<table>
<thead>
<tr>
<th>Title</th>
<th>Some results on commutative semigroups and semigroup rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages, Algebra and Computer Systems</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Matsuda, Ryuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1999), 1106: 106-115</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63251</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Some results on commutative semigroups and semigroup rings

松田隆輝 (Ryūki Matsuda)
Faculty of Science, Ibaraki University

Let G be a torsion-free abelian (additive) group, and let S be a sub-semigroup of G which contains 0. Then S is called a grading monoid ([No]). We will call a grading monoid simply a g-monoid.

For example, the direct sum $\mathbb{Z}_0 \oplus \cdots \oplus \mathbb{Z}_0$ of n-copies of the non-negative integers \mathbb{Z}_0 is a g-monoid.

Many terms in commutative ring theory may be defined analogously for S.

For example, a non-empty subset I of S is called an ideal of S if $S + I \subseteq I$.

Let I be an ideal of S with $I \subsetneq S$. If $s_1 + s_2 \in I$ (for $s_1, s_2 \in S$) implies $s_1 \in I$ or $s_2 \in I$, then I is called a prime ideal of S.

Let Γ be a totally ordered abelian (additive) group. A mapping v of a torsion-free abelian group G onto Γ is called a valuation on G if $v(x+y) = v(x) + v(y)$ for all $x, y \in G$. The subsemigroup $\{x \in G \mid v(x) \geq 0\}$ of G is called the valuation semigroup of G associated to v.

The maximum number n so that there exists a chain $P_1 \subsetneq P_2 \subsetneq \cdots \subsetneq P_n$ of prime ideals of S is called the dimension of S.

If every ideal I of S is finitely generated, that is, $I = \cup_i (S + s_i)$ for a finite number of elements s_1, \cdots, s_n of S, then S is called a Noetherian semigroup.

Many propositions for commutative rings are known to hold for S.

For example, if S is a Noetherian semigroup, then every finitely generated extension g-monoid $S[x_1, \cdots, x_n] = S + \sum_i \mathbb{Z}_0 x_i$ is also Noetherian [M3, Proposition 3], and the integral closure of S is a Krull semigroup [M4].

Ideal theory of S is interesting itself and important for semigroup rings.

Let R be a commutative ring, and let S be a g-monoid. There arises
the semigroup ring $R[S]$ of S over R: $R[S] = R[X;S] = \{\sum_{finite} a_sX^s \mid a_s \in R, s \in S\}$.

If S is the direct sum $\mathbb{Z}_0 \oplus \cdots \oplus \mathbb{Z}_0$ of n-copies of \mathbb{Z}_0, then $R[S]$ is isomorphic to the polynomial ring $R[X_1, \cdots, X_n]$ of n-variables over R.

Assume that the semigroup ring $D[S]$ over a domain D is a Krull domain. Then D.F. Anderson [A] and Chouinard [C] showed that $C(D[S]) \cong C(D) \oplus C(S)$, where C denotes ideal class group. Thus they were able to construct Krull domains that have various ideal class groups.

For another example, assume that D is integrally closed and S is integrally closed. Then we have $(I_1 \cap \cdots \cap I_n)^v = I_1^v \cap \cdots \cap I_n^v$ for every finite number of finitely generated ideals I_1, \cdots, I_n of $D[S]$ if and only if $(I_1 \cap \cdots \cap I_n)^v = I_1^v \cap \cdots \cap I_n^v$ for every finite number of finitely generated ideals I_1, \cdots, I_n of D and $(I_1 \cap \cdots \cap I_n)^v = I_1^v \cap \cdots \cap I_n^v$ for every finite number of finitely generated ideals I_1, \cdots, I_n of S ([M1]), where v is the v-operation.

1

Let D be a Noetherian integral domain with the integral closure \overline{D}, and K the quotient field of D.

The Krull-Akizuki theorem states that, if $\dim(D) = 1$, then any ring between D and K is Noetherian and its dimension is at most 1.

The Mori-Nagata theorem states that \overline{D} is a Krull ring for any Noetherian domain D.

Moreover, Nagata proved that, if D is of dimension 2, then \overline{D} is Noetherian (cf. [Na]).

In [M2] we proved the Krull-Akizuki theorem for semigroups.

In [M4] we proved the Mori-Nagata theorem for semigroups.

Let T be an extension g-monoid of S. An element t of T is called integral over S if $nt \in S$ for some positive integer n. The set of integral elements of T is called the integral closure of S in T. The integral closure \overline{S} in the quotient group $q(S) = \{s-s' \mid s, s' \in S\}$ is called the integral closure of S, and is denoted by \overline{S}. If $\overline{S} = S$, then S is called integrally closed.

In 1, we proved the following Theorem and answered to the following
question in the negative.

Theorem. Let S be a 2-dimensional Noetherian semigroup. Then the integral closure \overline{S} of S is a Noetherian semigroup.

Let P be a prime ideal of S. Then the maximum number n so that there exists a chain $P_1 \subsetneq P_2 \subsetneq \cdots \subsetneq P_n = P$ of prime ideals of S is called the height of P, and is denoted by $ht(P)$.

Question. If P is a prime ideal of height r in a Noetherian semigroup S, then is P a prime ideal minimal among containing an r-generated ideal of S?

This is "yes" for rings.

Now, to answer to the Question, let $x_1 + x_2 = x_3 + x_4$ be a unique relation of letters x_1, x_2, x_3 and x_4. Set $S = \mathbb{Z}_0 x_1 + \mathbb{Z}_0 x_2 + \mathbb{Z}_0 x_3 + \mathbb{Z}_0 x_4$. Then S is a g-monoid. $M = (x_1, x_2, x_3, x_4) = \bigcup_i (S + x_i)$ is a unique maximal ideal of S. Then S is a Noetherian semigroup of dimension 3. M is not a prime ideal minimal among containing a 3-generated ideal of S.

2

Larsen-McCarthy's Multiplicative Theory of Ideals [LM] is one of the basic references of multiplicative ideal theory for commutative rings. In 2, we proved or disproved all the Theorems in [LM] for semigroups. We will state two Theorems.

Let M be a non-empty set. Assume that, for every $s \in S$ and $a \in M$, there is defined $s + a \in M$ such that, for every $s_1, s_2 \in S$ and $a \in M$, we have $(s_1 + s_2) + a = s_1 + (s_2 + a)$ and $0 + a = a$. Then M is called an S-module.

Theorem. Let S be a Noetherian semigroup, M a finitely generated S-module, L and N submodules of M, and I an ideal of S. Then there exists a positive integer r such that for every $n > r$, we have
\[(nI + L) \cap N = (n - r)I + ((rI + L) \cap N).\]

This is a semigroup version of the Artin-Rees Lemma for rings.

Let \(M \) be an \(S \)-module. If \(s_1 + a = s_2 + a \) (for \(s_1, s_2 \in S \) and \(a \in M \)) implies \(s_1 = s_2 \), then \(M \) is called cancellative.

Theorem implies that if \(M \) is a finitely generated cancellative module over a Noetherian semigroup \(S \), then \(\bigcap_{n=1}^{\infty}(nI + M) = \emptyset \) for every proper ideal \(I \) of \(S \).

An element \(s \) of a \(g \)-monoid \(S \) is called unit if \(-s \in S \). Let \(s \) be a non-unit of \(S \). If \(s = s_1 + s_2 \) implies that \(s_1 \) or \(s_2 \) is a unit, then \(s \) is called irreducible. If every element of \(S \) is expressed as a sum of irreducible elements uniquely (up to units and permutation), then \(S \) is called factorial (or a UFS).

If there exists a family \(\{V_\lambda \mid \lambda \}\) of \(\mathbb{Z} \)-valued valuation semigroups on \(q(S) \) so that \(S = \cap_\lambda V_\lambda \) and each element of \(S \) is a unit for almost all \(\lambda \), then \(S \) is called a Krull semigroup.

An \(S \)-submodule \(I \) of \(q(S) \) is called a fractional ideal of \(S \), if \(s + I \subset S \) for some \(s \in S \). Let \(F(S) \) be the set of fractional ideals of \(S \). For every fractional ideal \(I \) of \(S \), we set \(div(I) = \{ J \in F(S) \mid J^v = I^v \} \), and set \(D(S) = \{ div(I) \mid I \in F(S) \} \), and \(C(S) = D(R)/\{ div(x) \mid x \in q(S) \} \), where \(I^v \) is the intersection of principal fractional ideals of \(S \) containing \(I \). If \(I^v = I \), then \(I \) is called divisorial.

Theorem. If \(S \) is a \(g \)-monoid, then the following conditions are equivalent:

1. \(S \) is a factorial semigroup.
2. \(S \) is a Krull semigroup and \(C(S) = 0 \).
3. \(S \) is a Krull semigroup and every prime divisorial ideal of \(S \) is principal.

3

Kaplansky's Commutative Rings [Kap] is one of the basic references of commutative ring theory. We know that all the Theorems in Chapters 1 and 2 of [Kap] hold for \(S \) [TM].
In 3, we showed that all the Theorems in Chapter 3 of [Kap] hold for g-monoids. We will state some Theorems.

Let A be an S-module and $s \in S$. If $s + a_1 = s + a_2$ (for $a_1, a_2 \in A$) implies $a_1 = a_2$, then s is called a non-zerodivisor on A. If s is not a non-zerodivisor, then s is called a zerodivisor on A. The set of zerodivisors on A is denoted by $Z(A)$. Let B be a submodule of an S-module A, and $s \in R$. If $s + a \in B$ (for $a \in A$) implies $a \in B$, then s is called a non-zerodivisor on A modulo B (or a non-zerodivisor on A/B). If s is not a non-zerodivisor on A/B, then s is called a zerodivisor. The set of zerodivisors on A/B is denoted by $Z(A/B)$.

The ordered sequence of elements x_1, \ldots, x_n of S is called a regular sequence on A, if $(x_1, \ldots, x_n) + A \subseteq A$ and if $x_1 \notin Z(A)$, $x_2 \notin Z(A/((x_1) + A))$, \ldots, $x_n \notin Z(A/((x_1, \ldots, x_{n-1}) + A))$.

Let A be an S-module. If $Z(A) = \emptyset$, then A is called torsion-free.

Let A be an S-module, and I an ideal of S. Let x_1, \ldots, x_n be a regular sequence in I on A. If x_1, \ldots, x_n, x is not a regular sequence on A for each $x \in I$, then x_1, \ldots, x_n is called a maximal regular sequence in I on A.

Let A be an S-module, and I an ideal of S. Then the maximum of lengths of all regular sequences in I on A is called the grade of I on A, and is denoted by $G(I, A)$.

Let A be an S-module. If any two maximal regular sequences in I on A have the same length for every ideal I with $I + A \subseteq A$, then A is said to satisfy property (*). If A satisfies property (*), we say also that (S, A) satisfies property (*).

Theorem. Let S be a Noetherian semigroup, and A a finitely generated torsion-free cancellative S-module with property (*). Let $I = (x_1, \ldots, x_n)$ be a proper ideal of S. Then $G(I, A) = n$ if and only if x_1, \ldots, x_n is a regular sequence on A.

Let S be a Noetherian semigroup with maximal ideal M. If $G(M, S) = dim(S)$, then R is called a Macaulay semigroup.

Theorem. Let S be a Macaulay semigroup such that (S, S) satisfies
property (*). Then we have \(G(I, S) = ht(I) \) for every ideal \(I \) of \(S \).

Let \(S \) be a Noetherian semigroup with maximal ideal \(M \). The cardinality of a minimal generators of \(M \) is called the \(V \)-dimension of \(S \), and is denoted by \(V(S) \).

A Noetherian semigroup \(S \) is called a regular semigroup if \(V(S) = dim(S) \).

Theorem. Let \(S \) be a Noetherian semigroup with maximal ideal \(M \). Assume that \(M \) is generated by a regular sequence \(a_1, \ldots, a_k \) on \(S \). Then \(k = dim(S) = V(S) \), and \(S \) is a regular semigroup.

Theorem. Any regular semigroup is a Macaulay semigroup.

Theorem. The polynomial semigroup \(S[X] \) is a Macaulay semigroup if and only if \(S \) is a Macaulay semigroup.

4

Let \(D \) be an integral domain with quotient field \(K \). Let \(F(D) \) be the set of non-zero fractional ideals of \(D \). A mapping \(I \mapsto I^* \) of \(F(D) \) to \(F(D) \) is called a star-operation on \(D \) if for all \(a \in K - \{0\} \) and \(I, J \in F(D) \):

1. \((a^*) = (a) \) and \((aI)^* = aI^* \);
2. \(I \subset I^* \);
3. If \(I \subset J \), then \(I^* \subset J^* \); and
4. \((I^*)^* = I^* \).

Let \(\Sigma(D) \) be the set of star-operations on \(D \).

Let \(F'(D) \) be the set of non-zero \(D \)-submodules of \(K \). A mapping \(I \mapsto I^* \) of \(F'(D) \) to \(F'(D) \) is called a semistar-operation on \(D \) if for all \(a \in K - \{0\} \) and \(I, J \in F'(D) \):

1. \((aI)^* = aI^* \);
2. \(I \subset I^* \);
3. If \(I \subset J \), then \(I^* \subset J^* \); and
4. \((I^*)^* = I^* \).
Let $\Sigma'(D)$ be the set of semistar-operations on D.

A valuation ring (or a valuation semigroup) V is said to be discrete if its value group is discrete.

In 4, we proved the following Theorems.

Theorem. Let D be a domain with dimension n. Then D is a discrete valuation ring if and only if $|\Sigma'(D)| = n + 1$.

Let S be a g-monoid with quotient group G. A mapping $I \mapsto I^*$ of $F(S)$ to $F(S)$ is called a star-operation on S if for all $a \in G$, and $I, J \in F(S)$; (1) $(a)^* = (a)$; (2) $(a + I)^* = a + I^*$; (3) $I \subseteq I^*$; (4) If $I \subseteq J$, then $I^* \subseteq J^*$; (5) $(I^*)^* = I^*$.

For example, let I^v be the intersection of principal fractional ideals containing I, then v is a star-operation on S which is called the v-operation on S. Let $\Sigma(S)$ be the set of star-operations on S.

Let $F'(S)$ be the set of submodules of G. A mapping $I \mapsto I^*$ of $F'(S)$ to $F'(S)$ is called a semistar-operation on S if, for all $a \in G$ and $I, J \in F'(S)$; (1) $(a + I)^* = a + I^*$; (2) $I \subseteq I^*$; (3) If $I \subseteq J$, then $I^* \subseteq J^*$; (4) $(I^*)^* = I^*$.

Let $\Sigma'(S)$ be the set of semistar-operations on S.

Theorem. Let S be a g-monoid with dimension n. Then S is a discrete valuation semigroup if and only if $|\Sigma'(S)| = n + 1$.

Theorem. Let V be a valuation semigroup of dimension n, v its valuation and Γ its value group. Let $M = P_n \supseteq P_{n-1} \supseteq \ldots \supseteq P_1$ be the prime ideals of V, and let $\{0\} \subseteq H_{n-1} \subseteq \ldots \subseteq H_1 \subseteq \Gamma$ be the convex subgroups of Γ. Let m be a positive integer such that $n + 1 \leq m \leq 2n + 1$.

Then the followings are equivalent:

(1) $|\Sigma'(V)| = m$.

(2) The maximal ideal of the g-monoid $V_{P_i} = \{s - t \mid s \in V, t \in V - P_i\}$ is principal for exactly $2n + 1 - m$ of i.

(3) The ordered abelian group Γ/H_i has a minimal positive element for exactly $2n + 1 - m$ of i.
Theorem. Let V be a valuation ring of dimension n, v its valuation and Γ its value group. Let $M = P_n \supset P_{n-1} \supset \cdots \supset P_1 \supset (0)$ be the prime ideals of V, and let $\{0\} \subsetneq H_{n-1} \subsetneq \cdots \subsetneq H_1 \subsetneq \Gamma$ be the convex subgroups of Γ. Let m be a positive integer such that $n + 1 \leq m \leq 2n + 1$. Then the followings are equivalent:

1. $|\Sigma'(V)| = m$.
2. The maximal ideal of V_{P_i} is principal for exactly $2n + 1 - m$ of i.
3. Γ/H_i has a minimal positive element for exactly $2n + 1 - m$ of i.

Let R be a commutative ring, and let K be its total quotient ring; $K = \{a/b \mid a \in R, b$ is a non-zerodivisor of $R\}$. Let S be a g-monoid, and let G be the quotient group of S.

An element $\alpha \in G$ is called almost integral over S if there exists an element s of S such that $s + n\alpha \in S$ for every positive integer n. The set of almost integral elements of G over S is called the complete integral closure (or the CIC) of S. If the complete integral closure of S coincides with S, then S is called completely integrally closed (or CIC).

R is said to be root closed if whenever $x^n \in R$ for some $x \in K$ and positive integer n, then $x \in R$.

The maximal number n so that there exists a set of n-elements in G which is independent over \mathbb{Z} is called the torsion-free rank of G, and is denoted by $t.f.r.(G)$.

In 5, we proved the following Theorems.

Theorem. $R[X;S]$ is integrally closed if and only if S is integrally closed, R is integrally closed, $K[X_1]$ is integrally closed and $q(K[X_1,\cdots, X_{n-1}])[X_n]$ is integrally closed for every n with $n \leq t.f.r.(G)$.

Theorem. $R[X;S]$ is CIC if and only if S is CIC, R is CIC and $R[X_1,\cdots, X_n]$ is CIC for every positive integer $n \leq t.f.r.(G)$.

Theorem. $R[X;S]$ is root closed if and only if S is integrally closed, R is root closed, $K[X_1]$ is root closed and $q(K[X_1,\cdots, X_{n-1}])[X_n]$ is root
closed for every n with $n \leq \text{t.f.r.}(G)$.

If, for each element a of R, there exists an element b of R such that $a = a^2b$, then R is called a von Neumann regular ring.

Theorem. Assume that K is a von Neumann regular ring. Then $R[X; S]$ is integrally closed if and only if S is integrally closed and R is integrally closed.

Theorem. Assume that K is a von Neumann regular ring. Then $R[X; S]$ is CIC if and only if S is CIC and R is CIC.

Let R be a Noetherian reduced ring. Then $R[X; S]$ is CIC if and only if S is CIC and R is CIC.

Theorem. Assume that K is a von Neumann regular ring. Then $R[X; S]$ is root closed if and only if S is integrally closed and R is root closed.

6

We denote the unit group of S by H. Let R be a ring. Let $U(R)$ be the unit group of R. The group of units $f = \sum a_s X^s$ of $R[X; S]$ with $\sum a_s = 1$ is denoted by $V(R[X; S])$.

The following is a semigroup version of Karpilovsky's Problem [Kar, chapter 7, problem 9]:

Problem. Find necessary and sufficient conditions for $R[X; S]$ under which,

1. H has a torsion-free complement in $V(R[X; S])$.
 ($V(R[X; S]) = \{X^h \mid h \in H\} \otimes W$, where W is torsion-free.)
2. H has a free complement in $V(R[X; S])$.
 ($V(R[X; S]) = \{X^h \mid h \in H\} \otimes W$, where W is free.)
3. $U(R[X; S])$ is free modulo torsion.
 ($U(R[X; S])\{\text{torsion elements}\}$ is free.)
In 6, we proved the following,

Theorem (An answer to Problem for reduced rings). Let R be reduced. Then,

1. H has a torsion-free complement in $V(R[X;S])$.
2. H has a free complement in $V(R[X;S])$ if and only if H is free.
3. $U(R[X;S])$ is free modulo torsion if and only if $U(R)$ is free modulo torsion and H is free.

REFERENCES

