MAPPING CLASS GROUPS OF 3-DIMENSIONAL HANDLEBODIES AND MERIDIAN DISKS

SUSUMU HIROSE

1. INTRODUCTION

A genus g handlebody, H_g, is an oriented 3-manifold, which is constructed from a 3-ball with attaching g 1-handles. Let $\text{Diff}^+(H_g)$ (resp. $\text{Diff}^+(\partial H_g)$) be the group of orientation preserving diffeomorphisms on H_g (resp. ∂H_g), \mathcal{H}_g (resp. \mathcal{M}_g) be a group which consists of isotopy classes of $\text{Diff}^+(H_g)$ (resp. $\text{Diff}^+(\partial H_g)$). Generators of \mathcal{H}_g are given in [11] and [7]. Wajnryb gave a presentation for \mathcal{H}_g in [12]. In this note, we give a presentation for \mathcal{H}_g with using other method. When $g \geq 3$, we use a simplicial action of \mathcal{H}_g on simplicial complex (which is a subcomplex of a contractible complex defined by McCullough [10]) defined as follows: its vertices are isotopy classes of meridian disks in H_g (essential 2-disks properly embedded in H_g), and its simplex is a system of isotopy classes of meridian disks which are represented by disks, which are disjoint and non-isotopic each other and whose complements is connected. This complex is $(g-2)$-connected, especially, if $g \geq 3$, it is simply connected. (When $g = 2$, unfortunately, this complex is not simply connected, hence we use a contractible complex defined in [10].) This is subcomplex of a complex X defined by Harer in [5]. Since the orbit space of the former one by \mathcal{H}_g is identical with the latter one by \mathcal{M}_g, our method can be applied to giving a presentation for \mathcal{M}_g without using a complex defined by Hatcher and Thurston [4].

This note is a summary of a paper [6].

1991 Mathematics Subject Classification. 57N05, 57N10.

Key words and phrases. 3-dimensional handlebody, mapping class group.

This research was partially supported by Grant-in-Aid for Encouragement of Young Scientists (No. 10740035), Ministry of Education, Science, Sports and Culture, Japan.
2. A Presentation for \mathcal{H}_g

Before we state a presentation for \mathcal{H}_g, we set notations used there. Sometimes, we indicate an element of \mathcal{H}_g by a figure. In Figure 1, the left hand side figure denotes an element given in the right hand side figure. The symbol \Leftrightarrow means commute with. For example, if L, M, N are any elements of \mathcal{H}_g, a relation $L \Leftrightarrow M, N$ means that $LM = ML$, $LN = NL$. The commutator of A and B, $A^{-1}B^{-1}AB$, is denoted by $[A, B]$. In this paper, we consider that the group \mathcal{H}_g acts on H_g from the right: for any elements ϕ_1, ϕ_2 of \mathcal{H}_g, $\phi_1\phi_2$ means apply ϕ_1 first, then apply ϕ_2.

Theorem 2.1. Let a_1, k_1, d_i ($2 \leq i \leq g$), $t(2)_{21}$, $r(2)_{21}$ be the elements of \mathcal{H}_g indicated in Figure 2. The group \mathcal{H}_g admits a presentation with generators a_1, k_1, d_i ($2 \leq i \leq g$), $t(2)_{21}$, $r(2)_{21}$ and defining relations:

If $g \geq 4$,

$$d_m^{-1}a_md_m = a_{m-1}, \quad d_m^{-1}a_{m-1}d_m = a_m,$$

$$d_m^{-1}k_md_m = k_{m-1}, \quad d_m^{-1}k_{m-1}d_m = k_m,$$

where $2 \leq m \leq g$,
FIGURE 2
\(r_g = \begin{cases} \{ d_2d_3 \cdots d_g k_1^{-1}k_2^{-1} \cdots k_{g-1}^{-1}, & \text{g is odd,} \\ d_2d_3 \cdots d_g k_1^{-1}k_2^{-1} \cdots k_g^{-1}, & \text{g is even,} \end{cases}\)

\(d_1 = r_g^{-1}d_2r_g,\)

\(r(m)_{1j} = k_mr(m)_{2j}k_m^{-1}, \quad t(m)_{1j} = k_mt(m)_{2j}k_m^{-1},\)

\(r(m)_{ij} = d_jk_{j-1}^{-1}r(m)_{i,j-1}d_j^{-1}, \quad t(m)_{ij} = d_jk_{j-1}^{-1}t(m)_{i,j-1}d_j^{-1},\)

where \(m = 1, \cdots, g, \ i = 1, 2, \ j \neq m, m - 1, \) and index \(j\) is given modulo \(g,\)

\(r(m)_{ij} = d_mk_{m-1}^{-1}r(m-1)_{i,j}k_{m-1}d_m^{-1}, \quad t(m)_{ij} = d_mk_{m-1}^{-1}t(m-1)_{i,j}k_{m-1}d_m^{-1},\)

where \(m = 1, \cdots, g, \ i = 1, 2, \ j \neq m, m - 1, \) and index \(j\) is given modulo \(g,\)

\(c(m)_i[j, j+1, \cdots, j+k] = (\prod_{n=0}^{k}[t(m)_{i,j+n}, r(m)_{i,j+n}^{-1}])a_m^{-2(k+1)},\)

where \(i = 1, 2, \) and index \(j\) is given modulo \(g,\)

\(A_m = k_m^{-2}, \) where \(1 \leq m \leq g,\)

\(t_1 = t(2)21k_1^{-1}a_2,\)

\(d_i \sim d_j, \) where \(|i - j| \geq 2,\)

\(d_i^{-1}d_{i-1}^{-1}d_id_{i-1}d_i = d_{i-1}\) where \(2 \leq i \leq g,\)

\(k_1 \sim k_2, \quad a_1 \sim a_2,\)

\(a_1, k_1 \sim d_i, \) where \(3 \leq i \leq g,\)

\(a_g, k_g \sim d_j, \) where \(2 \leq j \leq g - 1,\)

\(k_1 \sim a_1, a_2,\)
\[(B5) \quad d_3 \Leftarrow a_1,\]
\[(B6) \quad t(3)_{11}, \ r(3)_{11} \Leftarrow t(3)_{22}, \ r(3)_{22},\]
\[t(2)_{21} A_2 t(2)_{11} A_2^{-1} t(2)_{21}^{-1} = t(2)_{11},\]
\[t(2)_{21} A_2 r(2)_{11} A_2^{-1} t(2)_{21}^{-1} = a_2^{-2} A_2 r(2)_{11}\]
\[(B7) \quad r(2)_{21} A_2 t(2)_{11} r(2)_{21}^{-1} = a_2^{-2} t(2)_{11}\]
\[r(2)_{21} A_2 r(2)_{11} A_2^{-1} r(2)_{21}^{-1} = r(2)_{11}\]
\[(B8) \quad k_1^{-1} t(2)_{21} k_1 = t(2)_{21}^{-1} r(2)_{21} t(2)_{21}^{-1} r(2)_{21}^{-1} t(2)_{21},\]
\[k_1^{-1} r(2)_{21} k_1 = t(2)_{21}^{-1} r(2)_{21}^{-1} t(2)_{21},\]
\[(B9) \quad a_1 \Leftarrow r(2)_{21},\]
\[a_1^{-1} t(2)_{21} a_1 = (r(2)_{21})^{-1} t(2)_{21}\]
\[(B10) \quad a_2 \Leftarrow t(2)_{21}, \ r(2)_{21},\]
\[(B11) \quad d_2 \Leftarrow r(2)_{21} (a_1)^{-1}\]
\[(B12) \quad a_3, k_3 \Leftarrow t(2)_{21}, \ r(2)_{21},\]
\[(B13) \quad t(2)_{2,1}, \ r(2)_{2,1} \Leftarrow t(4)_{2,3}, \ r(4)_{2,3},\]
\[(B14) \quad t(2)_{2,1}^{-1} t(3)_{2,1} t(2)_{2,1} = (t(3)_{2,2}^{-1} r(3)_{2,2} t(3)_{2,2})^{-1} t(3)_{2,1} (t(3)_{2,2}^{-1} r(3)_{2,2} t(3)_{2,2}),\]
\[t(2)_{2,1}^{-1} t(3)_{2,1} t(2)_{2,1} = a_3^{-1} t(3)_{2,1}^{-1} r(3)_{2,1} (t(3)_{2,2}^{-1} r(3)_{2,2} t(3)_{2,2}),\]
\[t(2)_{2,1}^{-1} t(3)_{2,2} t(2)_{2,1} = a_3^{-1} t(3)_{2,2} t(3)_{2,1}^{-1} (t(3)_{2,2}^{-1} r(3)_{2,2} t(3)_{2,2}),\]
\[t(3)_{2,1} \Leftarrow r(3)_{2,2},\]
\[r(2)_{2,1}^{-1} t(3)_{2,1} r(2)_{2,1} = a_3^{-1} (t(3)_{2,2}^{-1} r(3)_{2,2} t(3)_{2,2})^{-1} t(3)_{2,1},\]
\[r(2)_{2,1}^{-1} r(3)_{2,1} r(2)_{2,1} = (t(3)_{2,2}^{-1} r(3)_{2,2} t(3)_{2,2})^{-1} r(3)_{2,1} (t(3)_{2,2}^{-1} r(3)_{2,2} t(3)_{2,2}),\]
\[r(2)_{2,1}^{-1} t(3)_{2,2} r(2)_{2,1} = a_3^{-1} t(3)_{2,2} r(3)_{2,1}^{-1} (t(3)_{2,2}^{-1} r(3)_{2,2} t(3)_{2,2}),\]
\[r(2)_{2,1} \Leftarrow r(3)_{2,2},\]
\[(B15) \quad d_2^2 = a_2^{-4} \{(t(2)_{11})^{-1} r(2)_{11} t(2)_{11} (r(2)_{11})^{-1}\} k_1^2 \{(t(2)_{21})^{-1} r(2)_{21} t(2)_{21} (r(2)_{21})^{-1}\} k_1^2,\]
\[r(g)_{2,g-1}, t(g)_{2,g-1} \Rightarrow d_i \text{ where } 2 \leq i \leq g-2, \]
\[r(g)_{2,1}, t(g)_{2,1} \Rightarrow d_i \text{ where } 3 \leq i \leq g-1, \]
\[t(2)_{2,1}, t(2)_{2,1} \Rightarrow d_i \text{ where } 4 \leq i \leq g, \]
\[d_2^{-1} r(3)_{2,1} d_i \]
\[= t(3)_{2,1} r(3)_{2,1} t(3)_{2,1} r(3)_{2,1} t(3)_{2,2} x t(3)_{2,1} r(3)_{2,2} t(3)_{2,2} \]
\[(B17) \]
\[d_2^{-1} t(3)_{2,1} d_2 \]
\[= t(3)_{2,1} r(3)_{2,1} t(3)_{2,1} r(3)_{2,1} t(3)_{2,2} x t(3)_{2,1} r(3)_{2,2} t(3)_{2,2} \]
\[(B18) \]
\[(d_2^{-1} t_1 d_2 t_1)^3 = d_2^2, \]
\[(B19) \]
\[A_g = \prod_{i=1}^{g-1} [t(g)_{2,i}, r(g)_{2,i}^{-1}] a_{g-2(g-1)}, \]
\[(B20) \]
\[r(2)_{11} = r(1)_{12} a_1 a_2^{-1} \]
\[(B21) \]
\[t(2)_{11} t(2)_{21} A_2 a_2^2 = \prod_{i=3}^{g} \{ t(i)_{2,1} t(i)_{1,1} c(i)_{2,1} [2, \cdots, i-1] c(i)_{1,1} [2, \cdots, i-1] A_i^{-1} a_i^{-4} \}, \]
\[(B22) \]
\[k_1^2 A_2 = \prod_{i=3}^{g} \{ c(i)_{2,1} [2, \cdots, i-1] c(i)_{1,1} [2, \cdots, i-1] A_i^{-1} a_i^{-2} \}, \]
\[(B23) \]

and if \(g = 3 \), the above relations except \((B13) \) and \((B17) \) are satisfied and sufficient, and if \(g = 2 \), \((A1), (A4), (A8), (A9), (B2), (B4), (B7), (B8), (B9), (B10), (B11), (B20) \) and \((B16') \)
\[d_2^2 = 1, \]
\[(B16') \]
\[(d_2^{-1} t_1 d_2 t_1)^3 = 1, \]
\[(B19') \]
\[r(2)_{11} r(2)_{21} A_2 a_2^2 = 1, \]
\[(B21') \]
\[t(2)_{11} t(2)_{21} A_2 a_2^2 = 1, \]
\[(B22') \]
\[k_1^2 A_2 = 1, \]
\[(B23') \]
are satisfied and sufficient.

In this presentation, (A*)'s are the relations which define some generators from a_1, k_1, d_i ($2 \leq i \leq g$), $t(2)_{2,1}$, and $r(2)_{2,1}$ (these are indicated in the sequel of this paper by Figures). (B*)'s are easily checked by drawing some figures. From here to the end of this paper, we will show sufficiency of these relations.

3. DISK COMPLICES

Let H_g be a three dimensional handlebody of genus g, E_1, \ldots , E_l be mutually disjoint 2-disks embedded in ∂H_g. By a disc in $(H_g, \{E_1, \ldots , E_l\})$ we mean a properly imbedded 2-disc $(D, \partial D) \subseteq (H_g, \partial H_g)$ which is disjoint from $E_1 \cup \cdots \cup E_l$. The disc D is called meridian disc in $(H_g, \{E_1, \ldots , E_l\})$ when $H_g - D$ is connected. Define the nonseparating disc complex of H_g to be the simplicial complex $L'(H_g, \{E_1, \ldots , E_l\})$ whose vertices(0-simplices) are the isotopy classes of meridian discs in $(H_g, \{E_1, \ldots , E_l\})$, and whose simplices are determined by the rule that a collection of $n+1$ distinct vertices spans an n-simplex if and only if it admits a collection of representative which are pairwise disjoint. Define the complex $Y(H_g, \{E_1, \ldots , E_l\})$ to be the subcomplex of $L'(H_g, \{E_1, \ldots , E_l\})$ whose n-simplex is determined by $n+1$ distinct vertices represented by pairwise disjoint discs D_0, D_1, \ldots , D_n such that $H_g - D_0 \cup D_1 \cup \cdots \cup D_n$ is connected. If there is no distinguished discs $\{E_1, \ldots , E_l\}$ on ∂H_g, we denote these complexes by the notation $L'(H_g)$ and $Y(H_g)$. We call a system of meridian discs the set of mutually disjoint and nonisotopic meridian discs in $(H_g, \{E_1, \ldots , E_l\})$. Each simplex of $L'(H_g, \{E_1, \ldots , E_l\})$ is represented by a system of meridian disks. The definition of $L'(H_g, \{E_1, \ldots , E_l\})$ is a modification of the disc complex defined in section 5 of [10]. The following theorem is proved by a slight modification of the proof for Theorem 5.2 of [10].

Theorem 3.1. $L'(H_g, \{E_1, \ldots , E_l\})$ is contractible.

We will show the following theorem.

Theorem 3.2. $Y(H_g, \{E_1, \ldots , E_l\})$ is $(g-2)$-connected.
This complex $Y(H_g, \{E_1, \ldots, E_l\})$ resembles complices X defined in [5] and Y defined in [3]. We prove the above theorem as in the proof of Theorem 1.1 of [5] and the proof of Proposition of [3].

\textbf{Proof.} We prove this theorem by the induction of genus g.

At first, we prove $Y(H_2, \{E_1, \ldots, E_l\})$ is connected (0-connected). By 3.1, $L'(H_2, \{E_1, \ldots, E_l\})$ is connected. As is indicated in Figure 3, there is two types of edges in $L'(H_2, \{E_1, \ldots, E_l\})$. The first one is in $Y(H_2, \{E_1, \ldots, E_l\})$. The second one is not in $Y(H_2, \{E_1, \ldots, E_l\})$, but there is a bypass in $Y(H_2, \{E_1, \ldots, E_l\})$ given in Figure 4. Hence, $Y(H_2, \{E_1, \ldots, E_l\})$ is connected.

We assume, for any integer k smaller than g, $Y(H_k, \{E_1, \ldots, E_l'\})$ is $(k-2)$-connected. Let i be an integer smaller than or equal to $g-2$, and $f : S^i \rightarrow Y(H_g, \{E_1, \ldots, E_l\})$ be a continuous map. Since $L'(H_g, \{E_1, \ldots, E_l\})$ is contractible, there is a continuous map $\tilde{f} : D^{i+1} \rightarrow L'(H_g, \{E_1, \ldots, E_l\})$ such that $\tilde{f}|_{\partial D^{i+1}} = f$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Figure 3}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Figure 4}
\end{figure}
We may assume \(\tilde{f} \) is piecewise linear with respect to some triangulation of \(D^{i+1} \). If \(\tilde{f}(D^{i+1}) \) is contained in \(Y(H_g, \{E_1, \ldots, E_l\}) \), this means that \(f \) is null-homotpic. We assume \(\tilde{f}(D^{i+1}) \) is not contained in \(Y(H_g, \{E_1, \ldots, E_l\}) \). Then, there is a simplex \(\sigma \) of \(D^{i+1} \) such that \(\tilde{f}(\sigma) \) is not contained in \(Y(H_g, \{E_1, \ldots, E_l\}) \), and this means that there is a representative \(\{D_0 \cup \cdots \cup D_j\} \) of \(\tilde{f}(\sigma) \) with disconnected complement. Let \(G_\sigma \) be a graph defined as follows. Each vertex corresponds to components of \(H_g - D_0 \cup \cdots \cup D_j \). Each edge corresponds to one of \(D_0, \ldots, D_j \) and connecting vertices corresponding to the components containing this disc. Since \(D_0 \cup \cdots \cup D_j \) has disconnected complement, \(G_\sigma \) has at least two components. There is a nonempty subgraph of \(G_\sigma \) whose edges connects distinct vertices. Let \(\mathcal{D} \) be the subsystem of \(\{D_0, \ldots, D_j\} \) which corresponds to the edges of this graph. This system \(\mathcal{D} \) satisfies the following property:

\[
(*) \text{ Let } \mathcal{D} = \{D'_0, \ldots, D'_m\}. \text{ Each } D'_a \in \mathcal{D} \text{ separates } H_g - \bigcup_{n \neq a} D'_n.
\]

A system of meridian discs which satisfies property\((*)\) is called purely separating system of meridian discs, and a simplex of \(L'(H_g, \{E_1, \ldots, E_l\}) \) is called purely separating if it is represented by a purely separating system of meridian discs. \(\mathcal{D} \) represent a face of \(\tilde{f}\sigma \), so there is a simplex \(\tau \) of \(D^{i+1} \) such that \(\tilde{f}(\tau) \) is purely separating. In general, we have shown the following lemma.

Lemma 3.3. Each simplex in \(L'(H_g, \{E_1, \ldots, E_l\}) \) has a face which is purely separating.

Let \(\sigma \) be a simplex of \(D^{i+1} \) of maximal dimension \(p \) such that \(\tilde{f}(\sigma) \) is purely separating. This simplex \(\sigma \) is not contained in \(\partial D^{i+1} \), hence, \(\text{Link } \sigma \) is homeomorphic to \(S^{i-p} \). Let \(\{D_0, \ldots, D_p\} \) be a system of meridian discs which represents \(\tilde{f}(\sigma) \), and let \(M = H_g - D_0 \cup \cdots \cup D_p \). We define the complex \(Y(M, \ast) \) for \((M, \{E_1, \ldots, E_l\}, \text{discs which are emerged as a cut end along } D_0 \cup \cdots \cup D_p) \) in the same manner as \(Y(H_g, \{E_1, \ldots, E_l\}) \). Then, each disc which represents each vertex of \(\text{Link } \sigma \) does not separate \(M \). In fact, if some vertex \(v \) of \(\text{Link } \sigma \) separates \(M \), then
$	ilde{f}(v * \sigma)$ is purely separating, and this fact contradicts the maximality assumption of p. Hence, each vertex of $\text{Link} \ \sigma$ is mapped into $Y(M, *)$ by \tilde{f}. If there is a simplex ρ of $\text{Link} \ \sigma$ such that $\tilde{f}(\rho)$ separates M, then, by 3.3 there is a face τ of ρ such that $\tilde{f}(\tau)$ is purely separating. Then $\tilde{f}(\tau * \sigma)$ is purely separating, and $\tau * \sigma \subset \text{Link} \ \sigma \subset D^{i+1}$. This fact contradicts the maximality assumption of p. Hence, $\tilde{f}(\text{Link} \ \sigma) \subset Y(M, *)$.

By the way, M is a disjoint union of handle bodies, and the total number m of these genera is at least $g - p$. $Y(M)$ is a join of $Y's$ of each components of M. Hence, by the hypothesis for the induction, $Y(M)$ is $(m - 2)$-connected. Here, we remember that $i \leq g - 2$, then we can see $i - p \leq g - 2 - p \leq m - 2$. This shows that $\tilde{f}|_{\text{Link} \ \sigma}$ is null homotopic in $Y(M)$, hence, in $Y(H_g, \{E_1, \ldots, E_l\})$. Therefore, we can homotope \tilde{f} such that $\tilde{f}(\text{Link} \ \sigma) \subset Y(H_g, \{E_1, \ldots, E_l\})$. We do the same way for other simplices whose images are purely separating, then \tilde{f} is homotoped to a continuous map whose image is in $Y(H_g, \{E_1, \ldots, E_l\})$. \square

4. Obtaining a presentation from the action of \mathcal{H}_g on $Y(H_g)$

For each element ϕ of \mathcal{H}_g and simplex $([D_0], \ldots, [D_n])$ of $Y(H_g)$ (resp.$\Delta'(H_g)$), $([\phi(D_0)], \ldots, [\phi(D_n)])$ is also a simplex of $Y(H_g)$ (resp.$\Delta'(H_g)$). Hence, we
can define a right action of \mathcal{H}_g on $Y(H_g)$ (resp. $\Delta'(H_g)$) by $\phi([D_0], \ldots, [D_n]) = ([\phi(D_0)], \ldots, [\phi(D_n)])$. We can see that, if $g = 2$, each of the 2-simplices of $\Delta'(H_2)/\mathcal{H}_2$, the 1-simplices of $\Delta'(H_2)/\mathcal{H}_2$ and the vertices of $\Delta'(H_2)/\mathcal{H}_2$ consists of one element, each of which is represented by $([D_0], [D_1], [D_2])$, $([D_0], [D_1])$, and $([D_0])$, where D_0, D_1, D_2 are indicated in Figure 5, and if $g \geq 3$, each of the 2-simplices of $Y(H_g)/\mathcal{H}_g$, the 1-simplices of $Y(H_g)/\mathcal{H}_g$ and the vertices of $Y(H_g)/\mathcal{H}_g$ consists of one element, each of which is represented by $([D_0], [D_1], [D_2])$, $([D_0], [D_1])$, and $([D_0])$, where D_0, D_1, D_2 are indicated in Figure 6. If stabilizer of each vertex is finitely presented, and is that of each 1-simplex is finitely generated, we can obtain a presentation for \mathcal{H}_g as in the way of [9], [12]. Here, we will mention these method. The action of \mathcal{H}_2 on $\Delta'(H_2)$ is similar to the action of \mathcal{H}_g on 2-skelon of $Y(H_g)$ when $g \geq 3$. Hence, we mention just on the case of $g \geq 3$.

We fix a vertex v_0 of $Y(H_g)$, fix an edge (= a 1-simplex with orientation) e_0 of $Y(H_g)$ which emanates from v_0 and fix a 2-simplex f_0 of $Y(H_g)$ which contains v_0. Let D_0, D_1 and D_2 be meridian disks indicated in Figure 6, we set $v_0 = [D_0], e_0 = ([D_0], [D_1])$ and $f_0 = ([D_0], [D_1], [D_2])$. We choose an element r_0 of \mathcal{H}_g which switches the vertices of e_0, in our situation, we set $r_0 = d_g$. By this notation, we see $e_0 = (v_0, (v_0)d_g)$ We denote the stabilizer of v_0 by $(\mathcal{H}_g)_{v_0}$, that of e_0 by $(\mathcal{H}_g)_{e_0}$ and an infinite cyclic group generated by d_g by $< d_g >$. The free product $(\mathcal{H}_g)_{v_0} * < d_g >$ with the following three types of relation define a presentation for \mathcal{H}_g.

(Y1) $d_g^2 = \text{a presentation of } d_g^2$ as an element of $(\mathcal{H}_g)_{v_0}$.

(Y2) For each element t of $(\mathcal{H}_g)_{e_1}$, $(d_g)^{-1}(\text{a presentation of } t \text{ as an element of } (\mathcal{H}_g)_{v_0})d_g$

$= \text{a presentation of } (d_g)^{-1}td_g \text{ as an element of } (\mathcal{H}_g)_{v_0}.$

(Y3) For the loop ∂f_0 in $Y(H_g)$, we define an element W_{f_0} in the follwing manner. The loop ∂f_0 consists of three vertices v_0, v_1, v_2 and three edges e_1, e_2, e_3 such that $e_1 = (v_0, v_1), e_2 = (v_1, v_2), e_3 = (v_2, v_0)$. There is an element h_1 of $(\mathcal{H}_g)_{v_0}$ such that $e_0h_1 = e_1$ i.e. $e_1 = (v_0, (v_0)d_gh_1)$, then $e_2(d_gh_1)^{-1}$ is an edge emanat-
ing from v_0. Hence, there is an element h_2 of $(\mathcal{H}_g)_{v_0}$ such that $e_0 h_2 = e_2 (d_g h_1)^{-1}$ i.e. $e_2 = ((v_0) d_g h_1, (v_0) d_g h_2 d_g h_1)$, then $e_3 (d_g h_2 d_g h_1)^{-1}$ is an edge emanating from v_0. So, there is an element h_3 of $(\mathcal{H}_g)_{v_0}$ such that $e_0 h_3 = e_2 (d_g h_3 d_g h_2 d_g h_1)$. We define $W_{f_0} = d_g h_3 d_g h_2 d_g h_1$. This element W_{f_0} fixes v_0, so the following is a relation for \mathcal{H}_g. W_{f_0} is a presentation of W_{f_0} as an element of $(\mathcal{H}_g)_{v_0}$. If $g \geq 3$, then this type of relation is $d_g d_{g-1} d_g = d_{g-1} d_g d_{g-1}$, and if $g = 2$, then this type of relation is $(d_2^{-1} t_1 d_2 t_1)^3 = 1$, where $t_1 = t(2)^2 k_1^{-1} a_2$.

For subsets A_1, \ldots, A_n of H_g, we define $Diff^+(H_g, A_1, \ldots, A_n) = \{\phi \in Diff^+(H_g)| \phi(A_1) = A_1, \cdots, \phi(A_n) = A_n\}$. We can see $(\mathcal{H}_g)_{v_0} = \pi_0(Diff^+(H_g, D_0))$, and $(\mathcal{H}_g)_{e_0} = \pi_0(Diff^+(H_g, D_0, D_1))$ Let $\Sigma_g = \partial H_g$ and let $F_n\Sigma_g$ be the space of all ordered n-tuples of distinct points of Σ_g: $F_n\Sigma_g = \{(p_1, \cdots, p_n)|$ each $p_i \in \Sigma_g$, and $p_i \neq p_j$ if $i \neq j\}$. We define the n-string pure braid group $P_n(\Sigma_g)$ to be the fundamental group of $F_n \Sigma_g$. Let p_1 and p_2 be points on ∂H_{g-1}, and $p_{0,1}, p_{0,2}, p_{1,1},$ and $p_{1,2}$ be points on ∂H_{g-2}.

We can get a presentation for $(\mathcal{H}_g)_{v_0}$ by investigating the following three exact sequences:

\begin{enumerate}
 \item $P_2 \Sigma_{g-1} \xrightarrow{\beta} \pi_0(Diff^+(H_{g-1}, p_1, p_2)) \xrightarrow{\alpha^#} \mathcal{H}_{g-1} (= \pi_0(Diff^+(H_{g-1}))) \longrightarrow 0,$
 \item $0 \longrightarrow \pi_0(Diff^+(H_{g-1}, p_1, p_2)) \xrightarrow{\delta} \pi_0(Diff^+(H_{g-1}, \{p_1, p_2\})) \xrightarrow{\gamma} \mathbb{Z}_2 \longrightarrow 0,$
 \item $0 \longrightarrow \mathbb{Z} \longrightarrow \pi_0(Diff^+(H_g, D_0)) \xrightarrow{\lambda} \pi_0(Diff^+(H_{g-1}, \{p_1, p_2\})) \longrightarrow 0.$
\end{enumerate}

We can get a set of generators of $(\mathcal{H}_g)_{e_0}$ by investigating the following three exact sequences:

\begin{enumerate}
 \item $P_4 \Sigma_{g-2} \xrightarrow{\beta} \pi_0(Diff^+(H_{g-2}, p_{0,1}, p_{0,2}, p_{1,1}, p_{1,2})) \xrightarrow{\alpha^#} \mathcal{H}_{g-2} (= \pi_0(Diff^+(H_{g-2}))) \longrightarrow 0,$
 \item $0 \longrightarrow \pi_0(Diff^+(H_{g-2}, p_{0,1}, p_{0,2}, p_{1,1}, p_{1,2})) \xrightarrow{\delta} \pi_0(Diff^+(H_{g-2}, \{p_{0,1}, p_{0,2}\}, \{p_{1,1}, p_{1,2}\})) \xrightarrow{\gamma} \mathbb{Z}_2 \times \mathbb{Z}_2 \longrightarrow 0.$
\end{enumerate}
$0 \longrightarrow \mathbb{Z} \times \mathbb{Z} \longrightarrow \pi_0(Diff^+(H_g, D_0, D_1))$
\[\lambda \pi_0(Diff^+(H_{g-2}, \{p_0,1, p_0,2\}, \{p_1,1, p_1,2\})) \longrightarrow 0.\]

We can give relations of type (Y1) and (Y2) by drawing some figures.
For details please see [6].

ACKNOWLEDGEMENTS

The author would like to express his gratitude to Prof. D. McCullough and Prof. B. Wajnryb for sending their papers to him.

REFERENCES

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ENGINEERING, SAGA UNIVERSITY, SAGA, 840 JAPAN
E-mail address: hirose@ms.saga-u.ac.jp