM

Furthermore there exists a functional equation

N2 Dt o2k =2 — ) = S MAeHD T (1 p2eH40) D g ().
M|N p|N/M

Using Proposition 2 and Theorem in the case of M = N we have
Cororally 1. Let F € Sp(N,x) be a non-zero Hecke eigenformof level N. Suppose that
drp(s) defined by (5) is not identically zero for some fundamental discriminant D. Then
Zp.n(5) has a meromorphic continuation to the whole s-plane, the possible poles of dp.p(s)Zr;n(s)
are s = k. If dp p(k){(F,Pn,p) y # 0, then we have
1 4k

1
T Py ) ek I ) = G N o () }‘:\[f (1 - ;‘2‘) € Q(F, e(1/R(D))),

where Q(F,e(1/h(D))) is the field generated by the Fourier coefficients of F and a primitive
h(D)-th root of unity over Q.

Furtnhermore there ezists o functional equation satisfied by the Spinor zeta function Zp.n(s)
and the Dirichlet series Dpp,, o a(s)’s with M|N. Ezplcitly, it holds

N2k=3) g p(2k — 2 — ) 23y (2k — 2 — 5)

N2+ dpp (5) Zpr() + 3 MHH T (1= pC7H0) Do (5)

M|N N
e pIN/M
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Remark. Similar results of Corollay 1 are given in [Ma] by the different method. For principal
congruence subgroups. Similar results pf Corollary 1 are reported in [Ev 1, English transl.
p-457] (without proof). '

Cofprally 2. (cf. [Ev 2], [K-S], [O].) Let F € Sp(N,x) be a non-zero Hecke eigenform.
Suppose F is in the orthogonal compliment of Lift(Jz:lfp(

N,x)) (the Maass space, see the section
3), then dp p(s)Zp.n(s) is holomorphic for all s. '

0
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