GENERALIZED ISOMETRIC SPHERES OF ELEMENTS OF $PU(1, n; \mathbf{C})$

SHIGEYASU KAMIYA

神谷 茂保(岡山理大 工)

Let G be a discrete subgroup of $PU(1, n; \mathbb{C})$. For a boundary point y of the Siegel domain, we define the generalized isometric sphere $I_y(f)$ of an element f of $PU(1, n; \mathbb{C})$. By using the generalized isometric spheres of elements of G, we construct a fundamental domain $P_y(G)$ for G, which is regarded as a generalization of the Ford domain. And we show that the Dirichlet polyhedron D(w) for G with center w converges to $P_y(G)$ as $w \to y$.

1. First let us recall some definitions and notation. Let C be the field of complex numbers. Let $V = V^{1,n}(\mathbf{C})$ denote the vector space \mathbf{C}^{n+1} , together with the unitary structure defined by the Hermitian form

$$\widetilde{\Phi}(z^*, w^*) = -(\overline{z_0^*}w_1^* + \overline{z_1^*}w_0^*) + \sum_{j=2}^n \overline{z_j^*}w_j^*$$

for $z^* = (z_0^*, z_1^*, z_2^*, ..., z_n^*), w^* = (w_0^*, w_1^*, w_2^*, ..., w_n^*)$ in V. An automorphism g of V, that is a linear bijection such that $\widetilde{\Phi}(g(z^*), g(w^*)) = \widetilde{\Phi}(z^*, w^*)$ for z^*, w^* in V, will be called a unitary transformation. We denote the group of all unitary transformations by $U(1, n; \mathbf{C})$. Set $PU(1, n; \mathbf{C}) = U(1, n; \mathbf{C})/(center)$. Let $V_0 = \{w^* \in V \mid \widetilde{\Phi}(w^*, w^*) = 0\}$ and $V_- = \{w^* \in V \mid \widetilde{\Phi}(w^*, w^*) < 0\}$. It is clear that V_0 and V_- are invariant under $U(1, n; \mathbf{C})$. Set $V^* = V_- \cup V_0 - \{0\}$. Let $\pi: V^* \longrightarrow \pi(V^*)$ be the projection map defined by $\pi(w_0^*, w_1^*, w_2^*, \cdots, w_n^*) = (w_1, w_2, \cdots, w_n)$, where $w_j = w_j^*/w_0^*$ for $j = 1, 2, \ldots, n$. We write ∞ for $\pi(0, 1, 0, \ldots, 0)$. We may identify $\pi(V_-)$ with the Siegel domain

$$H^n = \{ w = (w_1, w_2, ..., w_n) \in \mathbf{C}^n \mid Re(w_1) > \frac{1}{2} \sum_{j=2}^n |w_j|^2 \}.$$

An element g in $PU(1, n; \mathbb{C})$ acts on the Siegel domain H^n and its boundary ∂H^n . In H^n , we can introduce the hyperbolic metric d (see [3] and [6]). An element of $PU(1, n; \mathbb{C})$ is an isometry of H^n with respect to d. Denote $H^n \cup \partial H^n$ by $\overline{H^n}$. The H-coordinates of a point $(w_1, w_2, ..., w_n) \in \overline{H^n} - \{\infty\}$ are defined by $(k, t, w')_H \in (\mathbb{R}^+ \cup \{0\}) \times \mathbb{R} \times \mathbb{C}^{n-1}$ such that $k = Re(w_1) - \frac{1}{2} \sum_{j=2}^n |w_j|^2$, $t = Im(w_1)$ and $w' = (w_2, ..., w_n)$. The Cygan metric $\rho(p, q)$ for $p = (k_1, t_1, w')_H$ and $q = (k_2, t_2, W')_H$ is given by

$$\rho(p,q) = |\{\frac{1}{2}||W' - w'||^2 + |k_2 - k_1|\} + i\{t_1 - t_2 + Im(\overline{w'}W')\}|^{\frac{1}{2}},$$

where $\overline{w'}W' = \sum_{j=2}^{n} \overline{w_j}W_j$.

Let $f = (a_{ij})_{1 \le i,j \le n+1} \in PU(1,n;\mathbb{C})$ with $f(\infty) \ne \infty$. We define the isometric sphere I(f) of f by

$$I(f) = \{ w = (w_1, w_2, ..., w_n) \in \overline{H^n} \mid |\tilde{\Phi}(W, Q)| = |\tilde{\Phi}(W, f^{-1}(Q))| \},$$

where $Q = (0, 1, 0, ..., 0), W = (1, w_1, w_2, ..., w_n)$ in V^* (see [5]). It follows that the isometric sphere I(f) is the sphere in the Cygan metric with center $f^{-1}(\infty)$ and radius $R_f = \sqrt{1/|a_{12}|}$, that is,

$$I(f) = \left\{ w = (k, t, w')_H \in (\mathbf{R}^+ \cup \{0\}) \times \mathbf{R} \times \mathbf{C}^{n-1} \mid \rho(w, f^{-1}(\infty)) = \sqrt{\frac{1}{|a_{12}|}} \right\}.$$

Fix $y \in \partial H^n$ such that $f(y) \neq y$. Let γ be an element of $PU(1, n; \mathbb{C})$ with $\gamma(y) = \infty$. We define the generalized isometric sphere $I_y(f)$ at y of f as

$$I_{y}(f) = \gamma^{-1}(I_{\gamma f \gamma^{-1}}) = \{ z \in \overline{H^{n}} | \rho(\gamma(z), \gamma f^{-1} \gamma^{-1}(\infty)) = R_{\gamma f \gamma^{-1}} \}$$

(see [1]). Note that if $y = \infty$, then $I_{\infty}(f)$ is the usual isometric sphere I(f). The definition above does not depend on the choice of the element γ such that $\gamma(y) = \infty$.

Unless otherwise stated, we shall always take f, g, ... to be elements of $PU(1, n; \mathbb{C})$ fixing neither y nor ∞ . Set

$$\alpha_y(f,z) = \frac{R_f \rho(y,z)}{\rho(z, f^{-1}(y))\rho(y, f(\infty))}.$$

We can write $I_y(f)$ as

$$I_y(f)=\{z\in \overline{H^n}|\ \alpha_y(f,z)=1\}.$$

Put

$$Ext \ I_y(f) = \{ z \in \overline{H^n} | \ \alpha_y(f, z) < 1 \},$$
$$Int \ I_y(f) = \{ z \in \overline{H^n} | \ \alpha_y(f, z) > 1 \},$$

respectively.

Just as in the case of isometric spheres, we have

Proposition 1.1.

- (1) $I_{f(y)}(f) = f(I_y(f)) = I_y(f^{-1});$
- (2) $f(Ext \mid I_y(f)) \subset Int \mid I_y(f^{-1});$ (3) $f(Int \mid I_y(f)) \subset Ext \mid I_y(f^{-1}).$

Next we consider the location of fixed points of elements.

Proposition 1.2. Let f be an element of $PU(1, n; \mathbb{C})$ with fixed point x. If f is elliptic or parabolic, then x lies on the isometric sphere $I(f^{-1})$ of f^{-1} . If f is loxodromic, then $I(f^{-1})$ does not contain x.

Replacing isometric spheres by generalized isometric spheres leads to the same conclusion as in Proposition 1.2.

Proposition 1.3. Let f be an element of $PU(1, n; \mathbb{C})$ with fixed point x. If f is elliptic or parabolic, then x lies on $I_y(f)$. If f is loxodromic, then $I_y(f)$ does not contain x.

2. Let z_1, z_2 be two different points in H^n . Let $E(z_1, z_2)$ be the bisector of $\{z_1, z_2\}$, that is,

$$E(z_1, z_2) = \{ w \in H^n | d(z_1, w) = d(z_2, w) \}$$

(see [5] for details). Let G be a discrete subgroup of $PU(1, n; \mathbb{C})$ and let w be any point of H^n that is not fixed by any element of G except the identity. The Dirichlet polyhedron D(w) for G with center w is defined by

$$D(w) = \bigcap_{g \in G - \{id\}} H_g(w),$$

where $H_g(w) = \{z \in H^n | d(z, w) < d(z, g(w))\}$. We observe that

- (1) D(w) is not necessarily convex,
- (2) D(w) is star-shaped about w,
- (3) D(w) is locally finite

(see [2], [4], [11] and [12]).

Let $\Omega(G)$ be the ordinary set of G. Assume that $\infty \in \Omega(G)$ and its stability subgroup $G_{\infty} = \{identity\}$. Then there is a positive constant M such that $\rho(0, g(\infty)) \leq M$ for any element g of G. The same argument as in [4] leads to the following results.

- (1) The radii of isometric spheres are bounded above.
- (2) The number of isometric spheres with radii exceeding a given positive quantity is finite.
- (3) Given any infinite sequence of distinct isometric spheres of elements of G, the radii being R_{g_1}, R_{g_2}, \dots , then $\lim_{m\to\infty} R_{g_m} = 0$.

We show that the generalized isometric sphere $I_y(f)$ is closely related to the bisector $E(z, f^{-1}(z))$.

Proposition 2.1. If $z \in H^n$ converges to $y \in \partial H^n$, then $E(z, f^{-1}(z))$ converges to $I_y(f)$.

By using generalized isometric spheres, we can construct a fundamental domain.

Theorem 2.2. Let G be a discrete subgroup of $PU(1, n; \mathbb{C})$. Let ∞ be a point of $\Omega(G)$ and let $G_{\infty} = \{identity\}$. Suppose that y is a point of $\Omega(G) \cap \partial H^n$ and that G_y consists only of the identity. Then

$$P_y(G) = \bigcap_{f \in G - \{id\}} Ext \ I_y(f)$$

is a fundamental domain for G.

By Proposition 2.1 and Theorem 2.2, we obtain

Theorem 2.3. Let G be a discrete subgroup of $PU(1, n; \mathbb{C})$. Let $z \in H^n$ and let $y \in \partial H^n \cap \Omega(G)$. Then $D(z) \to P_y(G)$ as $z \to y$.

From the manner of constructing $P_y(G)$, we have

Corollary 2.4. The fundamental domain $P_y(G)$ is locally finite.

References

- 1. B. N. Apanasov, Discrete Groups in Space and Uniformization Problems, Kluwer Acad. Press, 1991.
- 2. A.F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
- 3. S. S. Chen and L. Greenberg, Hyperbolic spaces, in "Contributions to Analysis," Academic Press, New York (1974), 49-87.
- 4. L. R. Ford, Automorphic Functions (Second Edition), Chelsea, New York, 1951.
- 5. W. M. Goldman, Complex hyperbolic geometry, Oxford University Press, 1999.
- 6. S. Kamiya, Notes on elements of U(1, n; C), Hiroshima Math. J. 21 (1991), 23-45.
- 7. S. Kamiya, On H-balls and canonical regions of loxodromic elements in complex hyperbolic space, Math. Proc. Camb. Phil. Soc. 113 (1993), 573-582.
- 8. S. Kamiya, Parabolic elements of U(1, n; C), Rev. Romaine Math. Pures et Appl. 40 (1995), 55-64.
- 9. S. Kamiya, On discrete subgroups of PU(1,2;C) with Heisenberg translations, (to appear)
- 10. S. Kamiya, Generalized isometric spheres and fundamental domains for discrete subgroups of $PU(1, n; \mathbf{C})$, (to appear)
- 11. J. Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No. 8, Amer. Math. Soc., 1964.
- 12. M. B. Phillips, Dirichlet polyhedra for cyclic groups in complex hyperbolic space, Proc. Amer. Math. Soc., 115 (1992), 221-228.

Okayama University of Science 1-1 Ridai-cho, Okayama 700-0005 JAPAN e-mail:kamiya@mech.ous.ac.jp