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MAPPING C‘LASS GROUPS OF 3-DIMENSIONAL
HANDLEBODIES AND MERIDIAN DISKS

SUSUMU HIROSE ,
B O# (EMAX B=I)
1 INTRODUCTION

A genus g handlebody, Hy, is an oriented 3-manifold, which is constructed from
a 3-ball with attaching g 1-handles. Let Di ff*(Hg) (xesp. Dif f+(6H,) ) be the
group of orientation preserving diffeomorphisms on Hy (resp. 8Hy), H, (resp. M,)
be a group which consists of isotopy classes of Dif f+(H,) (resp. Diff +(6Hy)) .
Generators of H, are given in [11] and [7]. Wajnryb gave a presentation for H, in
(12]. In this note, we give a presentation for H,y with using other method. When
g 2 3, we use a simplicial action of H, on simplicial complex (which is a subcomplex of
a contractible complex defined by McCullough [10]) defined as follows: its vertices are
isotopy classes of meridian disks in H, (essential 2-disks properly embedded in H, )
and its simplex is a system of isotopy classes of meridian disks which are represented
by disks, which are disjoint and non-isotopic each other and whose complements
is connected. This complex is (g — 2)-connected, especially, if g > 3, it is simply
connected. (When g = 2, unfortunatelly, this complex is not simply connected, hence
we use & contractible complex defined in [10]. ) This is subcomplex of a complex X
defined by Harer in [5]. Since the orbit space of the former one by H, is identical
with the latter one by My, our method can be applied to giving a presentation for
M, without using a complex defined by Hatcher and Thurston [4].

This note is a summary of a paper [6]. -
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FIGURE 1
2. A PRESENTATION FOR H,

Before we state a presentation for H,, we set notations used there. Sometimes, we
indicate an element of H, by a figure. In Figure 1, the left hand side figure denotes
an element given in the right hand side figure. The symbol 2 means commute with.
For example, if L, M, N are any elements of H,, a relation L & M, N means that
LM = ML, LN = NL. The commutator of A and B, A"'B~'AB, is denoted by
[A, B]. In this paper, we consider that the group H, acts on H, from the right: for
any elements ¢y, ¢2 of Hy, ¢p1¢2 means apply ¢; first, then apply ¢,.

Theorem 2.1. Letay, ky, d; (2 <4< g),8(2)21,7(2)21 be the elements of H, indicated
in Figure 2. The group H, admits a presentation with generators a;,, ky, d; (2 <4 <
9), t(2)21, 7(2)21 and defining relations:

ifg >4,

dr_yzla'mdm = Om-1, d;zlam—-ldm = Om,
(Al) dy_y;lkmdm = km-—17 d;nlkm—ldm :’kfm
where 2 <m < g,



FIGURE 2



ceed kT LR ;
) rr i i e
(A3) C di=ritdn,
(A4) r(m)y = kmr(m)aiknt, H(m)ij = kmt(m)asks
(A5)

r(m);; = djk;_ll'r(m)i,j——lkj-ld_;l»
t(m)y; = dik; L t(m)s j1kj1d;

wherem=1,---,g9,1=1,2, j #m,m—1, and index j is given modulo g,

(A6)
r(m),-j = dmk;l_lr(m - l)i’jkm_ld,,_nl,
t(m)ij = ke 18(m — 1ikm-1dy,',
wherem =1,---,g,1=1,2, j #m,m—1, and index j is given modulo g,
k :
(A7) C(m)z[]vj + 17 v 7.j + k] = (H [t(m)i,j-i—m r(m);,‘jl—i—n])a’;z&k-‘_l)a
n=0 :
where i = 1,2, and index j is given modulo g,
(A8) An =k2 wherel <m<g,
(Ag) t1 = t(2)21k1’1a2,
B1 d; = d;, where |i —j] > 2,
(B1) dyld7hdid; 1d; = di; where2 <i<g,
(B2) a; = ag,
a1,k 2 d;, where3 <1< g,
(B3)

ag, kg & dj, where2<j<g-—1,

(B4) kl = ai, az,



- (B§)

(B5) | | d3 = ai,
(B6) t(3)11, 7(8)11 2 t(3)22, r(3)22,

t(2)21A2t(2)11A2_ 1t(2)2—11 = 1(2)11,
t(2)21A2T(2)11A§1t(2)£[1 = a;zAzr(z)H

(B7) 7(2)21A2t(2)11r(2)5 = a7%(2)1a
r(2)z14gr (2udy 2z =r(2u

ki ')k = £(2)5 7(2)a1t(2)21' 7(2)7'4(2)a1,
by 'r(2)a1kn = t(2)57(2)5 ¢(2)21,

(B9) aflt(2)21: :(:((2))22?)‘175(2)21

(B10) az 7 t(2)21,7(2)a21,

(B11) dy 2 7(2)a1(a;) ™

(B12) aa, k3 2 H(2)a1,7(2)a,

(B13) £(2)2,1,7(2)21 2 t(4)23,7(4)2 3,

(B14)

£(2)51t(3)214(2)2,1 = (£(3)757(3)2,28(3)2,2) T£(3)2,1 (£(3)537(3)2,2£(3)2,2),
t(2);jt(3);jr(3)2’1t(2)2,1 =ag lt(3)2—,i""(3)2,1 (t(3)537(3)2,2E(3)2,2),
£(2)718(3)2,28(2)2,1 = 05 '8(3)2,28(3)51(£(3)757(3)2,2t(3)2,2),
t(2)2,1 2 7(3)2.2,

r(2)z1t(3)2,17(2)21 = a5 (8(3)257(3)2,28(3)2.2) £(3)2,1,
r(2)717(3)217(2)21 = (#(3)257(3)2,28(3)22) 17(3)2,1(¢(3)337(3)2,2t(3)2,2),
7(2)71t(3)227(2)21 = a374(3)2,2r(3)51 (£(3)237(3)2,2E(3)2,2),

7(2)21 & 7(3)2,25

(B15)

(Bl6)
dj = a3 {(8(2)11) 7' 7(2)118(2) 11 (r(2)11) T HE{(#(2)21) "1 (2)212(2) 21 (1(2)21) "1 }E2,



7(9)2,9-1,1(9)2g-1 2 d; where2<i< g—2,
(B17) ' 7(9)2,1,t(g)21 2 d; where 3 <i < g—1,
t(2)2,1,£(2)21 = d; where4 <1< g,

d2_17'(3)2,1dl
=t(3)517(3)2,1¢(3)2,17(3)71 X 1(3)527(3)32t(3)2,2
X 7(3)2,1t(3)217(3)2.1t(3)2,1,

(B18) d_ t(3)2 1d2
=(3)517(3)2,1(3)2,17(3)z1 X t(3)2 37(3)2,26(3)7,57(3)55t(3)2,2
X 7(3)2,18(3)517(3)2,1t(3)2.1,
(B19) (d3't1dat1)® = d,
(B20) 4y = ﬁ[t(g)zmr(g)zz]a 2-1),
(B21) r(2)n = r(1)12m0;"
(B22) |
£(2)114(2)21 4205 = I_Ig{t(z)z (@) 1c(@)2(2, -+ i — e(@i[2, - i — AT e},
(B23) k2 Ay = I_Ig{c v i — e()1[2, -+, — 1)A7 a2,

and if g = 3, the above relations except (B13) and (B17) are satisfied and sufficient,

and if g = 2, (A1), (A4), (A8), (A9), (B2), (B4), (B7), (B8), (BY), (B10), (B11),
(B20) and

(B16") d2 =1,

(B19’) (dy't1daty)® = 1,
(B21%) | 7(2)117(2)91 4203 = 1,
(B22’) t(2)11t(2)214205 = 1,

(B23)  KBA=1,



are satisfied and sufficient.

In this presentation, (A*)’s are the relations which define some generators from a,,
k1, d; (2 < i< g), t(2)21, and 7(2)2,;1 (these are indicated in the sequal of this paper
by Figures). (B*)’s are easily checked by drawing some figures. From here to the end

of this paper, we will show sufficiency of these relations.

3. DIisKk COMPLICES

Let H, be a three dimensional handlebody of genus g, Ei,... , E; be mutually
disjoint 2-disks embedded in 0H,. By a disc in (Hg, {Fy, ..., E;}) we mean a prop-
erly imbedded 2-disc (D,0D) C (Hgy, 0Hy) which is disjoint from Ey U --- U Ej.
The disc D is called meridian disc in (Hy, {Ey,...,E}) when Hy — D is con-
nected. Define the nonseparating disc complex of Hy to be the simplicial complex
L'(Hy{En, ..., E}) whose vertices(0-simplices) are the isotopy classes of meridian
discs in (Hy, {En, . .. , Ei}), and whose simplices are determined by the rule that a col-
lection of n+1 distinct vertices spans an n-simplex if and only if it admits a collection
of representative which are pairwise disjoint. Define the comlex Y (Hy, {E1,... , Ei})
to be the subcomplex of L'(Hy, {E,...,E}) whose n-simplex is determined by
n+1 distinct vertices represented by pairwise disjoint discs Dy, Dy, ... , D, such that
Hy,— DyU D U---UD, is connected. If there is no distinguished discs {F1, ... , Ei}
on OH,, we denote these complices by the notation L'(H,) and Y (H,). We call a
system of meridian discs the set of mutually disjoint and nonisotopic meridian discs
in (Hg,{E,... ,E}). Each simplex of L'(Hg, {E,.. ., i}}) is represented by a sys-
tem of meridian disks. The definition of L'(Hgy, {Ex, ... , E;}) is a modification of the
disc complez defined in section 5 of [10]. The following theorem is proved by a slight
modification of the proof for Theorem 5.2 of [10].

Theorem 3.1. L'(H,, {Es, ... , Ei}) is contractible. O

We will show the following theorem.

Theorem 3.2. Y(Hy, {Ey, ..., E}) is (g — 2)-connected.



FIGURE 4
This comlex Y (Hy, {Ex, ..., E}) resembles complices X defined in [5] and Y’ de-
fined in [3]. We prove the above theorem as in the proof of Theorem 1.1 of [5] and

the proof of Propositon of [3].

Proof. We prove this theorem by the induction of genus g.
At first, we prove Y(Hp, {E,...,E}) is connected(0-connected). By 3.1,
L'(Hy,{E,...,E]}) is connected. As is indicated in Figure 3, there is two types
of edges in L/(Hy, {E1, ... , Ei}). The first one is in Y/(Ha, {Ey, ... , Ei}). The second
one is not in Y (Hy, {Ei, ... , Ei}), but there is a bypass in Y (Hy, {Ey, ... , Ei}) given
in Figure 4. Hence, Y (Ha, {E1, ... , E}) is connected.

We assume, for any integer k smaller than g, Y(Hg, {E,...,E}) is (k — 2)-
connected. Let i be an integer smaller than or equal to g — 2, and f : S° —
Y(H,,{Ey, ..., Ei}) be a continuous map. Since L'(Hg, {E1, ... , Et}) is contractible,

there is a continuous map f : D" — L/(Hy, {E1, ... , E;}) such that flopi+r = f.



We may assume f is piecewise linear with respect to some triangulation of D**!, If
F(D**1) is contained in Y(Hy, {Es, ..., E}), this means that f is mull-homotpic. We
assume f(D*!) is not contained in Y (Hy, {E, ..., Er}). Then, there is a simplex
o of D! such that f(o) is not contained in Y(Hg,{Ey,...,E}), and this means
that there is a representative {DgoU---U D;} of f(o) with disconnected complement.
Let G, be a graph defined as follows. Each vertex corresponds to cdmponents of
Hy — Dy U---U D;. Each edge corresponds to one of Dy, ... ,D; and connecting
vertices corresponding to the components containing this disc. Since Dy U --- U D;
has disconnected complement, G, has at least two components. There is a nonempty
subgraph of G, whose edges connects distinct vertices. Let D be the subsystem of
{Dy, ... ,D;} which corresponds to the edges of this graph. This system D satisfies
the following property:

*) Let D ={Dj,...,D. }. Each D € D separetes H, — Up,D),.
0 a g Falln

A system of meridian discs which satisfies property(*) is called purely separating
system of meridian discs, and a simplex of L'(Hy, {E1, ... , E}) is called purely sepa-
rating if it is represented by a purely separating system of meridian discs. D represent
a face of fo, so there is a simplex 7 of D**! such that f(r) is purely separating. In

general, we have shown the following lemma.

Lemma 3.3. Each simplex in L'(Hg, {E,, ... ,Ei}) has a face which is purely sepa-

rating.

Let o be a simplex of D! of maximal dimension p such that f (o) is purely
separating. This simplex o is not contained in &D*', hence, Link o is home-
omophic to S*?. Let {Dy,...,Dp} be a system of meridian discs which repre-
sents f(o), and let M = H, — Dy U --- U D,. We define the complex Y (M, *) for
(M,{E\, ..., E;,discs which are emerged as a cut end along Dy U --- U D,}) in the
same manner as Y (Hg, {En, ... , E;}). Then, each disc which represents each vertex

of Link o does not separate M. In fact, if some vertex v of Link o separates M, then
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f(v+*0) is purely separating, and this fact contradicts the maximality assumption of
p. Hence, each vertex of Link ¢ is mapped into Y (M, *) by f. If there is a simplex p

of Link o such that f(p) separetes M, then, by 3.3 there is a face T of p such that f(7)

is purely separating. Then f(7 * o) is purely separating, and 7 %o C Link 0 C D**.

This fact contradicts the maximality assumption of p. Hence, f(Link o) C Y(M, *).

By the way, M is a disjoint union of handle bodies, and the total number m of these
genera is at least g—p. Y (M) is a join of Y’s of each components of M. Hence, by the

hypothesis for the induction, Y (M) is (m — 2)-connected. Here, we remember that

i < g—2, then we can see i —p < g —2 —p < m— 2. This shows that fILz’nk o 1s null

homotopic in Y (M), hence, in Y (Hy,{E1, ..., Ei}). Therefore, we can homotope f

such that f(Link o) C Y (Hy, {E,-.. ,Ei}). We do the same way for other simplices

whose images are purely separating, then f is homotoped to a continupus map whose

image is in Y(Hy,{E1,..., Ei}). O

4. OBTAINING A PRESENTATION FROM THE ACTION OF H, ON Y(H,)

For each element ¢ of H, and simplex ([Dyl,...,[Dn]) of Y(H,) (resp.A'(Hy)
), ([B(Do)];---,[¢(Dn)]) is also a simplex of Y (Hy) (resp.A'(Hy) ). Hence, we
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can define a right action of Hy on Y(H,) (resp.A’(H,) ) by ([Dy],...,[Dn])¢ =
([¢(Do)];, - - , [#(Dyn)])- We can see that, if g = 2, each of { 2-simplices of A'(H,)}/Ha,
{ L-simplices of A’(H3)}/H, and { vertices of A'(H,)}/H; consists of one element,
each of which is represented by ([Do], [D1], [D2]), ([Do), [D1]), and ([Do]), where
Dy, Dy, D, are indicated in Figure 5, and if g > 3, each of { 2-simplices of Y (H,)}/H,,
{ L-simplices of Y(H,)}/M, and { vertices of Y (H,)}/H, consists of one element,
each of which is represented by ([Do], [D1], [De]), ([Do], [D1]), and ([Dy]), where |
Dyg, Dy, D, are indicated in Figure 6. If stabilizer of each vertex is finitely pi‘esented,
and if that of each 1-simplex is finitely generated, we can obtain a presentation for
H, as in the way of [9], [12]. Here, we will mension these method. The action of H,
on A'(H,) is similar to the action of Hy on 2-skelton of Y(H,) when g > 3. Hence,
we mension just on the case of ¢ > 3.

We fix a vertex vy of Y(H,), fix an edge (= a l-simplex with orientation) e
of Y (H,) which emanates from vy and fix a 2-simplex fy of Y/(H,) which contains
vo. Let Do, D; and D, be meridian disks indicated in Figure 6, we set vy = [Do],
eo = ([Do], [D1]) and fo = ([Do], [D1], [Da]). We choose an element ro of H, which
switches the vertices of ey, in our situation, we set 7y = d,. By this notation, we see
eo = (vo, (vo)dg) We denote the stabilizer of vo by (H,),, , that of ey by (H,)e, and
an infinite cyclic group generated by dy by < d; >. The free product (Hg)y,* < dg >
with the following three types of relation define a presentation for H,,.

(Y1) d2 = a presentation of d2 as an element of (Hy)y,.

(Y2) For each element t of (H,)e,,

(dy)™*( a presentation of t as an element of (Hg)wo)dy

= a presentation of (dy) 'td, as an element of (H,).,.

(Y3) For the loop 3y in Y(H,), we define an element Wj, in the follwing man-
ner. The loop dfy consists of three vertices vy, v1, vy and three edges ey, es, e5 such
that e1 = (vo,v1), e2 = (v1,%), es = (vz,v). There is an element h; of (Hg)wo

such that egh; = e; i.e. e; = (w, (vo)dghy), then ey(dghy)™! is an edge emanat-
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ing from vy. Hence, there is an element hy of (Hy)y4, such that eghy = ea(dghy)™?
ie. ey = ((vo)dghy, (vo)dghadghy), then es(dyhadyhy)™" is an edge emanating from
vo. So, there is an element hg of (M), such that ephs = Cg(dghzdghl)_l ie.
es = ((vo)dghadghi, (vo)dghsdghodgh,). We define Wy, = dghadghadghy. This ele-
ment Wj, fixes vp, so the following is a relation for H,. Wy, = a presentation of W,
as an element of (Hy),. If g > 3, then this type of relation is dgdy—1dy = dg-1dydg-1,
and if g = 2, then this type of relation is (dz'tydat;)® = 1, where t; = £(2)2,1k7 ' as.

For subsets A, ... , A, of Hy, we define Dif f+(Hg, Ay, ... ,An) ={¢ € Dif f*(H,)|
P(A) = Ay, -+, d(A,) = A}, We can see (Hg)w, = mo(Dif f(Hg, Dp)), and (Hg)e,
= mo(Dif f*(Hy, Do, D1)) Let £, = 0H, and let F,.%,; be the space of all ordered
n-tuples of distinct points of Xg: FrEg = {(p1,-** ,pn)| each p; € Xy, and p; #
p;j if i # j}. We define the n-string pure braid group P,(X) to be the fundamental
group of F,%,. Let p; and p, be points on 0H,_;, and po,1, Po2, P11, and pr2 be
points on 0H,_,.

We can get a presentation for (H,),, by investigating the following three exact

sequaences:

(1) P2Eg—1 "E‘" 7"0(*D’iff_k(l:lg—1)pl)p2)) fi Hg—l(: WO(Diff-i_(Hg"l))) - 07
2) 0 — mo(Dif fH(Hy—1,p1,02)) = mo(Dif fH(Hy1, {p1, p2})) = Zy — O,

(3) 0 — Z —> mo(Dif f+(Hy, Do) = mo(Dif f+(Hy-1, {p1,p2})) — O.

We can get a set of generators of (Hy)e, by investigating the following three exact
sequences: ‘

(4)

PyYg o 2, mo(Dif f+(Hy—2, D01, P02y P11, Pr2)) — Hg—a(= mo(Dif f*(Hy—2))) — 0,

. ' s
0 —mo(Dif fY(Hg—2, P01, Po2, P11, P1,2)) —

(5)
7o(Dif fH(Hy2, {po,1, Po2}s (P11, P12})) — Zy X Zy — 0
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0—ZXZ —-—-)71’0(Diff+(Hga DO’ Dl))

6
(6) 25 mo(Dif £ (Hg—2, {po, oz}, {Pr,1,912})) — O.

We can give relations of type (Y1) and (Y2) by drawing some figures.

For details please see [6].
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