<table>
<thead>
<tr>
<th>Title</th>
<th>GENERALIZED ISOMETRIC SPHERES OF ELEMENTS OF $PU(1,n;\mathbb{C})$ (Hyperbolic Spaces and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kamiya, Shigeyasu</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1999.07.1104: 133-136</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63216</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
GENERALIZED ISOMETRIC SPHERES OF ELEMENTS OF $PU(1,n;\mathbb{C})$

SHIGEYASU KAMIYA

神谷 茂保（岡山理大 工）

Let G be a discrete subgroup of $PU(1,n;\mathbb{C})$. For a boundary point y of the Siegel domain, we define the generalized isometric sphere $I_{y}(f)$ of an element f of $PU(1,n;\mathbb{C})$. By using the generalized isometric spheres of elements of G, we construct a fundamental domain $P_{y}(G)$ for G, which is regarded as a generalization of the Ford domain. And we show that the Dirichlet polyhedron $D(w)$ for G with center w converges to $P_{y}(G)$ as $w \to y$.

1. First let us recall some definitions and notation. Let \mathbb{C} be the field of complex numbers. Let $V = V^{1,n}(\mathbb{C})$ denote the vector space \mathbb{C}^{n+1}, together with the unitary structure defined by the Hermitian form

$$\tilde{\Phi}(z^{*}, w^{*}) = -(z_{0}^{*}w_{1}^{*} + \overline{z_{1}w_{0}^{*}}) + \sum_{j=2}^{n} \overline{z_{j}w_{j}^{*}}$$

for $z^{*} = (z_{0}^{*}, z_{1}^{*}, z_{2}^{*}, \ldots, z_{n}^{*}), w^{*} = (w_{0}^{*}, w_{1}^{*}, w_{2}^{*}, \ldots, w_{n}^{*})$ in V. An automorphism g of V, that is a linear bijection such that $\tilde{\Phi}(g(z^{*}), g(w^{*})) = \tilde{\Phi}(z^{*}, w^{*})$ for z^{*}, w^{*} in V, will be called a unitary transformation. We denote the group of all unitary transformations by $U(1,n;\mathbb{C})$. Set $PU(1,n;\mathbb{C}) = U(1,n;\mathbb{C})/(\text{center})$. Let $V_{0} = \{w^{*} \in V | \tilde{\Phi}(w^{*}, w^{*}) = 0\}$ and $V_{-} = \{w^{*} \in V | \tilde{\Phi}(w^{*}, w^{*}) < 0\}$. It is clear that V_{0} and V_{-} are invariant under $U(1,n;\mathbb{C})$. Set $V^{*} = V_{-} \cup V_{0} - \{0\}$. Let $\pi : V^{*} \longrightarrow \pi(V^{*})$ be the projection map defined by $\pi(w_{0}^{*}, w_{1}^{*}, w_{2}^{*}, \ldots, w_{n}^{*}) = (w_{1}, w_{2}, \ldots, w_{n})$, where $w_{j} = w_{j}^{*}/w_{0}^{*}$ for $j = 1, 2, \ldots, n$. We write ∞ for $\pi(0,1,0,\ldots,0)$. We may identify $\pi(V_{-})$ with the Siegel domain

$$H^{n} = \{w = (w_{1}, w_{2}, \ldots, w_{n}) \in \mathbb{C}^{n} | \text{Re}(w_{1}) > \frac{1}{2} \sum_{j=2}^{n} |w_{j}|^{2}\}.$$

An element g in $PU(1,n;\mathbb{C})$ acts on the Siegel domain H^{n} and its boundary ∂H^{n}. In H^{n}, we can introduce the hyperbolic metric d (see [3] and [6]). An element of $PU(1,n;\mathbb{C})$ is an isometry of H^{n} with respect to d. Denote $H^{n} \cup \partial H^{n}$ by $\overline{H^{n}}$. The H-coordinates of a point $(w_{1}, w_{2}, \ldots, w_{n}) \in \overline{H^{n}} - \{\infty\}$ are defined by $(k, t, w')_{H} \in (\mathbb{R}^{+} \cup \{0\}) \times \mathbb{R} \times \mathbb{C}^{n-1}$ such that $k = \text{Re}(w_{1}) - \frac{1}{2} \sum_{j=2}^{n} |w_{j}|^{2}, t = \text{Im}(w_{1})$ and $w' = (w_{2}, \ldots, w_{n})$. The Cygan metric $\rho(p, q)$ for $p = (k_{1}, t_{1}, w')_{H}$ and $q = (k_{2}, t_{2}, w'')_{H}$ is given by

$$\rho(p, q) = \left\{ \frac{1}{2} ||w'' - w'||^{2} + |k_{2} - k_{1}| + i(t_{1} - t_{2} + \text{Im}(\overline{w'}w'')) \right\}^{\frac{1}{2}},$$

where $\overline{w'}w'' = \sum_{j=2}^{n} \overline{w_{j}}w_{j}$.
Let $f = (a_{ij})_{1 \leq i,j \leq n+1} \in PU(1, n; \mathbb{C})$ with $f(\infty) \neq \infty$. We define the isometric sphere $I(f)$ of f by

$$I(f) = \{ w = (w_1, w_2, \ldots, w_n) \in \overline{H^n} \mid |\tilde{\Phi}(W, Q)| = |\tilde{\Phi}(W, f^{-1}(Q))| \},$$

where $Q = (0,1,0,\ldots,0)$, $W = (1, w_1, w_2, \ldots, w_n)$ in V^* (see [5]). It follows that the isometric sphere $I(f)$ is the sphere in the Cygan metric with center $f^{-1}(\infty)$ and radius $R_f = \frac{1}{|a_{12}|}$, that is,

$$I(f) = \left\{ w = (k, t, w) \in (\mathbb{R}^+ \cup \{0\}) \times \mathbb{R} \times \mathbb{C}^{n-1} \mid \rho(w, f^{-1}(\infty)) = \sqrt{\frac{1}{|a_{12}|}} \right\}.$$

Fix $y \in \partial H^n$ such that $f(y) \neq y$. Let γ be an element of $PU(1, n; \mathbb{C})$ with $\gamma(y) = \infty$. We define the generalized isometric sphere $I_y(f)$ at y of f as

$$I_y(f) = \gamma^{-1}(I_{\gamma f \gamma^{-1}}) = \{ z \in \overline{H^n} \mid \rho(\gamma(z), \gamma f^{-1} \gamma^{-1}(\infty)) = R_{\gamma f \gamma^{-1}} \}$$

(see [1]). Note that if $y = \infty$, then $I_\infty(f)$ is the usual isometric sphere $I(f)$. The definition above does not depend on the choice of the element γ such that $\gamma(y) = \infty$.

Unless otherwise stated, we shall always take f, g, ... to be elements of $PU(1, n; \mathbb{C})$ fixing neither y nor ∞. Set

$$\alpha_y(f, z) = \frac{R_f \rho(y, z)}{\rho(z, f^{-1}(y)) \rho(y, f(\infty))}.$$

We can write $I_y(f)$ as

$$I_y(f) = \{ z \in \overline{H^n} \mid \alpha_y(f, z) = 1 \}.$$

Put

$$Ext \ I_y(f) = \{ z \in \overline{H^n} \mid \alpha_y(f, z) < 1 \},$$

$$Int \ I_y(f) = \{ z \in \overline{H^n} \mid \alpha_y(f, z) > 1 \},$$

respectively.

Just as in the case of isometric spheres, we have

Proposition 1.1.

1. $I_{f(y)}(f) = f(I_y(f)) = I_y(f^{-1})$;
2. $f(Ext \ I_y(f)) \subset Int \ I_y(f^{-1})$;
3. $f(Int \ I_y(f)) \subset Ext \ I_y(f^{-1})$.

Next we consider the location of fixed points of elements.

Proposition 1.2. Let f be an element of $PU(1, n; \mathbb{C})$ with fixed point x. If f is elliptic or parabolic, then x lies on the isometric sphere $I(f^{-1})$ of f^{-1}. If f is loxodromic, then $I(f^{-1})$ does not contain x.
Replacing isometric spheres by generalized isometric spheres leads to the same conclusion as in Proposition 1.2.

Proposition 1.3. Let \(f \) be an element of \(\text{PU}(1,n;\mathbb{C}) \) with fixed point \(x \). If \(f \) is elliptic or parabolic, then \(x \) lies on \(I_y(f) \). If \(f \) is loxodromic, then \(I_y(f) \) does not contain \(x \).

2. Let \(z_1, z_2 \) be two different points in \(H^n \). Let \(E(z_1, z_2) \) be the bisector of \(\{z_1, z_2\} \), that is,

\[
E(z_1, z_2) = \{w \in H^n \mid d(z_1, w) = d(z_2, w)\}
\]

(see [5] for details). Let \(G \) be a discrete subgroup of \(\text{PU}(1,n;\mathbb{C}) \) and let \(w \) be any point of \(H^n \) that is not fixed by any element of \(G \) except the identity. The Dirichlet polyhedron \(D(w) \) for \(G \) with center \(w \) is defined by

\[
D(w) = \bigcap_{g \in G \setminus \{\text{id}\}} H_g(w),
\]

where \(H_g(w) = \{z \in H^n \mid d(z, w) < d(z, g(w))\} \). We observe that

1. \(D(w) \) is not necessarily convex,
2. \(D(w) \) is star-shaped about \(w \),
3. \(D(w) \) is locally finite

(see [2], [4], [11] and [12]).

Let \(\Omega(G) \) be the ordinary set of \(G \). Assume that \(\infty \in \Omega(G) \) and its stability subgroup \(G_{\infty} = \{\text{identity}\} \). Then there is a positive constant \(M \) such that \(\rho(0, g(\infty)) \leq M \) for any element \(g \) of \(G \). The same argument as in [4] leads to the following results.

1. The radii of isometric spheres are bounded above.
2. The number of isometric spheres with radii exceeding a given positive quantity is finite.
3. Given any infinite sequence of distinct isometric spheres of elements of \(G \), the radii being \(R_{g_1}, R_{g_2}, \ldots \), then \(\lim_{m \to \infty} R_{g_m} = 0 \).

We show that the generalized isometric sphere \(I_y(f) \) is closely related to the bisector \(E(z, f^{-1}(z)) \).

Proposition 2.1. If \(z \in H^n \) converges to \(y \in \partial H^n \), then \(E(z, f^{-1}(z)) \) converges to \(I_y(f) \).

By using generalized isometric spheres, we can construct a fundamental domain.

Theorem 2.2. Let \(G \) be a discrete subgroup of \(\text{PU}(1,n;\mathbb{C}) \). Let \(\infty \) be a point of \(\Omega(G) \) and let \(G_{\infty} = \{\text{identity}\} \). Suppose that \(y \) is a point of \(\Omega(G) \cap \partial H^n \) and that \(G_y \) consists only of the identity. Then

\[
P_y(G) = \bigcap_{f \in G \setminus \{\text{id}\}} \text{Ext} I_y(f)
\]
is a fundamental domain for G.

By Proposition 2.1 and Theorem 2.2, we obtain

Theorem 2.3. Let G be a discrete subgroup of $PU(1,n; C)$. Let $z \in H^n$ and let $y \in \partial H^n \cap \Omega(G)$. Then $D(z) \rightarrow P_y(G)$ as $z \rightarrow y$.

From the manner of constructing $P_y(G)$, we have

Corollary 2.4. The fundamental domain $P_y(G)$ is locally finite.

References

9. S. Kamiya, On discrete subgroups of $PU(1,2; C)$ with Heisenberg translations, (to appear)
10. S. Kamiya, Generalized isometric spheres and fundamental domains for discrete subgroups of $PU(1,n; C)$, (to appear)

Okayama University of Science
1-1 Ridai-cho, Okayama 700-0005 JAPAN
e-mail:kamiya@mech.ous.ac.jp