Some results on commutative semigroups and semigroup rings

松田隆輝 (Ryûki Matsuda) Faculty of Science, Ibaraki University

Let G be a torsion-free abelian (additive) group, and let S be a subsemigroup of G which contains 0. Then S is called a grading monoid ([No]). We will call a grading monoid simply a g-monoid.

For example, the direct sum $\mathbf{Z}_0 \oplus \cdots \oplus \mathbf{Z}_0$ of *n*-copies of the non-negative integers \mathbf{Z}_0 is a g-monoid.

Many terms in commutative ring theory may be defined analogously for S.

For example, a non-empty subset I of S is called an ideal of S if $S + I \subset I$.

Let I be an ideal of S with $I \subsetneq S$. If $s_1 + s_2 \in I$ (for $s_1, s_2 \in S$) implies $s_1 \in I$ or $s_2 \in I$, then I is called a prime ideal of S.

Let Γ be a totally ordered abelian (additive) group. A mapping v of a torsion-free abelian group G onto Γ is called a valuation on G if v(x+y) = v(x) + v(y) for all $x, y \in G$. The subsemigroup $\{x \in G \mid v(x) \ge 0\}$ of G is called the valuation semigroup of G associated to v.

The maximum number n so that there exists a chain $P_1 \subsetneq P_2 \gneqq \cdots \gneqq$ P_n of prime ideals of S is called the dimension of S.

If every ideal I of S is finitely generated, that is, $I = \bigcup_i (S + s_i)$ for a finite number of elements s_1, \dots, s_n of S, then S is called a Noetherian semigroup.

Many propositions for commutative rings are known to hold for S.

For example, if S is a Noetherian semigroup, then every finitely generated extension g-monoid $S[x_1, \dots, x_n] = S + \sum_i \mathbb{Z}_0 x_i$ is also Noetherin [M3, Proposition 3], and the integral closure of S is a Krull semigroup [M4].

Ideal theory of S is interesting itself and important for semigroup rings.

Let R be a commutative ring, and let S be a g-monoid. There arises

the semigroup ring R[S] of S over R: $R[S] = R[X;S] = \{\sum_{finite} a_s X^s \mid a_s \in R, s \in S\}.$

If S is the direct sum $\mathbb{Z}_0 \oplus \cdots \oplus \mathbb{Z}_0$ of *n*-copies of \mathbb{Z}_0 , then R[S] is isomorphic to the polynomial ring $R[X_1, \cdots, X_n]$ of *n*-variables over R.

Assume that the semigroup ring D[S] over a domain D is a Krull domain. Then D.F. Anderson [A] and Chouinard [C] showed that $C(D[S]) \cong C(D) \oplus C(S)$, where C denotes ideal class group. Thus they were able to construct Krull domains that have various ideal class groups.

For another example, assume that D is integrally closed and S is integrally closed. Then we have $(I_1 \cap \cdots \cap I_n)^v = I_1^v \cap \cdots \cap I_n^v$ for every finite number of finitely generated ideals I_1, \dots, I_n of D[S] if and only if $(I_1 \cap \cdots \cap I_n)^v = I_1^v \cap \cdots \cap I_n^v$ for every finite number of finitely generated ideals I_1, \dots, I_n of D and $(I_1 \cap \cdots \cap I_n)^v = I_1^v \cap \cdots \cap I_n^v$ for every finite number of finitely generated ideals I_1, \dots, I_n of S ([M1]), where v is the v-operation.

1

Let D be a Noetherian integral domain with the integral closure \overline{D} , and K the quotient field of D.

The Krull-Akizuki theorem states that, if $\dim(D) = 1$, then any ring between D and K is Noetherian and its dimension is at most 1.

The Mori-Nagata theorem states that \overline{D} is a Krull ring for any Noetherian domain D.

Moreover, Nagata proved that, if D is of dimension 2, then \overline{D} is Noetherian (cf. [Na]).

In [M2] we proved the Krull-Akizuki theorem for semigroups.

In [M4] we proved the Mori-Nagata theorem for semigroups.

Let T be an extension g-monoid of S. An element t of T is called integral over S if $nt \in S$ for some positive integer n. The set of integral elements of T is called the integral closure of S in T. The integral closure \overline{S} in the quotient group $q(S) = \{s - s' \mid s, s' \in S\}$ is called the integral closure of S, and is denoted by \overline{S} . If $\overline{S} = S$, then S is called integrally closed.

In 1, we proved the following Theorem and answered to the following

question in the negative.

Theorem. Let S be a 2-dimensional Noetherian semigroup. Then the integral closure \overline{S} of S is a Noetherian semigroup.

Let P be a prime ideal of S. Then the maximum number n so that there exists a chain $P_1 \subsetneq P_2 \subsetneq \cdots \subsetneq P_n = P$ of prime ideals of S is called the height of P, and is denoted by ht(P).

Question. If P is a prime ideal of height r in a Noetherian semigroup S, then is P a prime ideal minimal among containing an r-generated ideal of S?

This is "yes" for rings.

Now, to answer to the Question, let $x_1 + x_2 = x_3 + x_4$ be a unique relation of letters x_1, x_2, x_3 and x_4 . Set $S = \mathbb{Z}_0 x_1 + \mathbb{Z}_0 x_2 + \mathbb{Z}_0 x_3 + \mathbb{Z}_0 x_4$. Then S is a g-monoid. $M = (x_1, x_2, x_3, x_4) = \bigcup_i (S + x_i)$ is a unique maximal ideal of S. Then S is a Noetherian semigroup of dimension 3. M is not a prime ideal minimal among containing a 3-generated ideal of S.

$\mathbf{2}$

Larsen-McCarthy's Multiplicative Theory of Ideals [LM] is one of the basic references of multiplicative ideal theory for commutative rings. In 2, we proved or disproved all the Theorems in [LM] for semigroups. We will state two Theorems.

Let M be a non-empty set. Assume that, for every $s \in S$ and $a \in M$, there is defined $s + a \in M$ such that, for every $s_1, s_2 \in S$ and $a \in M$, we have $(s_1 + s_2) + a = s_1 + (s_2 + a)$ and 0 + a = a. Then M is called an S-module.

Theorem. Let S be a Noetherian semigroup, M a finitely generated S-module, L and N submodules of M, and I an ideal of S. Then there exists a positive integer r such that for every n > r, we have

$$(nI+L) \cap N = (n-r)I + ((rI+L) \cap N).$$

This is a semigroup version of the Artin-Rees Lemma for rings.

Let M be an S-module. If $s_1 + a = s_2 + a$ (for $s_1, s_2 \in S$ and $a \in M$) implies $s_1 = s_2$, then M is called cancellative.

Theorem implies that if M is a finitely generated cancellative module over a Noetherian semigroup S, then $\bigcap_{n=1}^{\infty} (nI + M) = \emptyset$ for every proper ideal I of S.

An element s of a g-monoid S is called unit if $-s \in S$. Let s be a non-unit of S. If $s = s_1 + s_2$ implies that s_1 or s_2 is a unit, then s is called irreducible. If every element of S is expressed as a sum of irreducible elements uniquely (up to units and permutation), then S is called factorial (or a UFS).

If there exists a family $\{V_{\lambda} \mid \lambda\}$ of Z-valued valuation semigroups on q(S) so that $S = \bigcap_{\lambda} V_{\lambda}$ and each element of S is a unit for almost all λ , then S is called a Krull semigroup.

An S-submodule I of q(S) is called a fractional ideal of S, if $s+I \subset S$ for some $s \in S$. Let F(S) be the set of fractional ideals of S. For every fractional ideal I of S, we set $div(I) = \{J \in F(S) \mid J^v = I^v\}$, and set $D(S) = \{div(I) \mid I \in F(S)\}$, and $C(S) = D(R)/\{div(x) \mid x \in q(S)\}$, where I^v is the intersection of principal fractional ideals of S containing I. If $I^v = I$, then I is called divisorial.

Theorem. If S is a g-monoid, then the following conditions are equivalent:

(1) S is a factorial semigroup.

(2) S is a Krull semigroup and C(S) = 0.

(3) S is a Krull semigroup and every prime divisorial ideal of S is principal.

Kaplansky's Commutative Rings [Kap] is one of the basic rerences of commutative ring theory. We know that all the Theorems in Chapters 1 and 2 of [Kap] hold for S [TM].

³

In 3, we showed that all the Theorems in Chapter 3 of [Kap] hold for g-monoids. We will state some Theorems.

Let A be an S-module and $s \in S$. If $s + a_1 = s + a_2$ (for $a_1, a_2 \in A$) implies $a_1 = a_2$, then s is called a non-zerodivisor on A. If s is not a nonzerodivisor, then s is called a zerodivisor on A. The set of zerodivisors on A is denoted by Z(A). Let B be a submodule of an S-module A, and $s \in R$. If $s + a \in B$ (for $a \in A$) implies $a \in B$, then s is called a non-zerodivisor on A modulo B (or a non-zerodivisor on A/B). If s is not a non-zerodivisor on A/B, then s is called a zerodivisor. The set of zerodivisors on A/B is denoted by Z(A/B).

The ordered sequence of elements x_1, \dots, x_n of S is called a regular sequence on A, if $(x_1, \dots, x_n) + A \subsetneq A$ and if $x_1 \notin Z(A), x_2 \notin Z(A/((x_1) + A)), \dots, x_n \notin Z(A/((x_1, \dots, x_{n-1}) + A)).$

Let A be an S-module. If $Z(A) = \emptyset$, then A is called torsion-free.

Let A be an S-module, and I an ideal of S. Let x_1, \dots, x_n be a regular sequence in I on A. If x_1, \dots, x_n, x is not a regular sequence on A for each $x \in I$, then x_1, \dots, x_n is called a maximal regular sequence in I on A.

Let A be an S-module, and I an ideal of S. Then the maximum of lengths of all regular sequences in I on A is called the grade of I on A, and is denoted by G(I, A).

Let A be an S-module. If any two maximal regular sequences in I on A have the same length for every ideal I with $I + A \subsetneqq A$, then A is said to satisfy property (*). If A satisfies property (*), we say also that (S, A) satisfies property (*).

Theorem. Let S be a Noetherian semigroup, and A a finitely generated torsion-free cancellative S-module with property (*). Let $I = (x_1, \dots, x_n)$ be a proper ideal of S. Then G(I, A) = n if and only if x_1, \dots, x_n is a regular sequence on A.

Let S be a Noetherian semigroup with maximal ideal M. If G(M, S) = dim(S), then R is called a Macaulay semigroup.

Theorem. Let S be a Macaulay semigroup such that (S, S) satisfies

property (*). Then we have G(I, S) = ht(I) for every ideal I of S.

Let S be a Noetherian semigroup with maximal ideal M. The cardinality of a minimal generators of M is called the V-dimension of S, and is denoted by V(S).

A Noetherian semigroup S is called a regular semigroup if V(S) = dim(S).

Theorem. Let S be a Noetherian semigroup with maximal ideal M. Assume that M is generated by a regular sequence a_1, \dots, a_k on S. Then $k = \dim(S) = V(S)$, and S is a regular semigroup.

Theorem. Any regular semigroup is a Macaulay semigroup.

Theorem. The polynomial semigroup S[X] is a Macaulay semigroup if and only if S is a Macaulay semigroup.

4

Let D be an integral domain with quotient field K. Let F(D) be the set of non-zero fractional ideals of D. A mapping $I \mapsto I^*$ of F(D)to F(D) is called a star-operation on D if for all $a \in K - \{0\}$ and $I, J \in F(D)$;

(1)
$$(a)^* = (a)$$
 and $(aI)^* = aI^*$;

(2) $I \subset I^*$;

(3) If $I \subset J$, then $I^* \subset J^*$; and

(4) $(I^*)^* = I^*$.

Let $\Sigma(D)$ be the set of star-operations on D.

Let F'(D) be the set of non-zero *D*-submodules of *K*. A mapping $I \mapsto I^*$ of F'(D) to F'(D) is called a semistar-operation on *D* if for all $a \in K - \{0\}$ and $I, J \in F'(D)$;

(1) $(aI)^* = aI^*;$

(2) $I \subset I^*;$

- (3) If $I \subset J$, then $I^* \subset J^*$; and
- (4) $(I^*)^* = I^*$.

Let $\Sigma'(D)$ be the set of semistar-operations on D.

A valuation ring (or a valuation semigroup) V is said to be discrete if its value group is discrete.

In 4, we proved the following Theorems.

Theorem. Let D be a domain with dimension n. Then D is a discrete valuation ring if and only if $|\Sigma'(D)| = n + 1$.

Let S be a g-monoid with quotient group G. A mapping $I \mapsto I^*$ of F(S) to F(S) is called a star-operation on S if for all $a \in G$, and $I, J \in F(S); (1) \ (a)^* = (a); (2) \ (a+I)^* = a+I^*; (3) \ I \subset I^*; (4)$ If $I \subset J$, then $I^* \subset J^*; (5) \ (I^*)^* = I^*.$

For example, let I^{v} be the intersection of principal fractional ideals containing I, then v is a star-operation on S which is called the voperation on S. Let $\Sigma(S)$ be the set of star-operations on S.

Let F'(S) be the set of submodules of G. A mapping $I \mapsto I^*$ of F'(S) to F'(S) is called a semistar-operation on S if, for all $a \in G$ and $I, J \in F'(S)$; (1) $(a+I)^* = a+I^*$; (2) $I \subset I^*$; (3) If $I \subset J$, then $I^* \subset J^*$; (4) $(I^*)^* = I^*$.

Let $\Sigma'(S)$ be the set of semistar-operations on S.

Theorem. Let S be a g-monoid with dimension n. Then S is a discrete valuation semigroup if and only if $|\Sigma'(S)| = n + 1$.

Theorem. Let V be a valuation semigroup of dimension n, v its valuation and Γ its value group. Let $M = P_n \supseteq P_{n-1} \supseteq \cdots \supseteq P_1$ be the prime ideals of V, and let $\{0\} \subseteq H_{n-1} \subseteq \cdots \subseteq H_1 \subseteq \Gamma$ be the convex subgroups of Γ . Let m be a positive integer such that $n+1 \leq m \leq 2n+1$. Then the followings are equivalent:

(1) $|\Sigma'(V)| = m$.

(2) The maximal ideal of the g-monoid $V_{P_i} = \{s-t \mid s \in V, t \in V - P_i\}$ is principal for exactly 2n + 1 - m of i.

(3) The ordered abelian group Γ/H_i has a minimal positive element for exactly 2n + 1 - m of *i*.

Theorem. Let V be a valuation ring of dimension n, v its valuation and Γ its value group. Let $M = P_n \supseteq P_{n-1} \supseteq \cdots \supseteq P_1 \supseteq (0)$ be the prime ideals of V, and let $\{0\} \subseteq H_{n-1} \subseteq \cdots \subseteq H_1 \subseteq \Gamma$ be the convex subgroups of Γ . Let m be a positive integer such that $n+1 \leq m \leq 2n+1$. Then the followings are equivalent:

- (1) $|\Sigma'(V)| = m$.
- (2) The maximal ideal of V_{P_i} is principal for exactly 2n + 1 m of *i*.
- (3) Γ/H_i has a minimal positive element for exactly 2n + 1 m of *i*.
- $\mathbf{5}$

Let R be a commutative ring, and let K be its total quotient ring; $K = \{a/b \mid a \in R, b \text{ is a non-zerodivisor of } R\}$. Let S be a g-monoid, and let G be the quotient group of S.

An element $\alpha \in G$ is called almost integral over S if there exists an element s of S such that $s + n\alpha \in S$ for every positive integer n. The set of almost integral elements of G over S is called the complete integral closure (or the CIC) of S. If the complete integral closure of S coincides with S, then S is called completely integrally closed (or CIC).

R is said to be root closed if whenever $x^n \in R$ for some $x \in K$ and positive integer n, then $x \in R$.

The maximal number n so that there exists a set of *n*-elements in G which is independent over \mathbf{Z} is called the torsion-free rank of G, and is denoted by t.f.r.(G).

In 5, we proved the following Theorems.

Theorem. R[X; S] is integrally closed if and only if S is integrally closed, R is integrally closed, $K[X_1]$ is integrally closed and $q(K[X_1, \dots, X_{n-1}])$ $[X_n]$ is integrally closed for every n with $n \leq \text{t.f.r.}(G)$.

Theorem. R[X;S] is CIC if and only if S is CIC, R is CIC and $R[X_1, \dots, X_n]$ is CIC for every positive integer $n \leq \text{t.f.r.}(G)$.

Theorem. R[X;S] is root closed if and only if S is integrally closed, R is root closed, $K[X_1]$ is root closed and $q(K[X_1, \dots, X_{n-1}])[X_n]$ is root

closed for every n with $n \leq \text{t.f.r.}(G)$.

If, for each element a of R, there exists an element b of R such that $a = a^2b$, then R is called a von Neumann regular ring.

Theorem. Assume that K is a von Neumann regular ring. Then R[X; S] is integrally closed if and only if S is integrally closed and R is integrally closed.

Theorem. Assume that K is a von Neumann regular ring. Then R[X; S] is CIC if and only if S is CIC and R is CIC.

Let R be a Noetherian reduced ring. Then R[X; S] is CIC if and only if S is CIC and R is CIC.

Theorem. Assume that K is a von Neumann regular ring. Then R[X; S] is root closed if and only if S is integrally closed and R is root closed.

6

We denote the unit group of S by H. Let R be a ring. Let U(R) be the unit group of R. The group of units $f = \sum a_s X^s$ of R[X;S] with $\sum a_s = 1$ is denoted by V(R[X;S]).

The following is a semigroup version of Karpilovsky's Problem [Kar, chapter 7, problem 9]:

Problem. Find necessary and sufficient conditions for R[X; S] under which,

(1) H has a torsion-free complement in V(R[X; S]).

 $(V(R[X;S]) = \{X^h \mid h \in H\} \otimes W$, where W is torsion-free.)

(2) H has a free complement in V(R[X;S]).

 $(V(R[X;S]) = \{X^h \mid h \in H\} \otimes W$, where W is free.)

(3) U(R[X;S]) is free modulo torsion.

 $(U(R[X;S])/\{\text{torsion elements}\} \text{ is free.})$

In 6, we proved the following,

Theorem (An answer to Problem for reduced rings). Let R be reduced. Then,

(1) H has a torsion-free complement in V(R[X; S]).

(2) H has a free complement in V(R[X;S]) if and only if H is free.

(3) U(R[X;S]) is free modulo torsion if and only if U(R) is free modulo torsion and H is free.

REFERENCES

[A] D.F. Anderson, The divisor class group of a semigroup ring, Comm. Alg. 8(1980),467-476.

[C] L. Chouinard, Krull semigroups and divisor class groups, Can. J. Math. 33(1981),1459-1468.

[Kap] I. Kaplansky, Commutative Rings, The Univ. Chicago Press, 1974.

[Kar] G. Karpilovsky, Commutative Group Algebras, Marcel Dekker, New York,1983.

[LM] M. Larsen and P. McCarthy, Multiplicative Theory of Ideals, Academic Press, 1971.

[M1] R. Matsuda, Torsion-free abelian semigroup rings IX, Bull. Fac. Sci., Ibaraki Univ. 26(1994),1-12.

[M2] R. Matsuda, The Krull-Akizuki theorem for semigroups, Math. J. Ibaraki Univ. 29(1997),55-56.

[M3] R. Matsuda, Some theorems for semigroups, Math. J. Ibaraki Univ. 30(1998),1-7.

[M4] R. Matsuda, The Mori-Nagata theorem for semigroups, Math. Japon. 49(1999),17-19.

[Na] M. Nagata, Local Rings, Interscience, 1962.

[No] D. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge Univ. Press, 1968.

[TM] T. Tanabe and R. Matsuda, Note on Kaplansky's Commutative Rings, Nihonkai Math. J. 10(1999), to appear.