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The surface diffusion flow equation does not
preserve the convexity
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1 Introduction and main result

We consider the following geometric evolution law of the form

{ V=-AprmH onT(t),t>0, )

£(0) =T

Here t denotes the time variable and I'(t) denotes an unknown evolving hypersurface in
R" with n > 3; Iy is a given initial hypersurface in R®. For each ¢t > 0 and z € T'(¢),
the quantities V = V(t,z) and H = H(t,z) denote the outward normal velocity and
the outward mean curvature of I'(t) at z, respectively. The operator Ar() stands for
the Laplace-Beltrami operator on I'(t). The law (1) is called the surface diffusion flow
equation.

The solution I'(t) of (1) describes motion of interface in a binary alloy system. Equation
(1) was first proposed by Mullins [15] to explain thermal grooving in material sciences.
Also Davi and Gurtin [5] derived (1) from a view point of thermodynamics and continuum
mechanics (see also Cahn and Taylor [1]). Recently, J. W. Cahn, C. M. Elliott and
A. Novick-Cohen [2] linked (1) with the Cahn-Hilliard equation with a concentration
dependent mobility via formal singular limit.

Parametrization of (1) tells us that (1) is a nonlinear fourth order parabolic equation.
Generally speaking, behaviors of solutions of fourth order equations are less known than
those of second order equations.

The purpose here is to study the qualitative behavior of the solution I'(¢) of (1) in a short
time.

Several mathematical and numerical studies for (1) show remarkable characteristic phe-
nomena, for example, loss of embeddedness and loss of convexity. The loss of both em-
beddedness and convexity reflects the fact that a fourth order parabolic equation does
not fulfill the maximum or comparison principle. In fact, this principle is satisfied in the
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second order model such as the mean curvature flow equation

V=H onl(t),t>0, ' 9
I'(0) =T,. ?

The maximum principle prevents the developments of self-intersections (Grayson [11] for
n = 2) and preserves convexity (Gage and Hamilton [8] for n = 2 and Huisken [12] for
n > 3) of solutions of (2).

The loss of embeddedness for (1) was conjectured by Elliott and Garcke [6], numerically
established by Escher, Mayer and Simonett [7], and proved by Glga and the author [9]
for n = 2, and later by Mayer and Simonett [14] for n > 2.

On the other hand, J. Escher proposed a conjecture in the conference “Nonlinear Evolution
Equation” held in the end of June of 1997 in Oberwolfach that the convexity of the solution
I'(t) of (1) is not necessarily preserved. This phenomenon was also suggested by numerical
studies by B. D. Coleman, R. S. Falk and M. Moakher [3, 4].

Our problem here is to prove the loss of convexity for (1) from a theoretical point of view.
The rigorous proofs for the loss of convexity were obtained by Giga and the author [10]

for closed curves and by the author [13] for compact hypersurfaces. Our main result is
the following.

Theorem 1 . ([10] for n = 2, [13] for n > 3). There is a strictly convex closed compact
initial hypersurface L'y such that the smooth solution I'(t) of (1) starting from T'y loses its
convezity during a time interval (to,t;) with ty > 0 determined by T'y.

In the following we only treat the case that I'(t) are compact hypersurfaces. Here we
summarize the strategy to prove Theorem 1. Intuitively we can imagine that the solution
hypersurface of (1) starting from an initial hypersurface with sufficiently weak convexity
easily creats a loss of convexity. From this observation, in the first step, we introduce
a deformation depending on a small parameter ¢ > 0 for strictly convex hypersurfaces
[yp. Let us denote by I'§ the deformed hypersurface. This deformation is constructed to

weaken the convexity of the original surface I'y such as one of the principal curvatures of
- I'; has the order 0(—¢) locally. Then the smooth solution I'*(¢) of (1) starting from T'¢
exists for t € [0, T¢] for some T* > 0. But we should be afraid that T¢ may shrink to 0 as
€ — 0. In the second step we present a fact that there is a time T > 0 such that T¢ > T
for any sufficiently small . This means that I'*(¢) exists uniformly in e. Finally, using
the results of the previous two steps, we prove that if £ > 0 is sufficiently small, then one
of the principal curvatures of I'*(£) becomes positive after a finite time, which means that
I'*(t) loses its convexity.

Sections 2 and 3 are devoted to state local existence results for (1) which are constructed
in a differente framework from the result in [7]. Our result clarifies how the existence
time of local solutions depends on initial data. This enables us to establish the uniform

local existence result in €. In Section 4 we state the precise description of the proof of
Theorem 1.
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2 Local solutions for motion by surface diffusion near
a convex hypersurface

Following [7], we introduce a parametrization for (1). Let ¥ be a smooth compact convex
~ closed embedded oriented hypersurface in R™ and let {Ug, 1/:,3},3_1 be an atlas on X. For

s € Ug C X, ¢p(s) = (uh,-+-,up™) € Up := 95(Up) C R"! is called the local coordinate
of 5. Let z be the induced metric on ¥ from the Euclidean metric in R" and let &k be the
. second fundamental quantity of . The sign convention adopted here is that

h[£,€] <0 for any tangent vector field £ on X.

‘ In local coordinates they are written as

n-1 L n—-1 . .
zZ= Z z,g,,-,-du;; ® dufg, h= Z hﬂ,;jdufg ® du%
ig=1 L ig=1

at s € Us. Hereafter, if any confusion may not be caused, then using Einstein’s convention |
and omitting the index 8 we often simply write them as

z = zidu' @ du?, h = hdu' ® du’.
Throughout this paper we regard X as a Riemannian manifold with the metric z. We call
Y the reference hypersurface. . ‘
Let p: [0,T) x £ — R, := {r € R;r > 0} be a smooth scalar field and we assume
that I'(¢), t € [0,T), is written in terms of p(t, s) with p(0, s) = po(s) as
L(t) = {s + p(t,s)v(s) € R% s € T},
where v(s) is the outward normal of ¥ at s € X. We define two geometric quantities of
2 v
w(r) = wi;(r)du’ ® duf := (2ij — 2hijr + 2Mhgihyr?)du’ ® du?  for r > 0,
o(p, dp) = w(p) + dp ® dp,

where (2¥) = (2;;)~* and dp = 2du’.

Lemma 2 . Let T be a smooth compact convez closed embedded oriented hypersurface in
R"™. Then,

(i) w(r) is a metric on X for r > 0,

(i) o(f,df) is a metric on ¥ for nonnegative (at least) C*-scalar field f = f(s) on L.

By Lemma 2 we can consider the geometric operators acting on scalar fields ¥ on

Y such as gradw(f), Hessy(s), Aw(f), and Ag(s4p) With a nonnega.tlve scalar field f on X.
They are given in local coordinates by

gra'dw(f)q’ w (f g:f, 6?,”',
Hessy () ¥ = ( v ~-WE(f df) )du ® du?,
v Outdu’ TV Bk
Bt = 09() oy — W) )
w(f) Outdus WA Bk
v

Agiran® = 0" (f,df)(

ov
) kil
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where (w(f)) = (wy(£))™, (6%(f, df)) = (03i(£, df))~*; WE(S,df) and ~+5(f, df, Vdf)
with i,5,k = 1,2,---,n — 1 are the Christoffel symbols of w(f) and o(f, df), respectively.
We also define

L = L(p,dp) := (1 + w(p)[grady(,p: grad,,e) '/, (3)
w'(r) = wﬁj(r)du" ® du’ = (—2hy; + 228 hyshyyr)du’ @ du, '
w'(r)w*(r) = wi;(r)w(r) 4

| forr > 0. v
Then, as computed in [7] we can have the partial differential equation of p(t,s) de-
scribed by local coordinates which parametrizes (1). But this equation can be rewritten

in more intrinsic way by making further computations. We present here the equation of
p(t, s) in the intrinsic manner in the following:

Pt = _LAa(p,dp) [L_S{LzAw(p)P - Hessw(p)p[gradw(p)p’ gradw(;,)p]
' —%w'(p)[gradw(p)p, grady,p] — %sz'(P)w‘(P)}]’ t>0,s€%, (5)
p(Oa s) = pO(s)'J sEX.

Remark 3 . The equation (5) is still valid on any smooth compact closed oriented hy-
persurface X (not necessarily convez) as long as w(p) and o(p,dp) are metrics on %.

Next we state the local existence theorem of (5) for positive initial data. The differences
between the local existence theorem in [7] and ours is that our theorem uses the convex
reference hypersurface X, which enable us to treat large magnitude of positive initial data,
po(s). This property is needed in the proof of our main theorem (Theorem 11). Another
difference is that our local existence theorem is established in a different category from
that of [7], that is, the local existence theorem in [7] is established in the framework
of t-continuous and s-little Holder continuous regularity whereas our theorem is in the
framework of the type Clm/4+em+4a(5) for an integer m > 4 and 0 < o < 1/4, where the
symbol [g] denotes the largest integer less than or equal to g. Our theorem also explicitly
gives the information how the existence time depends on initial data, which is also useful
in the proof of Theorem 11.

Theorem 4 . Let m > 4 be an integer and 0 < o < 1/4. Let py € Cmtie (D) with
po(s) > 0 for s € . Set

my = Iéi)rzl po(s) > 0. (6)

Then there are positive constants T'(||pol|cm+sx(x), mo) and G(||po||cm+ia(x)) such that (5)
has a unique solution p(t, s) satisfying '

pE C[m/4]+a,m+4a ([O,To] % 2)',
llollcm/atamtagomxs) < G(lloollemraaz)),

) )
()0 Tl P (¢,8) 2 mo/2 >0,

where To := T'(||po||cm+4(z), M)
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Remark 5 . Here T(M,, my) is nonincreasing in My and nondecreasing in mo; G(My)
is nondecreasing in M.

The essential task of the proof of Theorem 4 is to show that the linearized differential
operator at initial data po is sectorial in C(X). Once this is verified, we can use the
iteration method in the linearized equation to obtain the desired unique local solution of
(5). The details are omitted.

3 Local existence of rotationally axisymmetric hy-
persurfaces for motion by surface diffusion

In this section we consider solutions of (1) which are rotationally axisymmetric hyper-
surfaces. First of all we specify the reference hypersurface ¥ embedded in R" with the
orthogonal cordinate (z*,z?,---,z") as a surface of rotation. For this purpose we prepare
a fixed smooth convex closed curve M embedded in R, , := {(z',2?,---,2") € R"; z3 =
... = z" = 0}. We assume that M is symmetric with respect to both the £' and z>-axes
and also assume that M contains two straight line segments which are parallel to the
zl-axis and intersect the z2-axis. To be precise we put

M = {u = (p(u"), g(u)) € B2 ooi ' € T},

where T := R/2IZ and 2! is the total length of M; u! denotes the arclength parameter
~ of M and is assumed to move clock-wise. We assume that functions p and g are smooth
and satisfy

p(u!) = —p(—u!), q(u')= Q(—ul) for u! € T,
, (ul,b) for |ul| < q,
(p(u'),q(u")) = {

(l-u,—b) for|ul —1|<a,
K(u') <0 fora<u'<l-aandl+ae<u' <2 -a

for some a,b € (0,1/2), where k(u') is the outward curvature of M.

We define a reference hypersurface X as the surface of rotation of M about the z!-axis.
This is given by ‘

% = {s = (p(u"), q(v')w) € R u € [~1/2,1/2),w € 5*7%},

where S"~2 is the unit sphere in R7; ! g1 centered at (z?,---,2"7") = (0,---,0). We
introduce a specified atlas of ¥ as follows. Let {V;,6,}]_; be an atlas of S"~2. Here we
assume that the coordinate functions 6.,

0,: Vy = V;CR*!
0 o ()

gives polar coordinates for V, fory =1,---,7. Set Uy, := (-1/2, 1/2)xVyfory=1,---,7%.
Define the mappings ¢, (v =1,--+,%) by

U,’, — X

Py -
(ula u?y) Ty ur”’;-l) = (p(ul)v q(ul)g;l(u?,, T ug_l))'
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Let U, := ¢,(U;) and define the mappings ¥, : U, — U, by ¢y :=p for y=1,--+,7.
Moreover set :
Uy = {s = (p(u'),q(v')w) € T;a < v < 1/2,w € S™°2},
_={s=(p(u'),q(u")w) € T;-1/2 < ul < —q,w € S,
Define the mappings . by
' Yy : Ui - R%!

T2 e 2T
(&', 2% 2") = (ul,---,ull) = (22, -, Z").

Then {Up, ¥} p—z1,..5 gives an atlas of Z. _
. Next we show the explicit way to give the initial hypersurface of rotation Iy. For an
integer m > 4 and 0 < & < 1/4, let E™+*(M) be

- E™He (M) = { X € C™HE(M); Ag(—ud) = Ko(ud) = do(l —u!) > 0 forul € T}.
Here we regard Ao(u') as Ao(p(u?), g(u')). Hereafter, if any confusion may not be caused,
we will always identify a scalar field f on a manifold M as a function of the (local)
coordinates of M. For Ay € E™(M) we associate a curve

1o)== {1+ Ao ()N (1) € R 1 € M},

where N(p) is the outward normal of M at p € M. By symmetry of M and )y €
E™4(M), ~[Ao] is simple and closed. Let C™**(M) be the set of all y[\o] with Ao €
E™*4e( M) such that the outward curvature g of 7[Xo] is negative everywhere. Of course,
for each o € C™H*(M) there is a unique Ay € E™*(M) such that 79 = [Ag]. For
Yo = 7[Ao] € C™***(M) let T{Ao] be the hypersurface of rotation of 7 N {(z, z%); z* > 0}
which can be written as
L[Ao] = {s + po(s)v(s) € R";s € T}.
Here po(s) := Ao({(s)) and {(s) is a mapping from ¥ to M defined by
< ) - M | ™)
(p(u'),q(ut)w) = (p(u'),q(u'))

and v(s) is the outward normal of I'[A¢] given by

v(s) = (—¢'(u'),p'(u")w).
We call o the generator of I'[A¢]. Note that the followings hold

i po(s) = min do(s) > 0, (8)
loollomtax(m) < Kolldollemrsaary (9)

with some constant Ko > 0. Let S™**(X) be the set of all I'[Ag] with 7 = 4[Ae] €
C™*42(M). Then every element belonging to S™4%(X) is strictly convex closed compact
hypersurface of rotation about the z'-axis with a generator symmetric with respect to the
z?-axis. It is clear that for each Ty € S™4%(X) there is a unique generator Yo = Y[Xo] €
C™*+e(M) such that Iy = I'[Xo]. Then for 'y € S™**2(X) as the initial hypersurface we
have the following local existence result for (1), which assures that the solution is also

rotationally axisymmetric about the z'-axis with a generator symmetric with respect to
the z2-axis.
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Theorem 6 . Let m > 4 be an integer and 0 < o < 1/4. Let Ty = I'[Ag] € S™H2(X)
with py(s) = Ao(C(8)) and 7o = v[A] € C™H*(M). Then:
(i) There is a positive constant Ty := T (|| Xo||gm+4=(ar), minuenr Ao(p)) such that (1) has a
unique solution

I'(t) = {s + p(t, s)v(s);s € T} fort e [0,T1]

with p(t, s) established in Theorem 4.
(ii) There is a unique A € Ctm/4+am+ia(lo T] x M) such that p(t, s) = A(t, ¢(s)) with
A(0,¢(s)) = Ao(¢(5))-

(iii) p(t, s) is even in the u'-coordinate.

Remark 7 . Let p(t, s) be the unique solution of (5) obtained in Theorem 6 with the initial
data po(s) = Ao(¢(s)). Since p(t,s) depends only on t and the u'-coordinate in T\{s+},
we simply write it as p(t, u') instead of p(t, Y7 (ut,u,- -+, ul™t)) fory € {1,---,7}. Set
e = {(u!,bw) € Z; |ul| < a,w € S*'}. Then, when s is in Ec, (5) is simply written as

0’H I- 0%p [ 0p OH
I o | 2 1
pt=—-L [6u16u1+(b+p 'u,la'u,l) Bul Ou 1] tG[O,T1], Iu I<aa (10)
p(O,ul) = )\O(ul)) lull <a,

where L = (1 + (2%)*)'/? and H is the mean curvature which is given by

uldul b+p( 6u1) )}

This fact will be used in the proof of Theorem 1.

0p \2\—
H=(1+ (5

4 Proof of Theorem 1

4.1 Deformation (step 1)

For a given strictly convex compact smooth rotationally axisymmetric hypersurface, us-
ing the results of [10], we shall give an explicit way of its deformation which weaken
the local convexity of the original surface. First we summarize the results [10] for a de-
formation operator for concave functions and for strictly convex closed curve. Next we

give a deformation of strictly convex compact hypersurface of rotation by deforming its
generator.

Deformation of concave functions. Let f be smooth concave functions defined on the
interval (—1,1). For parameter § € (0,1/8), let x5 be a smooth cut-off function such as

» 1 for |y| < 4,
=10 for 20 < |y| < 1

and 0 < x5(y) < 1 for y € (—=1,1). Then, for parameters ¢ € (0,1] and § € (0,1/8) we
define a deformation of f by

M) = 1)+ [ Qe fory e (-1,0),
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where

v4(w) = [ €)dtxual) + F @)L~ x1/a(8)s

wb(y) = (¢~ L) + £ )1~ %)

for y € (-1,1). :
Next we deform smooth concave functions f defined on the interval (—ap, 0g) with

ag > 0. For ¢ > 0 set .
(Lef)(y) = fley) for |y| < ao/ec.

This L, gives the dilation operator for f and L.f becomes smooth concave functions from
(—ao/c,an/c) to R. Then we define the deformation of f by

(M;ff)(y) = (_(Ll/aoMe’JLao)f)(y) for ye (—ao, ao)'

Deformation of strictly convez closed curve. We shall deform vy = [A\g] € C’"+4°'(M )
with an integer m > 4 and o € (0,1/4). Let r,)o be the restriction of \g on the interval

(—a, a) Set -
oy = | OEPrM@)  for et <a,
- Ao(ut) for a < |ul| < 1/2,

€0(,,1 1
Ag,ﬁ(ul) — { 6 (u )’ fOI‘ IU I ..<_ l/2’ (11)

91 —wut), forl/2<ul<3l/2.

We define a deformation of g by 75° := 7[,\5"’].
We state several properties for the deformed curve . o

Lemma 8 . Let vy = v[A] € C™*(M) with an integer m > 4 and o € (0 1/4).
S (0 1] and 6 € (0,1/8) and let Ay’ be given in (11).

[z) yed = Y& ] becomes a closed curve and is symmetric with respect to the both z' and
z2-azes.

(i) \* € E™He(M) and there is o constant A% > 0 (which is also depends on X\g, m, a
and a but independent of ) such that

XS lgmtsaqary < A for alie € (0,1] (12)

and A’ is unbounded when § — 0.
(i1i) Outszde the set {(z!,z?); |z!| < da,2? > 0} the set YIAS?] agrees with [)q].

(i) (o PX)(0) = —e/a%, () H9)(0) =0, () N)(0) = —1/

(v) The're ezxists a 6o > 0 dependmg on )\o such that

sup (Zx )2)\”)(0’1) <0,

inf A5°(ul) > Ao(£a) > 0

lut(<a

for alle € (0,1], § € (0,80). In particular, 7§° = v[AS?] € C™He(M) with
"12{4 AP () > '}g]‘fl Ao(p) >0 for alle € (0,1], 6 € (0,8). (13)
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This lemma is almost directly follows from Theorem 3 in [10].

Deformation of strictly convex compact closed hypersurface of rotation. Let I'g =T[\] €
Smt4(3), For § € (0,d) with §y established in Lemma 8 (v), we define a deformation
of Ty by I'?? := T'[A’]. By virtue of Lemma 8, %’ is a strictly convex closed compact
hypersurface of rotation about the z!-axis with the generator 75 o 'y[)\g"s]. We summarize
the properties of ['?? in the next lemma which follows from Lemma 8, (8), and (9).

Lemma 9 . Ifd € (0,0), then T5° belongs to S™*(X). Moreover, the following
uniform estimates hold: : : _

165 llomtaz) < KoY, 14)
mip pi*(s) 2 min do(u) > 0

for all £ € (0,1] and § € (0,00), where 08 (s) := A (C(s)) and ¢(s) is in (7), and K, is
in (9). v

4.2 TUniform local existence in ¢ (step 2)

Combining Theorems 4 and 6 and Lemma 9, we have the following uniform local existence
result in € € (0, 1], which assures that the existence time of the solution does not shrink
to 0 and the magnitude of the solution remains bounded when ¢ — 0.

Proposition 10 . Let m > 4 be an integer and o € (0,1/4). Let Tg = T'[Ao] € S™H*(T)
with Yy = Y[Ao] € C™H*(M). Let & be positive constant determined by Ao in Lemma 8
(v) and let § € (0,00). Set T¢ := T(KoA®, mingepr Ao(1)) > 0, where KoA? is in (14).
Then the followings hold. , , A
(i) For any € € (0,1] there exists a unique solution p*%(t,s) of (5) with initial data P8 (s)
(defined in Lemma 9) which satisfies - ‘

pe,6 c C[m/4]+a,m+4a([0, Ta] x 2)’
0% || Gtm/a1+aum+aa (o, 781x5) < G(KA?),
1
5,5 > it :
P (¢, 8) 2 2%13/\0(@ >0

- m
(t,8)€[0,T8]xE

for alle € (0,1] and § € (0,do).

(ii) There is a unique A% € Clm/4+em+ia((0, T9) x M) such that p4(t, s) = A9 (2,((s))
with A43(0, 1) = Ag® (1) for p € M N {z? > 0}. ‘
(ii3) p°%(t, s) is even in the u'-coordinate.

4.3 Loss of convexity (step 3)

In this step we prove:

Theorem 11 . (Loss of convezity). Let m > 10 be an integer and let o € (0,1/4). Let
Ty = I[Ag] € 8™2(X). Let & be a positive constant established in Lemma 8 and let & be
in (0,80). Let A5® be the deformed function of X (defined in (11)) for € € (0,1]. Let T°
be the time (established in Proposition 10) such that there is a unigue solution p*%(t,s) =
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A4(t,{(5)) of (5) in [0,T%] x T with initial data pi’(s) = Mg’ (¢(s)), where ((s) is in (7).
Then there is an €§ > 0 such that for any € € (0,€}) there are positive times t5° and t5°
with t§° < min(T%, ") having the property that the solution T'*¥ (t) = I‘L)\e"’ (t,°)] of (1)
starting from T(\§®] € S™H<(X) loses its convesity for at least t € (£ ,min(T?, 5%)).
* Moreover, t5° — 0 as € — 0 for any & € (0, 6,).

Proof. Recall that by Proposition 10 p**(t,s) does not depend on the (ud, -, ul=1)-

coordinate for s € U, with v € {1,---,7}. So we simply write p**(t,u!) instead of

P2t 97 (u'yud, - -+, u2™")). Our purpose is to show that ((9/8u!)2054)(t,0) becomes

- positive after a finite time in its smooth evolution by (5). We devide the proof into two

steps. o

: First step. We shall prove that for any § € (0, dp) there is a positive constant Ce s such
that P

(52(-5;?)2p5’6)(0, O) = a—e + Ce,J, CE,J = 0(82) ase—0 (15)

for each & & (0,8,). To show (15) we recall that p°% (t,u') satisfies (10) for ¢ € [0,T%] and
|lu!| < a with p*9(0, u!) = A§?(ul) for |ul| < a. Differentiating (10) in u® twice and using
the property p*(t, u') = p*¥(t, —u') for |u'| < a of Proposition 10 (iii), we get

(o (5ap))(0,0)

£ & n—2
= [~ Db — {45(D} ) (=5 5 T Dir)

(n—2)D3p™ _ 2(n —2)(Dip")
(b + pe,6)2 b+ psd
_6(n—2)(D}p*)’ | 12(n — 2)(DFp*)°
b+ p=0)° (6 + po0)?
H(DIpPY — 2D (2 — D)}

b+ p? A |
(n—2)Dif?  2n—2)(Dip*)’

n—2
_ D2 €,0
b + p€’6 1P )+ (b 4 pe,6)2 b+ pe,é' }] (0) 0)1

—18(D}p**)*(

)

(3D}

where D; := 8/0u'. We use values of derivatives of A3’ in Lemma 8 (iv) and use the
inequality in Lemma 8 (v) to get (15).
(15) guarantees that for any ¢ € (0,dy) there is an ef > 0 such that

(%(%)prﬁ)(o, 0) > 1/246 for € € (0,£9]. (16)

We take € € (0,€%] in the following. |
Second step. We shall complete the proof of Theorem 11. We note that it follows from

Proposition 10 that there is a constant B® > 0 such that
0120 0 \2 cs ' 5 »

& g gu) PG OIS B 17

te[o,gsll((at) (3u1) p7)(8,0)| < (17)

By Taylor’s'expa,nsion, Lemma 8, (16), and (17), we obtain
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/ [y 591;)2 p4)(r, )drdo
> (G0 )0 + (o) '0)(0,00 - B

1
> —a%+ Ea"st — B¢ (18)
for 0 < t < TY. We can take ¢ small so that the quadratic polynom1a1 Bit? -1 "6t+a“2e
has the smallest positive zero less than 7. In fact, we can take £§ > 0 sma.ll so that

-6 _ (l,-12 _ 4Béa-—2€g)1/2

2@ 1 5
0< 550 <T°.

Set &) = min(ed, e ) Then for ea.ch e € (0,€8) the polynomial B%* — 2a~% + a2 has
two positive zeros t5° < 5 with £5° < T%. By (18),

((-a%)zpf*’)(t, 0)> (- 7)6 - %) fort€[0,TV]

This implies
(VP )(:0) > 0 for £ € (57, min(T®, £%)).

This shows that T*¥(¢) = [[\¥(t, -)] loses its convexity for at least ¢ € (£5°, min(T?,#{%)).
The assertion t5° — 0 as € — 0 follows from its definition. o
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