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I. Introduction

In the life cycle of cellular slime molds interesting phenomenon can be observed: slime
mold first tend to distribute themselves uniformly over the space where a source of
food (bacteria) is present. After exhausting their food supply, they begin to aggregate
in a number of collecting points. The colony becomes slug form and it migrates to a
source of food and forms a multicellar fruting body which is like plant. Eventually the
fruting body spreads spores from its top, the spores grow into cellular slime molds.

In 1970 E. F. Keller and L. A. Segel [KS] proposed the equation which describes
the aggregation process above:

r %‘- =aAu—V-{uVB(p)}  inQ x (0,00),
Ip. .
| % dAp+fu—gp in © x (0, 00),
~Ou _9p
%-an = on 9 x (0,00),
[ u(z,0) =uo(z), p(2,0)=pp(z)  in Q.

Here, @ C RN, N > 1 is a bounded domain with smooth boundary, u(z,t) denotes
the population density of slime mold and p(z,t) denotes the concentration of chemo-
tactic substance at the position z € © and the time ¢ € [0,00). a, d, f and g are
positive constants. n denotes the outer normal vector of Q. uy and pqy are the initial
functions of slime mold and chemotactic substance respectively.

The equation of u; is derived from the following fact by experiments: slime molds
have a nature that they tend to migrate to chemotactic substance (this migration is
called chemotaxis), these substance is secreted by themselves, and another slime molds

- aggregate to the substance. lBy this fact flux of u is presented as F = Fdiffgsion +

?chemotaxis; Fdiﬁ‘usion = —aVu, Fchemotaxis = uVB(p), the equation of u; is nonlinear
one which includes diffusion term which is derived from Fick’s law and chemotaxis
term. B is the smooth function of p with B'(p) > 0 for p > 0 which is called sensitivity
function. Several forms have been suggested (see e.g. [S]): byp, by log p, 1" 25 bo >
0. The equation of p; is linear one which includes diffusion, production and decrese
term. Neumann condition as boundary condition describe reﬂecmn one which means
for example experiment by considering € as scha,le



Non-constant solution u means that slime mold do not distribute uniformly. If u(z,)
has much larger value than u(z), z in around Ty, We can interpret it as aggregation
happens at z.

There are several results for each B like above. As for stationary problem, existence
and non-existence of non-constant solution is studied by bifurcation theory(B is general
like above) [S], existence of non-constant solution and position of aggregation part by
variational methods (B(p) = bylog p) [NT]. As for evolutional problem, existence of
time local and global solution is studied (B is general like above) [Y], blow up problem
(mainly B(p) = byp) [HV] [NSY]. Approximation method is also studied in [NY].g

In this report, we consider the case when N =1, Q = (e, f), —o<a< B < oc:
(Ou  &u D

5= '5;2‘-55( 6:::B(p)) in  x (0, 00),
) 32 -
(5? a§+fu-gp in Q x (0, 00),

p _
—a——;ﬁ(a,t) = %(ﬁ,’ ) = éf(a,t) = —%(ﬁ,t) =0 fort e (0,00),
y u(z,0) = up(z), p(z,0) = po(z) in Q.

We assume following condition on B. Let B'(p) = b(p),

: 1
B0 < b1+ )

where i = 0, 1, k = k(i) > 0. Under this assumption B contains the all functions
which are presented above.

For this system, we investigate the asymptotic behavior of solution by constructing
attractor.g

for positive constant by,

I1. | Main theorems

We can get the following two theorems about global solution and global attractor:

Theorem 1 (global solution)
If : o

ug € L2(Q), up(x) >0in Q, py € H%”(Q), po(a:) >0inQ, 0<e< %,fz'xed,
then there exists a unique solution u, p such that
u € C((0,00); H'(€)) N C([0, 00); L*(R)) N C((0,00); {H (D)},

p € C((0,00); H*(R)) N C([0, 00); HA*(02)) 0 C*((0, 00); L*(2)) m



Theorem 2 (global attractor)
Let 1 an arbitrary positive constant and

= {(u, p) € L*(Q) x H%“(Q); u(:c) >0, p(x) >0in Q,/ﬂu(a:)d:v = l},

where 0 < € < 1/2, fized. Then there exists a global attractor of Xim

Global attractor 4; is defined as follows (see e.g. [Te]):

Definition (global attractor)

We say that A; of X; is a global attractor for the semigroup {S(£) }>0 if A is compact
attractor that attracts the bounded sets of Xj, that is,

d(S(t)B,A) - 0ast—0

for all bounded set B in Xz.
Here, we define d as semidistance of two sets By, By:

d(BO: Bl) = sup inf ”x _-Vy“szH%+s'.

z€Bp yEB;

Remark
In N = 2, for B(p) = bop, b, > 0 if  is sufficiently small and po € H*(Q), 0<e <
1/2 fz:ced then theorem1 and theorem?2 hold.g

III. Proof of theoreins

We give the skech of proof. Proof consists of several steps as following:
i) Existence of local solution.
ii) Smoothing effect.
iii) A priori estimate from below..
iv) A priori estimate from above.

v) Existence of attractor.

i) Existence of local solution

We first note the theorem on abstract evolution equation.

Let V, H are separable Hilbert spaces such that V is dense and compactly embedded
in H and their norms are || - ||y and | - | respectively. We also set space V’ such that
H is compactly embedded in V' by identifying H and H’'. We denote the norm of V’

by - v



We consider equation: |
dU
(AP) dt
U (0) =

T+ AU = F(U), 0<t< oo,

" 'We define assumptions on A a.nd' F. |
(Ai) A is a bounded linear operator from V to V' and satisfying
| (AU, Uyviev > 81U
for some positive constant . '

(Fi) There exists constant § such that 0 < 6 < 1 and function ¢ from R — R which
is smooth, increasing and satisfying

IF@)llv < CUUIy + 1)¢(|UIH)
for all U € V and some positive constant C'.
(Fii) There exists function 9 from R — R which is smooth, increasing and satisfying
(FU)=F(0), U-D)yxv < CUUv+ITv)$(Ula+1012)IU = U1allU~Ully
for all U, U € V and some positive constant C.
Under these assumptions, we can get the theorem:

Theorem 3
Assume (Ai),(Fi),(Fii) for (AP). Then for allUy € H there exists T(Up) > 0 such that
there erists unique weak solution and satisfying

U € L*(0,T(Uo); V) N C([0, T(o)}; H) N H*(0,T(Uo); V') m

Proof is derived by a priori estimate and Galerkin method [OY], [RY].
Let us apply this theorem to (KS). We formulate (KS) as (AP) with

A, F: H(Q) x HE(Q) — H\Q) x H¥(Q),

JZ . a
0 —d—+g fU P

" 02
where H? = {u € H*(Q); v'(a) =v/'(8) =0}, for s > 3/2. :
Then, if up € L3(R), uo(z) > 0in Q, po € H(Q), po(z) > 0 in Q, then (KS)
has a unique weak solution u and p locally in time, that is, there exist T' = T, 5, > 0,
such that u and p satisfy (KS), u >0, p>0for ¢t € [0, T] and '
u € L2(0, T; H\(Q)) n C([0, T); L*(Q)) N H*(0, T; H*(Q)),

p € L2(0, T; HE(Q)) N C(0, T); H¥*(Q)) n B0, T; HF () )m



ii) Smoothing effect

In this step also we note the following theorem for (AP) about regularity of solution.
We deﬁne another assumptions on A and F.

(Aii) A is a linear operator from ’D(A) to V' which is genarator of analytic semigroup
{e*} 0.

(Fiii) There exists constants -y, 1 such that 0 < 5 < v < 1 and function pfromR— R
which is smooth, increasing and satisfying

1E@) = F@)llv: < p(l ATl + 14Ty )| AU = Tl
for all U, U € D(A), D(A7), D(A").
Under these assumptions, we can get the following theorem:

Theorem 4

Assume (Aii),(Fii), (Fm) for (AP). If Up € D(A"), then there exists unique strict
solution and satisfying

U € C((0, T(Uo)}; D(A)) N C([0, T(Uo)}; D(A™)) N CH((0, T(Uo)]; V') -m
Proof is derived by semigroup method [OY].

Applying this theorem to local solution in i) with D(A?) = H>'~! x H,(Q)2+1((Q),
we get the result of regularity of solution to (KS).g

iii) A priori estimate from below

We get a priori estimate from below by virtue of the second equation of (KS) which
~ has production and decrese term:

Let (u, po) € X; and (u, p) be solution to (AP). Then v >0, p > 0 for ¢ > 0 and
there exists 7; > 0, & > 0 such that p > §;, for t > Tj,

where T;, §; is independent on ug, po.m

iv) Apriori estimate from above

Stepl  Integrating the first equation of (KS) in  gives

d
— [ u(z)dz =0
T

by Neumann condition, then ||u(z)||.: - l, t20.g
Step2 Integrating the second equation of (KS) in Q gives differential equation

Ep(e)lzs = Fiullzs — glolze



Solving this in |[p}| L1,
| | )ty 1
el = (loollz: - e, 1208
Step8 From Gagliardo-Nirenberg inequality:

2 1 : !
lullz2@) < Cllull:gyllullznq) for all u € H'(Q),

we get 5 >
9 10U 2 1
lullze < enllullis + a3 ] + 2
Hence, |
2 C
"“”Lz < 51” ptom (1)

Step/ Multlplymg the first equatlon of (KS) by u and mtegra.tmg the product in {2,
and noting [b(p)| < bp(1 + glg) < Cjand [q ug;‘ s2dz = —1 Jo uzﬁ’%dm then

2
" +eCillull}s +

Ou
> B < a3

“ 3:::2

for positive constant €5.
From Gagliardo-Nirenberg mequa.hty

IIUIIL4(9) < Cllullseyllellin ) for all w € HY(Q),

we get

.Bu

Jullye < CP (i + |5

Taking €9 so small és —a +&CiICI% <0, then

)

ld

ou
T u®llZ: < exCillullz: = aci |5

H aﬁ (2)

Next, multiplying the.second equation by g}’,ﬁ and integrating in €2, thanks to
Schwartz inequality,

82p 2
8.9 Lz’ (3)

Ml ()Lz_—u w2 — gu

where —d,, = —d + ¢3f by taking e3 so small as —d,, < 0.
Multiplying (3) by positive constant K and add the inequality to (2) and using the
inequality (1), then we get differential inequality:

24 (ol + K| 20

) < =o(lulls + K[ 2]7,) +



by taking K as —d., K + St =0, and &3 as —a,, + &1(e2C,CI2 + % +9)=0
Solving this, '

2 < (lluollfz + K”%Z—O”iz - gg‘) e 2t 4 zcg‘ )

Step5 Multiplying the second equation by p and integrating the product in Q, then

el + K| 2 1

3 1P < Liulta — gl — o 222,

From (4), :
up(t)n gl + 2L (Cuppoem 4 21)
Solving this,

lp®)Iz2 < Cuo,me™ 4" + Cr.m
Step6 - First we note the next proposition.

‘Proposition
For solutions u, p of (KS)

Lz — L(t)” 6m2

where L(t) = C@D,me‘ﬁt +Ci, g>0 fort > Ti.g

2dt ”3:17 (t) L2 + L(t)”ax:? 12 + L(), (5)

Skech of proof is following. Multiplying the first equation of (KS) by %‘é,

52
“63:2 | l“Ll ’131-2 922

| 2 dtld “ “ ag;2 ’(ll 822 9z Dz 1L Ll)'

We can estimate the latter three terms by Hdlder’s inequality and next inequality [Ta]

fulhwsr < € (Il g

7+ lulzs)

for u € W™P(QQ), where m and j are integers sa.tlsfymg 0 < ] <m,1<p< oo,
—j—Yis not a nonnegative interger, L L<ag<i, ! —-—j+ —am > 0, and Cls
constant Then we get the estimate in proposmon

Next we introduce another differential inequality. Operating 2 a z and multiplying
5.2 to the second equation of (KS), and integrating the product in €2, then

1d,dp
Zdtl Ox? IlL2 - “ HL2 "32,2

(6)




Multiplying positive constant M by (4) and add (5) and (6), then we get differntial
inequality and solvmg it,

Ml 132 + ||

ot KM|| A

151

L(t —oige , LAt
(MHUoHLz+|| o+ k|2 + |Gl — e ) + "o

V) Existence of attractor

Let us apply the known theorem about existence of attractor ([Te], theoreml.1.).

Theorem 5 (Existence of global attractor)
We assume that H is a metric space and semigroup {S(t)}t)o on H is continuous and
uniformly compact for large .
If there ezists a bounded set B of H such that B is absorbing in H, then the w-limit
set of B, A = w(B) 1s a global attractor.

By applying this theorem with H = |J S(t)X;, we get the existence of global
_ 7T
attractor A of X;.mg l
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