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GENERALIZED ISOMETRIC SPHERES OF ELEMENTS OF PU(1,n;C)

SHIGEYASU KAMIYA
#Wa EER (BuEX I)

Let G be a discrete subgroup of PU(1,n;C). For a boundary point y of the Siegel
domain, we define the generalized isometric sphere I,(f) of an element f of PU (1,n;C).
By using the generalized isometric spheres of elements of G, we construct a fundamental
domain Py(G) for G, which is regarded as a generalization of the Ford domain. And we

show that the Dirichlet polyhedron D(w) for G with center w convereges to P,(G) as
w—y. .

1. First let us recall some definitions and notation. Let C be the field of complex
numbers. Let V = V1™(C) denote the vector space C™*1, together with the unitary
structure defined by the Hermitian form

®(2*,w*) = —(2w} + zfwd) + Z ziw}
. e

for z* = (25,271,235, ., 25),w* = (w§,w},w},...,w:) in V. An automorphism ¢ of v,
that is a linear bijection such that Ef’(g(z*),g(w*)) = EI;(z*,w"“) for z*,w* in V, will be
called a unitary transformation. We denote the group of all unitary transformations by
U(1,n;C). Set PU(1,n;C) = U(1,n; C)/(center). Let Vy = {w* € V| &(w*, w*) = 0}
and V_ = {w* e V] ‘~I>(w*,w*) < 0}. It is clear that V, and V_ are invariant under
U(1,n;C). Set V* = V_U Vo — {0}. Let 7 : V* — n(V*) be the projection map defined
by m(wg,w},w;, -, wk) = (w1, ws, -, wy,), where wj = wi/wg for j = 1,2,...,n. We
write oo for 7(0,1,0,...,0). We may identify m(V_) with the Siegel domain

. . 1 n
. Hn — {'w et (w17w27"‘) 'wn) € Cn I R@(wl) > —2‘2 |’U)]|2} |

j=2 .

An element g in PU(1,n; C) acts on the Siegel domain H™ and its boundary H". In H",
we can introduce the hyperbolic metric d (see [3] and [6]). An element of PU(1,n;C) is an
isometry of H™ with respect to d. Denote H* UOH" by H*. The H-coordinates of a point
(w1, wg, ..., wn) € H™ — {00} are defined by (k,t,w")y € (R+U {0}) x R x C"~* such that
k = Re(w;) — %Z?:z lwjl?, t = Im(w1) and w' = (wy, ..., wy). The Cygan metric o(p, @)
for p = (k1,t1,w') g and ¢ = (kg,t2, W') g is given by

p(20) = HIW" = 'l + [k — kal} + ifts — ta + Im(@W)}3,

where w'W' = 3 0, w;W;.
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Let f = (aij)1<ij<n+1 € PU(1,n; C) with f(co) # co. We define the isometric sphere
I(f) of f by

I(f) = {w = (w1, w3, ..,wn) € H* | |2(W,Q)| = |2(W, F~H(Q))I},

where Q = (0,1,0,...,0), W = (1,w;,wsz,...,wy) in V* (see [5]). It follows that the
isometric sphere I(f) is the sphere in the Cygan metric with center f~!(oco0) and radius

Ry = /1/]a1z|, that is,

I<f>={w=<k,t,w')ﬂe<R+u{0}>xRxc"—l | plw, F~(00)) = 4| = }

laia]

Fix y € 0H™ such that f(y) # y. Let v be an element of PU(1,n; C) with v(y) = oo.
We define the generalized isometric sphere I (f) at y of f as

L(f) = v ' Uygy-1) = {z € H?| p(7v(2),7f v (00)) = Rypq-1}

(see [1]). Note that if y = oo, then Io(f) is the usual isometric sphere I( f). The definition
above does not depend on the choice of the element v such that y(y) = 0.

Unless otherwise stated, we shall always take f, g, ... to be elements of PU(1,n;C)
fixing neither y nor co. Set

N = pr(y7z)
W22) = ) (e, F(0))

We can write Iy(f) as L
I(f) = {z € H"| ay(f,2) = 1}.
Put
Bat 1(f) = {= € T ay(f,2) < 1},

Int I(f) = {z € T ay(f,2) > 1},

respectively.
Just as in the case of isometric spheres, we have

Proposition 1.1.

(1) L) (f) = fF(I,(F)) = L,(f1);
(2) f(Ext I,(f)) C Int I,(f~1);

(3) f(Int I,(f)) C Ext I,(f71).

Next we consider the location of fixed points of elements.

Proposition 1.2. Let f be an element of PU(1,n;C) with fized point x. If f is elliptic
or parabolic, then x lies on the isometric sphere I(f~1) of f~1. If f is lozodromic, then
I(f71) does not contain .
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Replacing isometric spheres by generalized isometric spheres leads to the same con-
clusion as in Proposition 1.2.

Proposition 1.3. Let f be an element of PU(1,n;C) with fized point z. If f is elliptic
or parabolic, then x lies on I,(f). If f is lozodromic, then I,(f) does not contain z.

2. Let 21,2 be two different points in H™. Let E(z1, 2z2) be the bisector of {z;, 22},
that is,
E(z1,22) = {w € H"| d(z1,w) = d(z2,w)}
(see [5] for details). Let G be a discrete subgroup of PU(1,n;C) and let w be any point

of H™ that is not fixed by any element of G except the identity. The Dirichlet polyhedron
D(w) for G with center w is defined by

D(w)= [ Hw),

ge€G—{id}

where Hy(w) = {z € H"| d(z,w.) <>d(z, g(w))}. We observe that

(1) D(w) is not necessarily convez,
(2) D(w) is star-shaped about w,
(8) D(w) s locally finite
(see [2], [4], [11] and [12]).
Let ©(G) be the ordinary set of G. Assume that co € Q(G) and its stability subgroup
G o = {identity}. Then there is a positive constant M such that p(0,g(c0)) < M for any
element g of G. The same argument as in [4] leads to the followmg results.

(1) The radii of isometric spheres are bounded above.

(2) The number of isometric spheres with radii exceeding a given positive quantity is
finite.

(8) Given any inﬁnite sequence of distinct isometric spheres of elements of G, the
radit being Ry, Ry, ,- -, then lim,, R, = 0.

We show that the generalized isometric sphere I,(f) is closely related to the bisector
E(z, f~(2)).

Proposition 2.1. If z € H™ converges to y € OH™, then E(z, f~1(2)) converges to
L,(f)-

By using generalized isometric spheres, we can construct a fundamental domain.

Theorem 2.2. Let G be a discrete subgroup of PU(1,n;C). Let 0o be a point of Q(G)
and let G, = {identity}. Suppose that y is a point of Q(G) NOH™ and that G, consists
only of the wdentity. Then

P(G)= () Bat I(f)

feG—{id}
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18 a fundamental domain for G.

By Proposition 2.1 and Theorem 2.2, we obtain

Theorem 2.3. Let G be a discrete subgroup of PU(1,n;C). Let z € H" and let y €

OH™ N QG). Then D(z) = Py(G) as z — y.

From the manner of constructing Py(G), we have

Corollary 2.4. The fundamental domain Py(G) s locally finite.
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