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ABSTRACT

The algebraic study of information transmission in cellular automata (CA) is revisited,
after its earlier expositions by this author in 1970s. The state set of each cell is
thought to be a finite field and the information is expressed by an unknown variable
like in the polynomial. The idea is presented for the basic CA (1-D with neighborhood
index {—1,0,+1} ), although it works for the general regular CA. The notion relevant to
the information transmission in CA is discussed algebraically, or using polynomials
over finite fields and finite commutative rings with identity. The decision problems
arising from our motivation are briefly restated in our way, which have been solved or
unsolved by colleagues. We also present the preliminary study of a new measure of the
information amount using the algebraic tool.

1. INTRODUCTION

"What is the information ?" and “How to study the information ?” are fundamental
questions in informatics. In the study of cellular automata too, it has been
investigated from various points of view.

The problem of information transmission or propagation in cellular automata or
cellular spaces has been investigated by many authors, since von Neumann
constructed his self-reproducing automaton using 2-D CA with 29 state cells [vN]. In
his design the information is transmitted by means of many signals. The firing squad
synchronization problem and other real time computations have been solved by
utilizing many signals, which travel though CA with various speeds [W],[F],[Ma]. In
those works, the information is transmitted generally in the form of the signals, which
have their own meanings.

On the other hand, the macroscopic phenomena in CA is another important research
topic, where the notion of entropy or the like is exploited [Mi]. Here the numerical
measure of information quantity is defined and analyzed.

Another relation of CA to the information will be the classic research topics of
injectivity and surjuctivity of the global map [R]. The reversible CA is also relevant
to thinking about what the information is [I-M].

In this paper we are going to discuss another way of viewing the information in CA
[N1],[N2]. Our approach will be called algebraic.

2. DEFINITIONS



The 1-D CA is defined as usual, with the space Z (the set of integers), the neighborhood
index N, the state set Q and the local function f That is CA=(Z, N,Q,f). We assume
in this paper 1-D CA and N to be {—1,0,1}, so simply denote as CA=(Q,D).

2.1. State set

Q is generally a finite set but is thought to be a finite field in our study. It may be
possible Q to be an integral domain or even a ring, but we assume first the structure of

the field for the sake of simplicity. Thus Q=GF(q), where q = pn with prime number p

and positive integer n. We note pa=0 and a“ =a, for any element a of Q.

2.2. Local function

Various ways in expressing the local function f have been made use by CA researchers.
Since Q is a field, we can express it in terms of the polynomial over the coefficients
from Q. Note that the local function of a linear CA is expressed in the form of linear
combination. When Q is an arbitrary finite set, fis usually expressed as a table, or by
listing up the function values for every combinations of neighboring cell states.

Denote the number of elements of Q as | Ql '

Let |Ql=q=p". Thenf: QX Qx Q — Q can be expressed as follows.

1) fxyz)=uy <41 yq.1 221 +uy x4l yq-lzq'2 +ug <41 yq'2 21 +...+ugg.1 ZHugg

where uj «¢ Q and x,y and z takes the state value of the neighboring cells —1,0

and 1, respectively.

There are qq3 local functions in all and it will be seen that (1) is a due form for

expressing them. In fact, as for the unique polynomial representation of a mapping

from G(F(q)m to GF(q), the reader is referred to [L-N], Notes to Chapter 7.

Example 1. Q={0,1}. f{(x,y,z)=yz+x.
It is expressed also as the Boolean function xyV (x .EOR. 2)y.

2.3. Information function

Let X be a symbol different from those used above. It stands for an unknown state of
the cell in CA. Take Example 1. Then £(0,0,0=0 and £(1,0,0)=1. So we may
claim f(X,0,0)=X. In this case X can be interpreted as a symbol expressing the
information (0 or 1) of the left neighbor. Furthermore we see f(X,1,1)=X+1 (mod.2),
which comes from the fact that £(0,1,1)=1 and £(1,1,1)=0. Since f(0,1,0)=0 and
£(0,1.1)=1, we obtain f(0,1,X)=X. So X might be said to represent the information
transmitted from the right neighbor. But since £(0,X,0)=0, the information of the center
cell does not propagate anywhere, if both neighbors are 0.
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Generalizing this observation we formulate the notion of information function, which
is useful for investigating the phenomena of information transmission in CA.

We consider the following polynomial in X over Q and call it the information function.

2) gX)=a; Xq-1 +ag Xq'2 +.tay where a; < Q.

g is a function from Q to Q and the set of such functions is denoted by Q[X]. Note that g
is a polynomial form, which uniquely expresses a mapping from Q into itself. Thus

|QX]1=gY. Notethat Q[X] D Q. The elementof QX] — Qis called informative,
while that of Q constant.

We introduce two operations in Q[X], addition and multiplication, following the ring

operations in Q. Particularly pX=0 and X%=X. Thus Q[X] becomes a

(commutative) ring with identity, but generally not a field nor an integral domain.
Example 2. Q={0,1}. _ QX]={0,1,X,X+1}.
The multiplication table is shown below. Addition is naturally mod.2 sum.

Note “that this ring is not a field and different from GF@%={0,1kk+1} whose

multiplication table is also shown.

QIX] GF@4)

0 1 X X+1 0 1 k k+1
0 0 0 0 0 0 0 0 0 0
1 0 1 X X+1 1 0 1 k K+1
X 0 X X 0 k 0 k k+1 1
X+1 0 X+1 0 X+1 k+1 0 k+1 1 K

It is seen that Q[X] is isomorphic to the direct sum of two GF(2)s, which is different
from GF(4).

2.4. Extended CA

CA=(Q,) is extended to a cellular automaton CA[X]=(Q[X],f) in the obvious way. The
state set is Q[X]. The local function f is expressed as the same polynomial as in (Q,1),
provided the variables x, y and z move in Q[X] instead of Q. As is shown in Example
2, the domain and the range of f are not necessarily finite fields (their tuples) and the
discussion in Section 2.2 can not be applicable directly.

3. DYNAMICAL PHNOMENA IN CA[X]

We can now discuss the dynamics of CA[X]. The global map F : C — C is defined as

usual, where C = Q[X]Z is the set of all state configurations. When discussing the

information transmission, we usually assume an initial configuration having one X in
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. it, the rests being the constants.

Simulations ,

For the sake of illustration, let us show some computational results of the finite 1-D
CA with the cell of Example 1, consisting of n cells and the fixed boundary condition.
See Fig.1 (a),(b) andv(c). In those space-time developments of CA[X] from the initial
configuration having X at the right most cell, we find many interesting behaviors of X,
which propagates in space and time. Case (a) shows that the information
represented by X and X+1 reaches the left most end and remains forever in CA. Case
(b) shows the contrary phenomenon, i.e. the information disappears at time 12 and
does not reach the left end. In case (¢), X or X+1 does not go to the left end, but remains
forever in the system. A simulation with two variables X and Y, which will be discussed

in Section 6.1, is also shown in Fig.1 (d). Four polynomials appear and disappear
during the dynamics of CA.

4. INFORMATION FUNCTION

How is the information function useful in investigating CA? Fig.1 illustrates various
phenomena observed in the development of CA[X]. The unknown state X at time 0
goes through CA, keeping its information in the form of X or X+1 or loosing it. Since
we can restore X from X or X+1 completely, they are considered to be most informative.
Since X and X+1 are permutations of {0,1}, we first investigate permutations below in
more detail.

Note: It should be discussed how much computation is required in order to restore
the value of X from the function X or X+1. It seems related to the problem of
computational algorithm in solving the polynomial equation. The former requires no
step of computation but the latter does one subtraction X=(X+1) -1. We do not enter
this problem any more in this paper.

4.1 Permutation
Generalizing this observation we obtain the following statements about the
information function.  In the following we denote the cell i at time t as (i,t).

Proposition 1. Suppose that g(X) appears at a space-time point (i,t) in the
development of CA[X]. If g(X) is a permutation of Q, then we say there is no loss of

information during cellular development until (i,t).

This pfoposition will be obviously admitted, because bpermutation is a one to one
mapping and the original state value can be restored from the state g(X) of cell (i,t).

2
Example 3. Q=GF(3)={0,1,2}. g(X)=a;X" +agX+ag
Six permutations are : X, X+1, X+2, 2X, 2X+1, 2X+2

Example 4. We consider Q[X] over Q=GF(4)={0,1,k,k+1}. See Example 2, Section
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2.3, for the multiplication table of Q. There are 4!=24 permutations among 256
functions. :

For example, X+1 and X2 are permutations, but X3 isnot. In fact,

X+1= [o 1 k k+1] xX2= [o 1 k k+1] X3=[0 1 k k+1]
1 0 ktlk 0 1 k+lk 011 1

Proposition 2. g(X)=aX+b, where a is not a zero divisor, is a permutation.

Problem. Characterize the permutation in terms of the coefficients of g(X).
See [L-N] Chapter 7 and other literatures for detailed discussions on permutation
polynomials. But what we want here is a simple new characterization.

4.2 Measure of information quantity

Since Shannon’s pioneering work on defining, utilizing and analyzing the numerical
information measure, there have been made several efforts in studying the
information quantity, using probability, computational algorithm (Turing Machine),
combinatorics and other mathematical notions. It will be clear that such efforts have
greatly contributed to informatics. We present below a preliminary study of
information measure in terms of the analytic property of information functions.

For every g(X) we want to define its information quantity, which will be denoted by
I(g). I(g) should be a measure of ambiguity, when restoring the input X from the
output g(X). Therefore the permutation or injective map should be given the
maximum value, because X is uniquely restored from g(X). When g is a permutation,
its range g(Q) equals its domain Q. The function g, which maps Q to a single element
of Q, carries no information of X, so it should be given 0 as its information amount. In
short I(g) should be closely related to the cardinality | g(Q)| of the value set of g.

Now the requirements to I(g) are listed, where g and g’ are polyhomials over Q.

(D I(g) is a nonnegative real number.
(D) I(g) is a monotone function in [g(Q)|. Thatis,
Ig)<Ig), if lg@l < 1g@]I.
(III) I(g) takes the maximum, denoted by Imax, when g is a permutation of Q.
IV) I(g)=0, ifgisaconstant. So 0 =<I(g) < Imax.

Those requirements are not sufficient for determining the functional form of I(g)
uniquely. But we leave fixing the definite form of I(g) for future study, and only present
the preliminary results obtained from those requirements. Note that the set of
information functions is closed under the operations of sum and product of
polynomials (Section 2.3). In the following, g and g are functions defined on the
domain Q, which is not explicitly written where it is clear.

Example 5. Consider polynomials belonging to Q[X] of Example 4, Section 2.3',' with



coefficients from Q=GF(4).

Let g=g’=X. Then |g+g’|=1. - As another example, we take g=X2 with |g|=4 and

g’=X3 with [g’|=2. Since g+g’=X2+X3= [0 1 k k+1] , we have |g+g’|=3.
0 00k 1

Generalizing this exercise, we obtain the following proposition.

Proposition 2.
(@ lgtg'l < max{lgl,|gl}.
®) lgg!l < min{lgl,|g[}.

During cellular operation in CA[Q], each cell gets its new state by computing addition
and multiplication of polynomials.

Definition. Information quahtity I(c) of a state configuration c is deﬁned to be
max{I(c@)) | 1€Z}. I(c(i)) stands for I(g) provided g is the state polynomial of cell i.
If we adopt the cardinality of the value set of g as a candidate, denote as I, of I(g), we

have the following proposition 3, which suggests the information degradation principle

of CA or any dynamical system. Notice that Iy satisfies the above listed requirements
to I(g) except for (IV). Let c(t) be the state configuration of CA at time t.

Proposition 3.  Ty(c(t+1)) < Lu(c(t)).

Note: For determining the final functional form of I(g), we might better add one more

requirement like Proposition 3, which was proved for Ly .

5. DECISION PROBLEMS

We present again the decision problems studied before [1][2], using our terminology.
Assume first a CA=(Q,f) be the basic finite CA with fixed boundaries. A finite CA
consists of n cells, simply written as 1,2,...n. The left and the right boundaries are

fixed to be the elements of Q denoted by b; and b, respectively. CA is naturally
extended to CA[X]. The state of the point (i,t) is denoted by c(,t).

Now take a word w € Q* of length n —1 and the variable X, and give to CA the word
wX as its initial configuration. So c¢(n,0)=Xand w=c(1,0)c(2,0)...c(n—1,0).

We are interested in the behavior of cell 1, denoted by PwX).
PwX)=c(1,0)c(1,1)c(1,2)...c(1,1)....... It is an infinite string and consists of the finite
'transient part' and the 'cyclic part' which repeats indefinitely, since CA[X] is a finite
dynamical system. A finite or infinite string of symbols from Q[X] is called constant,
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when it does not contain any informative element.

5.1 Decision problem “D space" :

Our decision problem asks if the information of the state ¢(n,0) reaches the cell 1 or not.
If P(wX) is constant, then it does not reach the cell 1. In the converse, if it is
informative, then this n-cell CA is said to transmit the information of the right most
cell to the left most cell. Note that we do not concern with how much information is
transmitted.

Consider all CA(Q,Ns. There are infinitely many such CAs. They are classified into
three mutually disjoint sets. This classification reflects the easiness or ability of
information transmission of a given CA.

(CAI) There is a positive integer k such that P(wX) is constant for any w longer than or
equal to k.

(CAII) Set of all CAs minus CAI and CAIIL

(CAIII) For evey w, P(wX) is informative.

It is shown that each class is not vacant and the classification is meaningful [2]. The
- ghift register belongs to CAIIl. Example 1 is CAI with k=7. Note that this
classification heavily depends on the boundary condition.

Decision problem "D space" is stated as follows : Given an arbitrary CA, decide to
which class it belongs.

Proposition. Problem "D space" is undecidable [T].

A similar decision problem can be stated for the 1-D CA with ¢yclic boundary : Decide
whether the information X reaches the farthest cell or not. The farthest cell from 11is
cell n/2. This cyclic version is also supposed to be undecidable.

5.2 Decision problem "D time"

Let's state another decision problem concerning the information transmission in the
direction of time [K-S]. We assume the cyclic boundary and the CA starts with the
initial configuration wX. The configuration at time t is denoted by Rw,t), ie.
R(w,t)=c(1,t)c(2,t)...c(n,t).

Classification of CA[X]s into three mutually disjoint sets :

(CAI') Thereisa positive integer h such that R(w,t) is constant for any w and t € h.
(CAII") Set of all CAs minus CAI' and CAIII".

(CAIII") For every w and h, R(w,h) is informative.

This classification according to the information transmission in the time direction
reflects an aspect of information conservation in CA.

Decision problem "D time" is stated as follows : Given an arbitrary CA, decide to



which set it belongs.

Problem "D time" is left unsolved but suspected to be undecidable.

5.3 Infinite CA

When CA is infinite, we assume an finite initial configuration embedded in
Z ..000wXw'000..., where 0 is a quiescent state. One problem to study is to
investigate how far X propagates. Similar classification of CA is possible and the
decision problem is conjectured to be undecidable.

6. GENERAL CASES

We can discuss more general formulation of our idea mentioned for the basic 1-D CA in
the preceding chapters.

6.1 More than one variables

We present the formulation for the two variables X and Y, The information function
is expressed as follows.

®  e®V=ay XV YT ey XYY gy, Xtagy 1Y+agy

The set of all information functions is denoted by Q[X,Y] and the local function f is

extended to f : Q[X,Y]3 — QIX,Y]. Acomputer simulation of this case is shown in Fig.

1(d), where 4 informative functions appear and disappear at time 79. The notion of
permutation of the pair QX Q is not so clear, contrary to the self-evident one of Q. It
has been not settled how to define the permutation polynomial in QIX,Y]. See [L-N],
Chapter 7. :

6.2 Larger neighborhood
The local function is written in the form of (1) with more terms in |N| variables.
The information function can be considered likely.

6.3 Higher dimensional CA and general regular CA ‘_

We can discuss the problems about information in the general CA, say 2-D CA and CA
on the Cayley graph. But it is not clear what kind of research topics should be most
interesting.

7. CONCLUDING REMARKS

We discussed an algebraic approach to the study of CA, which might be useful in

understanding what the information is. There are many points left for further
research. Among others we mention the following:

1) Algebraic analysis of the extension Q[X] (and Q[X)Y,.] ) and its related
polynomials. See Sections 2.3, 2.4 and 6.1. 2) More elegant formulation and solution
of the decision problems stated in Section 5, which have been investigated in terms of
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the formal language or automata theory. 3) More definite definition and usage of I(g).

Thanks are due to Masami Ito (Kyoto), who organized this meeting at RIMS and
suggested me to talk there, Ryuki Matsuda (Mito), Yuji Kobayashi (Funabashi) and
Masashi Katsura (Kyoto), who discussed with me and made comments on finite
rings/fields. ’ ‘
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Fig.1 Simulations of CA[X] and CA[X,Y]

Q={0,1}, f=yz+x, with fixed baudary conditions bj=b,=1.

‘In (a), (b) and (c), which are dynamics of CA(Q[X],f), the symbol + means X and — does
X+1. ' :

In (d), which is a simulaton of CA(Q[X,Y],f), four polynomials in X and Y are expressed as
Greek alphabet: o =XY, B =X+Y, y =XY+X+Y, & =XY+X+Y+1

n is the length of CA. ris the length of transient part and p is the cycle length of dynamics
of finite CA.

(a) n=b, r=4, p=30  (b) n=9, r=14, p=10 (c) n=9, r=14, p=10 (d) n=15, r=79, p=10

0011+ 11101111+ 11101110+ 1 0000000Y000000X
101~—— 0011100—~— 00111011+ 2 10000000Y00000X
11—+0 1010110—0 1010111 ~—~— 3 110000000Y0000X
0+1—+ 11011110~ 110110++0 4 0110000000Y000X
—14+111 01110011— 011111+4++ 5 11110000000Y00X
L ——0 0 11011014+ 11000—-00 6 000110000000Y0X
+0-——0 011111+4+-0 01100———0 1 1001110000000YX
« . 11000-1+4~ 11110—-0—— 8 1101011000000¢ap

s o 01100—-111 000110—-—0 9 011011110000007
11—-0+ 11110-4+00 100111~~~ 10 111110011000007
—0 41—+ 000110—+0 110104400 11 000011011100007
1001110~—+ 011014+4+0 12 100011110110007
110101101 11114+—0++ 13 110010011111007
—011011111 ~000—1t—+0 14 0110010:10001107
L LA 15 111100101001.217
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—110101101 —t1t1114+~0-++ 18 110101100101?18
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