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On the Well—pdsedness of a Linear Heat
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1 Introduction

This note is the joint work with Prof. M. Tsutsumi (Waseda Univ.).
'Consider the initial-boundary value problem of a linear heat equation
with a time-dependent singular potential V = V(¢, z):

ur—Au=Vu in (0,T) x 0,
(IBVP)d u=0 on (0,T) x 89, (1.1)
u(0,z) = uo(z) in Q,

where () is a smooth bounded domain in RN (N > 3) and T > 0 is an
arbitrary positive number. Here initial data u, is LP-function on Q,p>1.

We are concerned with the well-posedness of IBVP on L7 if a potential V
belongs to the class L(0,T; L% (R)). Here, the class L>(0,T; L7 (9)) may
be regarded as a borderline case for the well-posedness. To see this situation,
we shall briefly review the known results.

When a potential V' belongs to L*(0,T;L°(Q)) with ¢ > N/2, for
every initial data uo € LP(2), p > 1 IBVP has a unique solution u €
C([0,T]; L?(22)) which is acted on by the smoothing effect up to u(t) € L*(0)

for ¢ > & with ¢ > 0. More precisely, the following theorem is known (See
Theorem Al in [7] for instnance). '

Theorem A. Let V € L>(0,T; L°(Q)), o > N/2. For every uy € LP(Q),
p 2 1, there exists unique solution u € C([0,T]; L(Q)) N L. (0, T; L=(2))
of IBVP. .

On the other hand, if V- e L*(0,T;L°(Q)) with ¢ < N/2, then such
a class of the potential V is too singular for assuming the existence of a
solution u of IBVP. In fact, Baras and Goldestein [3] proved the following
ill-posedness result.



Theorem B. Let ) 3 0, and let V be a time-independent potential such
that

C (N 2)2
El—z’ where C > 1

Then for every (smoothly) nontrivial nonnegative initial data uo € L*(£),

there is no nonnegative solution u € C([0, T}; L*(Q)) of IBVP for any T > 0
in the following sense:

u>0 on (0,7)xQ, Vue Ll ((0,T)x ),
—Au=Vu inD'(0,T) x N)
lim / u(t)C = / ol for V¢ € D(Q).

V(z) =

Remark. (1) The above potential V' is in LP(2) for p < N/2 and does not
belong to L7z (Q)

(ii) (N — 2)?/4 is significant because the number is the optlma,l constant
in Hardy inequality on a ball B or RY, that is,

=2 1 ol
4 B |z|?

dw_<_/E|V<p|2dm,

for all ¢ € Hj(B).

From Theorem A and Theorem B, we can say that the potential class
L>(0,T; L%(Q)) is critical for the well-posedness of IBVP.

Our main results are, roughly speaking, as follows: If pis greater than one,
then IBVP is well-posed on LP(2). On the other hand, the well-posedness of
IBVP breaks down on L'(2). Precisely, the following theorems hold.

Theorem 1.1 LetV € L*(0,T; L‘Izz(ﬂ)) Then for every ug € LP(Q), p > 1,
there exists a unique solution u satisfying the following (i) and (ii):

() u € O(0, T} L7(R)  Lr(0, T LA% () 1 Lz (0, T; L9(8)) for any
g < +o00.

(ii) For all ¢ € D([0,T) x Q) the above function u satisfies the following
integral identity

’ .
/nuogo(O, z)dz + /0 /ﬂ[uc,ot + ulAp + Vupldzdt = 0. (1.2)

Remark.” We can not expect that u(t) has L*-regularity for ¢ > ¢ with
e > 0. The reason is as follows: If u € L2 (0,T;L*(Q)), then Vu €
ijc(O,T;L%(Q)). On the other hand, the maximal regularity result [10]
gives that

u € L2, (0, T; W5 () N WJ%(Q)) for any p < oo.
But W25(Q) ¢ L(9).
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Theorem 1.2 Let Q 3 0, and let Q' be an arbitrary subdomain in ) with
Q>0 and ¥ C Q. Suppose that V = V(z) is a nonnegative potential in
L®(Q\Q') having such a singularity as

V(z|) = |C|’2 (log | 1|2)_ near z ~ 0, (1.3)
where 2 ~¥ <@ < 1and C > 0. Then for any C > 0 there exists some uy €
L(Q), uo > 0 such that there is no nonngative solution u € C([0, T}; L* ()
of IBVP for any T > 0 in the following sense:

u _>_ 0 on(0,T)xQ, VueLL ((0,T) x Q),
tw u(t)( -—/ uo( for V{ € D(Q).
Remark. (i) Note that the above V is in L7 () if and only if « > 2/N. In

addition, V' is not in Kato class Kn(Q) if and only if @ < 1. Recall that a
measurable function V is in Kato class Ky (), if V satisfies

hm[sup/ M—d ] =0.

710 Lpeq Hjo—yl<ring |z — y|N -2

If a potential V' belongs to Ky(Q2), then the Hamiltonian H = —A + V
has several good properties (See B. Simon’s survey [13], in which the related
topics to Kato class Ky () is discussed in detail, and see also [1]).

(ii) The assumption Vu € LL ((0,T) x Q) is by no means restrictive. In
fact, Baras and Cohen [2] proved that if a nonnegative measurable function
F(t,2) is not in Lj,.((0,T) x ), then the solution u of u, = Au + F(t, T)
must have an instantaneous blow-up at ¢ = 0 (see also [12] and [14]).

(iii) The ill-posedness result remains true if we replace the above V by
any potential V, where V(z) > V(z) in Q.

Notation: Throughout this paper, we denote by D(Q) the space of all in-
finitely differentiable functions on Q with compact supports, and D+ Q) =
{v € D(Q); ¢ > 0}. By C we denote general positive constants, which may
be different in each inequality.

2 Proof of Theorem 1.1

We shall proceed by approximation. For any n € N, we truncate V by

-n if V(t,z) < —n,
Valt,z) =< V(t,z) if —n < V(¢ z)<n, (2.1)
n - if V(¢t,z) < n.
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Then we have V,, € L°((0,T) x Q) and V,, — V strongly in L*(0,T; L% (%))
as n — oo.

Now we consider the sequence of approximate solutions {uy}nen Which
solves the following approximate problem:

(un)t Au, = V,u, in (0,T) x 9,

on (0,T) x 99, (2.2)
un(O,w) = uo(z) in Q.

Then from Theorem A we can see that for every uo € L?(Q) there exists a

unique approximate solution u, € C([0, T]; LP(Q)) N LS,(0, T; L=(12)).

(i) Existence. We can estanblish as a priori estimates of u, Proposition
2.1 and Proposition 2.2 below, where the proofs are omitted.

Proposition 2.1 There exists a constant C > 0 depending only on p,V,T
and ) such that

llun()llze(@) < Clluol|ze(o), (2.3)
and
B
”Vlunlgnm(o,r)xn) < Clluol|zrq)- (2.4)
Moreover,
HunHLP(OC[ ity = Clluollzr(@)- - (23)

Proposition 2.2 Let p,, = (%) p for any m € IN. There exists a con-
stant C > 0 such that

C
[ ()| Lrm(a) < EIIUOIILP(Q), (2.6)

for t € (0,T").

From Proposition 2.1 and Proposition 2.2, there exists a limit function
u = lim uy in the class C(0,T; L?(Q2))N L*(0, T; v Q)NL(0,T; L7 (Q))
for any q < 0.

satisfies

T
/Qump((),m)dac + / /Q[unt,ot + U, A + Vyugpldzdt = 0.
0

We may only verify the convergence of the last term, since that of the re-
maining terms is obvious. Rewriting

T _ T , T
] / Vit = / /(Vn = Vunp +/ / Vunp,
o Ja o Ja . . o Ja

(ii) Convergence. For all ¢ € D([0,T) x ), the approximate solution u,
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then we estimate

! Vo=V
/(; [1( n )UnSO
<||Va— Vl|L°°(O,T;L§(Q))||un“L1(0,T;L7$-L5(Q))“(p|le((O’T)XQ)'

Letting n — oo, then we obtain
T T ' '
/ / Vatnp — / / Vue. (2.7)
o Ja o Jo

(iii) Uniqueness. IBVP is the linear problem, so that we may only prove
that if ug = 0, then the soluton u(%) is trivial. We give the proof of uniqueness
by the duality method. -

Since u belongs to L?(0, T;LTV]!—%),vwe have Vu € L'(0,T; L*(f)), with
qlo = NN—;z + %, go > 1. Thus, we obtain that u € C([0,T]; L*(2)). On the
other hand, let w, be the solution of the backward (approximate) problem:

w, =0 on (—o0,t) x Q, (2.8)

—(wp): — Aw, = Vyw, in (—o0,t) x Q,
wn(tfl?w) = C(.’Z:) in (1,

where ( € D(Q2) and t, € (0,T) be arbitrary. Here we notice that w, €
C([0,2o0}; LU(£2)) N L0, 20; W2(Q) N Wy (Q)) and (wy): € LI((0, 1) X 0) for
every ¢ < oo (See [11] or [5]).

Thanks to desirable regularities of u and w,, we can take ¢ = w, as a test
function by the density argument and the cut-off procedure with respect to ¢
at ¢ = to. Therefore, we see that the following integral identity makes sense:
For every o € [0, T], solution u € C([0, T]; L% (Q)) satisfies that

/Qu(tO)C = /Oto /Q[u(wn)t + uAw, + Vuw,]
= /Oto /;I(V — V) )Juw,.

/ ° [ = Va)uao,

S ”V - Vn'|L°°(O,T;L12\L)Hu||L1(0,T;L7§!£§)”wnl|L°°(07T3Lq)’ (29)

Hence,

Wherél=1—%~ﬁl\7’£,q>l.

On the other hand, in the same manne as in the proof of Proposition 2.1
we obtain

l[wnllze@riza@) < ClIClILo@)-
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Letting n — oo in (2.9), we have

[ utto)c =o.

The arbitariness of ¢, € (0,T] and of { € D(Q) yields that u = 0.

Hence, we complete the proof of Theorem 1.1. 1

Remark. If we use the parabolic version of Strichartz L? — L? estimate

in harmonic analysis (See [4] and [15]), we can give a more simple proof of”

Theorem 1.1 by the contraction mapping principle on the space-time function
spaces.

An analogous poof of uniqueness in Theorem 1.1 gives that umqueness of
a solution of IBVP holds in the class L*(0,T; LP(Q2)) provided p > - as
follows.

Theorem 2.3 Let V € L°(0,T; L¥(R)). Suppose thatu € L=(0,T; L?(%))
~ satisfies that

T
/ uop (0, z)dz + / / [up: + uAp + Vupldzdt = 0, (2.10)
Q o Ja

for all ¢ € D([0,T) x Q) Ifp > —ﬁl\é-z-, then uniqueness of u holds in the class.

Brezis and Cazenave [7] proved the same uniqueness result for V €
C([0,T7; L2( )). They suggested the question 1f one can replace the as-
sumption V € C([0,T}; L= (Q)) by V € L*(0,T;L> (Q)) (see Open problem
9 in [7]). Thus, we can conclude that the answer is “positive”.

N_
N-2"°

can construct that for some V € C([0,T]; L%(R)) there exists a nontrivial
solution u € C([O,T];LW%(Q)) for initial data uy = 0 (see Remark A3 in
[7]). Hence, this uniquenss result is optimal.

Remark. Uniqueness in Theorem 2.3 fails when p = In fact, we

3 Proof of Theorem 1.2

The following lemma. plays an essential role in proving Theorem 1.2.

Lemma 3.1 Assume ) 3 0. Let v € C([0,00); L*()) be the solution of the
heat equation: ' '

Av (0,00) x O
(HE) { v=0 on (0,00) x Q, (3.1)
v(0,2) = up(z) in .
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Then there exists some uo € L'(2), ug > 0 such that

1
/ Vudzdt = +o0, (3.2)
o Jar

where V is the potential in Theorem 1.2.
Remark. Of course, v > 0 by the maximum principle.

Proof. Without loss of generality, we may assume that Q = B(1) and
Q' = B(1/2), where B(R) = {z € R" ; |z| < R}. Moreover, we may assume
that

. 1 1 \~¢
V(lz]) = { |z[2 (log ‘3’,2) on B(1/2), (3.3)
0 v

otherwise.

We shall give the proof by contradiction. Suppose that for every up €
L}(Q), uo > 0, the solution v of (HE) satisfies

) ‘
|4 t . 3.4
/0 /3(1/2) (|z])vdzdt < +o0 | (3.4)

Applying the closed graph theorem to the linear mapping -

Ug — U|(o,1)xB(1/2)7

then there exists a constant C' > 0 such that

1
Vv dzdt < C 3.5
/0 ./B(1/2) ([el)vdzdt < Clluollzs g0 /2)- (3.5)

for every ug € L'(B(1/2)). We consider a sequence {u?} C D(B(1/2)) such
that B

lluollzr(B1/2)) <1 and uy — 6 weakly in M(B(1/2)),

where 6 is the Dirac measure at 0 and M(B(1/2)) is the space of signed
Radon measures on B(1/2). Let G(t,z) be the corresponding Green function
determined by (HE), then by letting n — oo,

v, = v=G#*6=G(tz).
Applying to u? in (HE) and using Fatou’s lemma, then we have
1
V(|z))G(t, z)dzdt < C.
L [ V(DG 2)dadt <
On the other hand, we know that

G(t,z) = E(t,z) on (0,1) x B(1/2), (3.6)
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where E is the fundamental solution of (HE) in 2 = RY. Thus, we can
estimate that

1
/s /3(1/2) V(|e|)E(t, z)dzdt

2 |
1 N-3_ -I- 1 1 \ l-ayt=e
LY L . [ (log ) | _dar itF<a<,

(47)% Jo t ll—a\"#?2) lim
WN %rN"Se‘L:l log] 1 ]tmd if 1
(47;')221' 0 i [Og 8 i'Tz t=1 " _ Re=5

where wy is the measure of the unit (N — 1)-dimensional sphere. By using
elementary inequalities: for any a, b > 0

1 .
(a+b) 2 5o(a*+8) (0<a<l),

and log(a+b) > ~;—(log a + log b),

then we obtain

1—o
Cx(log 1) —C, fi<a<l,
£

L /B oy V1D B 2)deds > (3.7)

1
Csloglog — — C4 fa=1,
€

where C; (i = 1,2,3,4) is positive constant. Hence, letting € | 0 in (3.7), we
find that

V(lz)E(t,z) ¢ L*((0,1) x B(1/2)).
It follows from (3.6) that
V(le)G(t,z) ¢ L*((0,1) x B(1/2)), (3.8)

which contradicts the assumption (3.4). Therefore, we complete the proof of
Lemma 3.1. 1

Proof of Theorem 1.2. We argue by contradiction. Suppose that for any

ug € L*(Q), uo > 0, there exists some T' > 0 and a nonnegative solution u
of IBVP in the sense of (1.4).

By the standard argument, we can see that the solution u of IBVP in
C([0,T); L*(£2)) satisfies

/ﬂu(T—E){dm—/(zu(a)(dx+lT_EAu(—AC)dw
- / e fQ Vuldedt,
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for any {( € D(2) and small ¢ > 0. Since u € C([0,T]; L*()), by letting
e | 0, we see that each term in the left hand side converges as follows,

/Q w(T — €)¢dz — /ﬂ u(T)¢de,
/ﬂu(s)(dwq/nu()('da:,

/ o Jfu-a¢)de - [ ! [ u(=A)ds.

The above convergence implies that

lm [ /Q Vuldpdt = /O . /ﬂ Vuldzdt < oo.

€l0 Je

Taking ¢ € D*(Q) such that ¢ > 1 on @, we deduce that

T .
/ Vudzdt < oo, (3.9)
. Jo Jar
ie, Vue L'((0,T) x Q') (note that V > 0 and u > 0).
On the other hand, we have the following maximum principle:

Proposition 3.2 Assume F' € L'((0,T) x Q). Let w € C([0,T); L}()) be
a supersolution defined by

w; 2> Aw+ F(t,z) inD'((0,T) x Q),
w>0 on (0,T) x 99, (3.10)
w(0,2) = we(z) >0 in Q.

If F >0, thenw >0 on [0,T] x Q.

Let v be the solution of the heat equation such that

vy = Av in (0,00) x O,
(HE{ v=0 on (0,00) x oY,
v(0,2) = uo(z)|qr in ¥,

then it follows from Proposition 3.2 that u is a supersolution of (HE'), and
hence,

u(t) >v(t) >0 on [0,T] x .

In particular, taking ug € L'(Q) as in Lemma 3.1, then the nonnegative
solution v of IBVP must satisfy

1
[ [ vudedt = +oo, o (311)
o JQ/

which contradicts (3.9). Hence, we complete the proof of Theorem 1.2. 1
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