Title: On the Extension Theorem for Linear Codes (Languages, Algebra and Computer Systems)

Author(s): Maruta, Tatsuya

Citation: 数理解析研究所講究録 (1999), 1106: 102-105

Issue Date: 1999-07

URL: http://hdl.handle.net/2433/63252

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
On the Extension Theorem for Linear Codes
（線形符号の延長定理について）

Tatsuya MARUTA (丸田 辰哉)

Department of Information Systems
Aichi Prefectural University
Nagakute, Aichi 480-1198, Japan
e-mail : maruta@ist.aichi-pu.ac.jp

Abstract. Hill and Lizak ([1]) proved that every \([n, k, d]_q\) code with \(\gcd(d, q)=1\) and with all weights congruent to 0 or \(d\) (modulo \(q\)) can be extended to an \([n+1, k, d+1]_q\) code. We give another elementary geometrical proof of this theorem.

1. Introduction

An \([n, k, d]_q\) code \(C\) means a linear code of length \(n\) with dimension \(k\) whose minimum Hamming distance is \(d\) over the Galois field \(GF(q)\). The weight distribution of \(C\) is the list of numbers \(A_i\) which is the number of codewords of \(C\) with weight \(i\). We only consider non-degenerate codes having no coordinate which is identically zero.

Let \(C\) be an \([n, k, d]_q\) code with a generator matrix \(G\). The code obtained by deleting the same coordinate from each codeword of \(C\) is called a punctured code of \(C\). If there exists an \([n+1, k, d+1]_q\) code \(C'\) whose punctured code is \(C\), \(C\) is called extendable (to \(C')\) and \(C'\) is an extension of \(C\). Obviously, every \([n, 1, d]_q\) code is extendable.

As for the case when \(k = 2\), an \([n, 2, d]_q\) code \(C\) is equivalent to the code with a generator matrix of the form

\[
\begin{array}{ccccccccccc}
1 & \cdots & 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & \alpha & \cdots & \alpha & \alpha^2 & \cdots & \alpha^{q-1} & \cdots & \alpha^{q-1} & 1 & \cdots & 1
\end{array}
\]

where \(\alpha\) is a primitive element of \(GF(q)\). Let \(t_0, t_i (1 \leq i \leq q - 1), t_q\) be the number of columns \([1 \ 0]^T, [1 \ \alpha^i]^T (1 \leq i \leq q - 1), [0 \ 1]^T\) respectively, so that \(t_0 + t_1 + \ldots + t_q = n\). Setting \(s = \max\{t_0, t_1, \ldots, t_q\}\), we have \(0 \leq t_i \leq s\) and \(s = n - d\). So, \(C\) is extendable iff there exists \(i (0 \leq i \leq q)\) with \(t_i < s\). Since \(C\) is an \([s(q+1), 2, sq]_q\) code iff \(t_0 = t_1 = \ldots = t_q = s\), we get

Theorem 1. An \([n, 2, d]_q\) code \(C\) is not extendable iff \(n = s(q+1)\) and \(d = sq\) for some integer \(s\).
Although it is not so easy to find if an $[n, k, d]_q$ code is extendable or not when $k \geq 3$
 in general, it is well known that every $[n, k, d]_2$ code with d odd is extendable (by adding
an overall parity check). The following so-called extension theorem is a generalization of
this fact.

Theorem 2. (Hill & Lizak [1])

Let C be an $[n, k, d]_q$ code with the weight distribution $\{A_i\}$. If $\gcd(d, q) = 1$ and if $i \equiv
0 \pmod{d}$ for all i with $A_i > 0$, then C is extendable to an $[n + 1, k, d + 1]_q$ code C'
with the weight distribution $\{A'_i\}$ satisfying $i \equiv 0$ or $d + 1 \pmod{q}$ for all i with $A'_i > 0$.

For an $[n, k, d]_q$ code C with a generator matrix G, the residual code of C with respect
to a codeword c, denoted by $\text{Res}(C, c)$, is the code generated by the restriction of G
to the columns where c has a zero entry. The following lemma is well known for residual codes.

Lemma 3. Take $c \in C$ with weight d. Then $\text{Res}(C, c)$ is an $[n - d, k - 1, d_0]_q$ code with
$d_0 \geq \lfloor d/q \rfloor$, where $[x]$ is the smallest integer $\geq x$.

When q divides d, we can prove the following.

Theorem 4. An $[n, k, d]_q$ code C is not extendable if q divides d and if $\text{Res}(C, c)$ is an
$[n - d, k - 1, d_0]_q$ code with $d_0 = d/q$ for some $c \in C$.

Example. Every $[q^2, 4, q^2 - q - 1]_q$ code C_1 is extendable by Theorem 2 (see [1]). But
the extension of C_1 is not extendable by Lemma 3 and Theorem 4.

We give the proof of Theorems 2 and 4 in Section 3. A geometrical point of view
(given in Section 2), which is a generalization of the above observation for the case when
$k = 2$, is sometimes valid for linear codes (cf. [4],[5]). Although the original proof of
Theorem 2 is elementary, we give another elementary geometrical proof to make clear the
extendability of linear codes in the different way.

2. A geometric method

We denote by $\text{PG}(r, q)$ the projective geometry of dimension r over $\text{GF}(q)$. Assume
$r \geq 2$. A j-flat is a projective subspace of dimension j in $\text{PG}(r, q)$. 0-flats, 1-flats, 2-flats,
$(r - 2)$-flats and $(r - 1)$-flats are called points, lines, planes, secundums and hyperplanes
respectively. We denote by \mathcal{F}_j the set of j-flats of $\text{PG}(r, q)$. The following lemma is a
characterization of hyperplanes.

Lemma 5. Let F be a proper subset of $\Sigma = \text{PG}(r, q)$. Then F is a hyperplane of Σ iff
every line in Σ meets F in one point or in $q + 1$ points.
Proof. Assume that every line in $\Sigma = \text{PG}(r, q)$ meets a proper subset F of Σ in one point or in $q + 1$ points. Let l_0 be a line in Σ. Then we can find a point $Q_0 \in F$ on l_0. Let δ_{j-1} be a $(j - 1)$-flat included in F, $1 \leq j \leq r - 1$. Taking a line l_j which is skew to δ_{j-1}, we can get a point $Q_j \in F$ (on l_j) not on δ_{j-1}. Since every line through Q_j and a point of δ_{j-1} meets F in $q + 1$ points, we get $\delta_j = \langle Q_j, \delta_{j-1} \rangle \in \mathcal{F}_j$ included in F. Inductively, we get a hyperplane δ_{r-1} included in F. If a point $Q \in F$ not in δ_{r-1} exists, then we have $F = \langle Q, \delta_{r-1} \rangle = \Sigma$, a contradiction. Hence we obtain $F = \delta_{r-1}$. The converse is trivial. \hfill \Box

Let C be a (non-degenerate) $[n, k, d]_q$ code. The columns of a generator matrix of C can be considered as a multiset of n points in $\Sigma = \text{PG}(k - 1, q)$ denoted also by C. We see linear codes from this geometrical point of view. An i-point is a point of Σ which has multiplicity i in C. Let C_i be the set of i-points in Σ. For any subset S of Σ we define

$$c(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|,$$

where γ_0 is the maximum of the multiplicities of points in Σ.

A line l with $t = c(l)$ is called a t-line. A t-plane, t-secundum and a t-hyperplane are defined similarly. Then we obtain the partition $\Sigma = C_0 \cup C_1 \cup \cdots \cup C_{\gamma_0}$ such that

$$c(\Sigma) = n,$$

$$n - d = \max\{c(\pi) | \pi \in \mathcal{F}_{k-2}\}. \tag{2.2}$$

Conversely such a partition of Σ as above gives an $[n, k, d]_q$ code in the natural manner if there exists no hyperplane including the complement of C_0 in Σ. Since an $[n+1, k, d+1]_q$ code also satisfies (2.2) we get the following.

Lemma 6. An $[n, k, d]_q$ code C is extendable iff there exists a point $P \in \Sigma$ such that $c(\pi) < n - d$ for all hyperplanes π through P.

We give an elementary proof of Theorem 2 using Lemma 6.

3. Proof of Theorem 2 and Theorem 4

Note that the number of i-hyperplanes is $A_{n-i}/(q - 1)$ ($0 \leq i \leq n - d$). So, the condition \'i $\equiv 0$ or d (mod q) for all i with $A_i > 0'\text{ in Theorem 2 implies that } c(\pi) \equiv n$ or $n - d$ (mod q) for all $\pi \in \mathcal{F}_{k-2}$.
Proof of Theorem 2. Put $F = \{ \pi \in \mathcal{F}_{k-2} | c(\pi) \equiv n \pmod{q} \}$. For any t-secundum δ of $\Sigma = \text{PG}(k-1, q)$, denote by a_δ (resp. b_δ) the number of hyperplanes π through δ with $c(\pi) \equiv n \pmod{q}$ (resp. $c(\pi) \equiv n - d \pmod{q}$). Then we have $a_\delta + b_\delta = q + 1 \equiv 1$ and $(n - t)a_\delta + (n - d - t)b_\delta + t \equiv n$, so that $d(a_\delta - 1) \equiv 0 \pmod{q}$. Since $\gcd(d, q) = 1$, we get $a_\delta \equiv 1 \pmod{q}$, whence $a_\delta = 1$ or $q + 1$. This implies that every line in a dual space Σ^* meets F in one point or $q + 1$ points. By Lemma 5, F is a hyperplane of Σ^*, whence there exists a point $P \in \Sigma$ such that the set of all hyperplanes through P is equal to F. Since $c(\pi) \equiv n \pmod{q}$ implies $c(\pi) < n - d$, C is extendable by Lemma 6. By adding P to the multiset C, we get an extension of C which satisfies $c(\pi) \equiv n + 1$ or $n - d \pmod{q}$ for all $\pi \in \mathcal{F}_{k-2}$.

It follows from the above proof that the point to be added to the multiset C to get an extension of C is uniquely determined under the condition of Theorem 2.

Proof of Theorem 4. Since $\text{Res}(C, c)$ is an $[n - d, k - 1, d/q]_q$ code for some $c \in C$, there exists a t-secundum δ with $t = n - d - d/q$ in $\Sigma = \text{PG}(k-1, q)$. Considering the hyperplanes through δ, we have

$$n \leq (n - d - t)(q + 1) + t = n,$$

whence every hyperplane through δ is a $(n - d)$-hyperplane. Hence every point in Σ is on a $(n - d)$-hyperplane, and C is not extendable by Lemma 6.

References

