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1 Complex hyperbolic spaces

We begin with a brief review of the geometry of complex hyperbolic spaces, which

provides us the prototype of the manifolds we are going to study. For details a good

reference is Chen and Greenberg [2].

Let $\mathrm{C}H^{n}$ denote the complex hyperbolic $n$-space, which is defined to be the unit
ball $B^{n}=\{z\in \mathrm{C}^{n}||z|<1\}$ with the Bergman metric $g_{B}$ . It is well-known that

the group $SU(1, n)$ acts transitively on $\mathrm{C}H^{n}$ as isometries, which are linear fractional
transformations on $B^{n}$ preserving $g_{B}$ . The isotropy subgroup $K$ at a point $p\in \mathrm{C}H^{n}$ is

isomorphic to $U(n)$ and is a maximal compact subgroup in an Iwasawa decomposition

of $SU(1, n)$ . In fact, this decomposition is given as $SU(1, n)=N\cdot A\cdot K$ , where $N$

is a 2-step nilpotent subgroup, called the Heisenberg group, and $A$ is a l-dimensional
abelian subgroup. If we set $S=N\cdot A$ , which is a solvable subgroup of $SU(1, n)$ , then $S$

acts simply transitively on $\mathrm{C}H^{n}$ . Consequently, we can identify $\mathrm{C}H^{n}$ with a solvable
Lie group $S$ with aleft invariant metric $\langle$ , $\rangle$ . Moreover, it is known that the Heisenberg
group $N$ acts on the boundary sphere $S^{2n-1}$ of $B^{n}$ , which is the set of points at infinity

of $\mathrm{C}H^{n}$ , transitively except a point.

Summing up, we have the following

Fact 1 (1) The complex hyperbolic $n$ -space $\mathrm{C}H^{n}$ has a structure of a solvable Lie group
$S$ and its Bergman metric $g_{B}$ is identified with a lefl invariant metri$c\langle, \rangle$ on $S$ .
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(2) The set of points at infinity $S^{2n-1}$ of $\mathrm{C}H^{n}$ is identified with the one-point com-

pactification of the Heisenberg group $N$ , which is the nilpotent part of $S$ .

2 Homogeneous manifolds of negative curvature

Now, let $M=(M^{n}, g)$ be a Hadamard $n$-manifold, that is, a complete, simply con-

nected Riemannian $n$-manifold of nonpositive curvature. It is well-known that $M$ is

diffeomorphic to the Euclidean $n$-space $\mathrm{R}^{n}$ and we can define a point at infinity of $M$

to be an asymptote class of geodesic rays in $M$ . Let $M(\infty)$ denote the set of points at

infinity of $M$ . Then we know that with a suitable topology, called the cone topology,

$M(\infty)$ is homeomorphic to the $(n-1)$-sphere $S^{n-1}$ and by attaching $M(\infty)$ to $M$ we

get a natural compactification $\overline{M}=M\cup M(\infty)$ , which is homeomorphic to the closed

n-ball $\overline{B^{n}}$. See [5] for details.

Suppose now that $M$ is homogeneous, that is, the isometry group Isom$(M)$ acts

transitively on $M$ . Then, by a result of Wolf [9] and Heintze [6], it is known that there

is a solvable subgroup $S$ of $\mathrm{I}\mathrm{s}\mathrm{o}\mathrm{m}_{0}(M)$ , the identity component of Isom$(M)$ , which acts

simply transitively on $M$ . Therefore we can identify $M$ with a solvable Lie group $S$

with a left invariant metric $\langle$ , $\rangle$ . Moreover, if we assume $M$ is of strictly negative

curvature $K<0$ , then it follows that $S$ is a one-dimensional solvable extension of a

nilpotent Lie group.

In fact, let $\mathrm{s}$ denote the Lie algebra of $S$ and $\mathrm{n}=[\mathrm{s}, \mathrm{s}]$ be its derived algebra. Then,

since $\mathrm{s}$ is solvable, $\mathrm{n}$ is a nilpotent subalgebra of $\mathrm{s}$ , and the curvature condition $K<0$

implies that the orthogonal complement $\mathrm{n}^{\perp}$ of $\mathrm{n}$ is one-dimensional, that is, $\mathrm{n}^{\perp}=$

$\mathrm{R}\{H\}$ with a choice of a generator $H$ . Corresponding to the direct sum decomposition

$\mathrm{s}=\mathrm{n}+\mathrm{R}\{H\},$ $S$ is decomposed as a semidirect product $S=N\cdot \mathrm{R}$ of the nilpotent

subgroup $N$ with Lie algebra $\mathrm{n}$ and the real line R. Thus $S$ is diffeomorphic to the

product manifold $N\cross \mathrm{R}$ , and by identifying $(n, s)\in N\cross \mathrm{R}$ with $(n, y=e^{s})\in N\mathrm{x}\mathrm{R}_{+}$

we get a generalized Cayley transform

$\Psi$ : $N\cross \mathrm{R}_{+}arrow S$,

identifying $S$ with the half space $N\cross \mathrm{R}_{+}$ , the product manifold of $N$ with the positive
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half line $\mathrm{R}_{+}$ . Moreover, under this identification, it is known that the set of points

at infinity $M(\infty)$ of $M$ naturally corresponds to $N\mathrm{x}\{0\}$ except a point defined by

asymptotic geodesic rays in the $\mathrm{R}_{+}$ direction.

The most typical examples of homogeneous manifolds of strict negative curvature

are the rank one Riemannian symmetric spaces of noncompact type, that is, real,

complex or quaternion hyperbolic spaces and the Cayley hyperbolic plane. For these

manifolds the nilpotent group $N$ in the above description is in fact a 2-step nilpotent

Lie group. Namely, the Lie algebra $\mathrm{n}$ of $N$ satisfies $[\mathrm{n}, [\mathrm{n}, \mathrm{n}]]=\{0\}$, and hence is

decomposed as $\mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}$ , where $\mathrm{n}_{2}=[\mathrm{n}, \mathrm{n}]$ and $[\mathrm{n}_{1}, \mathrm{n}_{2}]=\{0\}$ . Moreover, with a

suitable choice of the generator $H$ for $\mathrm{n}^{\perp}$ , we see that $\mathrm{n}_{1}$ and $\mathrm{n}_{2}$ are the eigenspaces

of the adjoint representation ad$H$ on $\mathrm{n}$ with eigenvalues 1 and 2, respectively:

$\mathrm{n}_{i}=$ { $X\in \mathrm{n}|$ ad$H(X)=iX$ }, $i=1,2$ .

For details, we refer the reader to [6].

Summing up these, we obtain

Fact 2 (1) Each homogeneous Hadamard manifold $M=(M^{n}, g)$ has a structure of a

solvable Lie group $S$ and $g$ is identified with a left invariant metric $\langle$ , $\rangle$ .
(2) If $M$ is of strictly negative curvature, then $S$ is decomposed as a semidirect

product $S=N\cdot \mathrm{R}$ of a nilpotent subgroup $N$ and the real line R.

Moreover, $M$ is realized as a half space $N\cross \mathrm{R}_{+^{un}}der$ a generalized Cayley transform
$\Psi$ : $N\cross \mathrm{R}_{+}arrow S$ , and the set of points at infinity $M(\infty)$ of $M$ is identified with the

one-point compactification of $N$ .

(3) If $M$ is, in particular, a rank.one Riemannian symmetric space of noncompact

type, then $Ni\mathit{8}$ a 2-step nilpotent Lie group, and the Lie algebra $\mathrm{s}$ of $S$ has an orthogonal

decomposition

$\mathrm{s}=\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{R}\{H\}$ ,

where $\mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}$ is the Lie algebra of $N$ and

$\mathrm{n}_{i}=$ { $X\in \mathrm{n}|$ ad$H(X)=iX$ }, $i=1,2$

with a suitable choice of $H$ .
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Remark 1 (1) In this context, real hyperbolic spaces $\mathrm{R}H^{n}$ are exceptional in the

sense that $\mathrm{n}$ is abelian, that is, $\mathrm{n}=\mathrm{n}_{1}$ and $\mathrm{n}_{2}=\{0\}$ .

(2) In the case of complex hyperbolic spaces $\mathrm{C}H^{n}=(B^{n}, g_{B})$ , we see that the de-

composition $\mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}$ corresponds to the natural contact structure on the boundary

sphere $S^{2n-1}$ . In fact, if we identify $S^{2n-1}$ with the one-point compactification of the

Heisenberg group $N$ as in Fact 1, and take the Hopf fibration $S^{2n-1}arrow \mathrm{C}P^{n-1}$ of $S^{2n-1}$

over the complex projective $(n-1)$-space $\mathrm{C}P^{n-1}$ , then, under left translations by $N$ ,

$\mathrm{n}_{1}$ defines the horizontal subspace at each tangent space of $S^{2n-1}$ and $\mathrm{n}_{2}$ corresponds

to the vertical subspace along the fibre.

(3) By a theorem of Kobayashi [7], every connected homogeneous Riemannian man-

ifold of strictly negative curvature is simply connected.

3 Carnot spaces

Motivated by the observations in the previous sections, we now consider a more general

class of homogeneous Riemannian manifolds of negative curvature which arises as a one-

dimensional solvable extension of certain $k$-step nilpotent Lie groups, called Carnot

groups ([8]).

More precisely, let $S$ be a simply connected solvable Lie group satisfying the fol-

lowing conditions:

1. $S$ is a semidirect product of a nilpotent Lie group $N$ and the real line R.

2. If $\mathrm{n}$ and $\mathrm{s}=\mathrm{n}+\mathrm{R}\{H\}$ denote the Lie algebras of $N$ and $S$ respectively, then $\mathrm{n}$

has a decomposition $\mathrm{n}=\sum_{i=1}^{k}\mathrm{n}_{i}$ into $k$-subspaces given by

$\mathrm{n}_{i}=$ { $X\in \mathrm{n}|$ ad$H(X)=iX$ }, $i=1,$ $\ldots,$
$k$ .

It is easy to see that, since ad$H$ is a Lie algebra homomorphism, the above decom-

position of $\mathrm{n}$ defines a graded Lie algebra structure of $\mathrm{n}$ , that is, $[\mathrm{n}_{\dot{x}}, \mathrm{n}_{j}]\subseteq \mathrm{n}_{i+j}$ with

the convention $\mathrm{n}_{i}=\{0\}$ for $i>k$ . Also, it follows from a result of Heintze [6] that $S$

admits a left invariant metric $g$ of strictly negative curvature.
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Definition 1 We call a homogenous Riemannian manifold $M=(S, g)$ of negative

curvature obtained as above a $k$-term Carnot space.

For example, real hyperbolic spaces are 1-term Carnot spaces, and complex or
quaternion hyperbolic spaces and the Cayley hyperbolic plane are 2-term Carnot

spaces.

Now, let $M=(S, g)$ be a $k$-term Carnot space. Then, as seen in Fact 2, via

a generalized Cayley transform $\Psi$ : $N\cross \mathrm{R}_{+}arrow S$ mapping $(n, y)\in N\mathrm{x}\mathrm{R}_{+}$ to

$n\cdot\exp_{S}H\in S=N\cdot \mathrm{R}$ , where $s=\log y,$ $M$ is realized as a half space $N\cross \mathrm{R}_{+}$ . This

half space model of $M$ clearly describes how fast the metric $g$ blows up at infinity. In

fact, we have the following proposition.

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{p}_{0}\mathrm{s}\mathrm{i}\dot{\mathrm{t}}\mathrm{i}\mathrm{o}\mathrm{n}1(1)$ On $N\cross \mathrm{R}_{+}$ the metric $g$ is written as a $k$ -ply warped product

metric

$\Psi^{*}g=\frac{1}{y^{2}}g\mathrm{n}_{1}+\frac{1}{y^{4}}g\mathrm{n}2^{+}\ldots+\frac{1}{y^{2k}}g_{\mathrm{n}_{k^{+\frac{dy^{2}}{y^{2}}}}}$ ,

where $g_{\mathrm{n}_{1}}+g_{\mathrm{n}_{2}}+\ldots+g_{\mathrm{n}_{k}}$ is a left invariant metric on $N$ and $y$ is the coordinate on
$\mathrm{R}_{+}$ .

(2) $\mathrm{R}_{+}directi_{\mathit{0}}ns(n=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}, y)$ define asymptotic geodesics of $M$ and hence give

rise to a point at infinity $\infty\in M(\infty)$ . Moreover, $M(\infty)\backslash \{\infty\}$ is naturally identified
with $N\cross\{0\}$ .

Since asymptote classes of geodesic rays are preserved under isometries, the isometry

group Isom$(M)$ of $M$ acts also on $M(\infty)$ . Concerning this extended action of Isom$(M)$ ,

we have the following fact obtained by a combination of results due to Chen [1] and

Druetta [4].

Fact 3 (1) If $M$ is a rank one symmetric space of noncompact type, then Isom$(M)$

has no common fixed point in $M(\infty)$ .

(2) If $M$ is non-symmetric, then isom$(M)$ has a unique common fixed point $\gamma(\infty)\in$

$M(\infty)$ , and for any $p\neq\gamma(\infty)$ in $M(\infty)$ , under the left $tranSlation\mathit{8}$ by $N$ as isometries,

the orbit $N(p)$ of $p$ coincides with $M(\infty)\backslash \{\gamma(\infty)\}$ .
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As a consequence, if $M$ is symmetric, then, via generalized Cayley transforms, half

space models $N\cross \mathrm{R}_{+}$ of $M$ provide local coordinate charts at the boundary $M(\infty)$

of the $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\overline{M}=M\cup M(\infty)$ so that $\overline{M}$ admits a structure of a smooth

manifold with boundary. On the other hand, if $M$ is non-symmetric, then we have a

unique half space model $\Psi$ : $N\cross \mathrm{R}_{+}arrow S$ of $M$ .

4 Harmonic maps

Let $M=(M, g)$ and $M’=(M’, g’)$ be Riemannian manifolds and $u:Marrow M’$ a $C^{\infty}$

map from $M$ to $M’$ . Then the differential $du$ is a section of $T^{*}M\otimes u^{-1}TM’$ , the tensor

product of the cotangent bundle $T^{*}M$ of $M$ and the induced bundle $u^{-1}TM’$ obtained

from the tangent bundle $TM’$ of $M’$ by $u$ , and the Levi-Civita connections of $M$ and

$M’$ define a natural connection $\nabla$ on $T^{*}M\otimes u^{-1}TM’$ . So we have $\nabla du$ as a section

of $T^{*}M\otimes T^{*}M\otimes u^{-1}TM’$ and, taking the trace in the first two factors, we get the

tension field $\tau(u)=\mathrm{T}\mathrm{r}(\nabla du)$ of $u$ , which is a section of $u^{-1}TM’$ . We call $u$ a harrnonic

map if its tension field $\tau(u)$ vanishes identically.

From now on, let $M=(N\cdot \mathrm{R}, g)$ and $M’=(N’\cdot \mathrm{R}, g’)$ be $k$-term Carnot spaces

with $k\geq 2$ . Recall that the Lie algebras $\mathrm{n}$ and $\mathrm{n}’$ of $N$ and $N’$ have decompositions

$\mathrm{n}=\sum_{i=1}^{k}\mathrm{n}_{i}$ and $\mathrm{n}’=\sum_{i=1}^{k}\mathrm{n}_{i}$
’ as graded Lie algebras, respectively. Moreover, as

in Proposition 1, when identifying $M(\infty)\backslash \{\infty\}$ with $N\mathrm{x}\{0\}$ and $M’(\infty)\backslash \mathrm{t}\infty’\}$

with $N’\mathrm{x}\{0\}$ , each subspace $\mathrm{n}_{i}$ and $\mathrm{n}_{i}’$ define, under left translations by $N$ and $N’$

respectively, distributions on the boundaries $M(\infty)$ and $M’(\infty)$ , which we denote also

by $\mathrm{n}$ and $\mathrm{n}’$ .
Now, let $u:Marrow M’$ be a proper $C^{\infty}$ map from $M$ to $M’$ , and $V$ be a neighborhood

of some boundary point $p\in N\cross\{0\}$ . Suppose that $u$ extends to a $C^{k}$ map from $V\cap\overline{M}$

into $\overline{M’}$ , and denote the boundary value of $u$ by $f$ : $V\cap(N\cross\{0\})arrow N’\cross\{0\}$ . We

say that $f$ is nondegenerate if it satisfies

$df_{p}(( \mathrm{n}_{k})_{p})\not\subset\sum_{j=1}^{k1}-(\mathrm{n}_{j})_{f}’(\mathrm{P})$

at any $p\in V\cap(N\cross\{0\})$ . Then we have the following
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Theorem 1 Suppose that $u\in C^{\infty}(V\cap M, M’)\cap C^{k}(V\cap\overline{M},\overline{M’})$ be a harmonic map

with nondegenerate boundary value $f\in C^{k}(V\cap(N\cross\{0\}), N^{\prime_{\mathrm{X}}}\{0\})$ . Then $f$ must

satisfy for each $1\leq i\leq k$

$df_{p}( \sum_{j=1}^{i}(\mathrm{n}j)p)\subset\sum_{j=1}^{i}(\mathrm{n}_{j})_{f}’(p)$

for any $p\in V\cap(N\cross\{0\})$ .

Theorem 1 claims that nondegenerate boundary values of proper harmonic maps

between $k$-term Carnot spaces, having sufficient regularity up to the boundary, preserve

the filtrations on the boundaries defined by distributions $\mathrm{n}_{i}$ and n\’i. In fact, under

the assumption of Theorem 1, we can inductively deduce the asymptotic behavior of

derivatives, in the $\mathrm{R}_{+}$ direction, of $u$ near the boundary. The details will appear

elsewhere.

Remark 2 When $k=2$ , the conclusion of Theorem 1 $\mathit{8}imply$ means that $df_{p}((\mathrm{n}_{1})_{p})\subset$

$(\mathrm{n}_{2}’)_{j}(p)$ for any $p\in V\cap(N\cross\{0\})$ . This result has been proved by Donnelly in [3]

under a weaker condition that $u\in C^{\infty}(V\cap M, M’)\cap C^{1}(V\cap\overline{M},\overline{M’})$ and without the

nondegeneracy of $f$ .
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