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Nondeterministic directable automata
and related languages

Balizs Imreh* Masami Ttof

The directability of nondeterministic automata can be defined in several nonequiva-
lent ways. In [7], three different notions were introduced and studied. For each case
considered, the corresponding directing words constitute a regular language, and thus,
the families of such regular languages can be studied. In the work [5], six classes of
regular languages are defined in accordance with the different definitions of directabil-
ity introduced in [7] and the properties of these classes are investigated. In the present
work, involving three further classes of regular languages into the investigations, we
continue the previous studies and present some further properties with respect to the
language families considered. In particular, it is proved that the 8 classes considered
constitute a semilattice with respect to the intersection.

1 Introduction

We recall that an input word of an automaton is called directing or synchronizing word
if it brings the automaton from every state into the same state, furthermore, then the
automaton considered is called directable. The directable automata and directing
words have been studied from different points of view (see [2], [3], [5], [6], [7], [8], [10],
[12], [13], for example). For nondeterministic (n.d.) automata, the directability can
be defined in several ways. We study here three notions of directability which are
defined in [7] as follows. An input word w of an n.d. automaton A4 is

(1) D1-directing if the set of states aw in which A may be after reading w consists
of the same single state ¢ whatever the initial state a is;

(2) D2-directing if the set aw is independent of the initial state a;
(3) D3-directing if there exists a state c included in all sets aw.

It has to mention that the D;-directability of complete n.d. automata was already
studied by Burkhard [1], where he gave an exact exponential bound for the length of
- minimum-length D1-directing words of complete n.d. automata. In [5], the classes
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of languages consisting of directing words of different types of n.d. automata were
studied. Here, we extend our investigations to three further languages and present
some new properties of these classes of languages. The paper is organized as follows.
The next section provides a general preliminaries, the formal definitions of these lan-
guages, and some earlier results. Finally, Section 3 presents some new properties of
the language families considered, in particular, it is proved that they constitute a
semilattice with respect to the intersection.

2 Preliminaries

Let X be a finite nonempty alphabet. As usual the set of all (finite) words over X is
denoted by X* and the empty word by . The length of a word w is denoted by |w].

By an automaton we mean a triplet A = (A, X, ), where A is a finite nonempty
set of states, X is the input alphabet, and § : A x X — A is the transition function.
This function can be extended to A x X* in the usual way. By a recognizer we mean
a system A = (A, X, $, ag, F), where (A, X, §) is an automaton, ag(€ A) is the initial
state, and F(C A) is the set of final states. The language recognized by A is the set

L(A) = {w € X*: §(ag,w) € F}.
Sometimes, we say that the recognizer A accepts the language L(A). A language is
called recognizable, or regular, if it is recognized by some recognizer.

An automaton A = (4, X,6) can also be defined as a unary algebra A = (4, X)
for which each input letter z is realized as the unary operation 4 : A — A, a —
6(a,z). Now, nondeterministic automata can be introduced as generalized automata
in which the unary operations are replaced by binary relations. Therefore, by a
nondeterministic (n.d.) automaton we mean a system A = (A, X) where A is a finite
nonempty set of states, X is the set of the input signs (or letters), and each sign
z(€ X) is realized as a binary relation z4(C Ax A) on A. Foranya € Aand z € X,
az? = {b € A: (a,b) € z*} which can be interpreted as the set of states into which
A may enter from state a by reading the input letter z. For any C C A and z € X,
we set Cz# = U{az? : a € C'}. This transition can be extended for arbltrary weX :
and C C A. This means that if W= 2By Ty then w# = .1:{‘:1:54 Lz (CAxA) I
w € X* and a € A, then let aw? = {a}w.

An n.d. automaton A = (A,X) is called complete if az? # 0, for all a € A

and z € X. Complete n.d. automata are called c.n.d. automata in short. In what
follows, we denote a deterministic automaton by A = (A, X, §) and a nondeterministic

automaton by A = (4, X).

The notion of the directability of deterministic automata can be generalized to
n.d. -automata in several nonequivalent ways. In [7], the following three definitions
are presented. Let A = (A, X) be an n.d. automaton. For any word w € X* we
consider the following three conditions:

(D1) (3c € A)(Va € A)(aw? = {c});
(D2) (Ya,b € A)(aw* = bw?);



(D3) (3¢ € A)(Va € A)(c € aw).

If w satisfies condition (Ds), then w is called a Di-directing word of A (i = 1,2, 3). For
every 1, ¢ = 1,2,3, the set of Di-directing words of A is denoted by D;(.A4), and A is
called Di-dz'rectable if D;(A) # 0. It is proved (see [7]) that D;(.A) is recognizable, for
every n.d. automaton A and ¢, i = 1,2,3. The classes of Di-directable n.d. automata,
and c.n.d. automata are denoted by Dir(i) and CDir(i), respectively.

Now, we can define the following classes of languages: For i = 1,2, 3, let

£ND(i) = {D,(.A) :Ae Dlr(’b)} and »CCND(i) = {D,(.A) :Ae CDir(z)}

Finally, let D denote the class of directable deterministic automata, and for any
A € D, let D(A) be the set of the directing words of .A. Moreover, let

Lp ={D(A): Ae D}.
Since all of the languages occuring in the definitions above are recognizable, the
defined classes are subclasses of the class of the regular languages.

In what follows, we need the following definition. For any language I C X*, let
us denote by P,(L) the set of all prefixes of the words in L, i.e., P,(L) = {u : u €
X*& (v e X*)(uv € L)}.

Now, we recall some results from [5] and [7] which are used in the following section.

Lemma 1. ([7]) For any n.d. automaton A = (A, X), Da(A)X* = Dy(A). If A is
- complete, then X*D1(A) = D;(A), X*D3(A)X* = D;y(A), and X*D3(A)X* = D3(A).

Proposition 1. ([5]) For a language L C X", LeLpifandonlyif L # 0, L is
regular, and X*LX* = L.

Proposition 2. ([5]) ACCND(2) = Lp, £CND @) = Lp, ‘CCND(I n END(Z) = Lp, and
Lonpay N Lnpe) = Lp.

Furthermore, we need the following proper inclusions which are presented in [5] as
well.

Remark 1. ([5]) The following proper inclusions are valid:
(a) Lp C Lenp) € Lapay,
(b) Lp C Lxpe),
(¢) Lp C Lnp(s)-

By Proposition 2, Lonp(s) = Lonp(e) = Lp, and thus, we investigate the remaining
5 classes and three further classses of languages which are defined as follows. The
languages satisfying X*L = L are called ultimate definite languages (cf. [9] or [11]),
and we shall consider a subclass denoted by ¥ of this class which consists of all the
regular ultimate definite languages. Another additional class, involved into the present
investigations, contains all the nonempty regular languages satisfying P,(L)LX* = L,
and this class is denoted by £’. Finally, we also consider the class Lnpa) N Lnp(s)-
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3 Some observations on languages of directing
words of n.d. automata

First we consider the classes U and Lnp(y). It is known (see [5]) that Lonpry) C U.
On the other hand, Lonpy C Lnp(1) from Remark 1. The following assertion shows
that Lonp(r) is the intersection of these two wider classes.

Proposition 3. Lonpay = Loy NU.

Using Proposition 2, by the same idea as in the proof of Proposition 3, one can
prove the following statement.

Proposition 4. Lnp@e) NU = Lp and Lype) NU = Lp.

By the definitions, one can easily obtain the validity of the following observations.
Lemma 2. If L € Lxp), then P(L)L = L and LP,(L) = L.

Lemma 3. If L € Lnpqyy, then P.(L)L = L.

As a next step we show that Lnyp() and Lnp(s) are incomparable as well. To verify
this statement, let us consider the following examples.

Example 1. Let us define the n.d. automaton A = ({1,2},{z,y}) by 24 =
{(171)5 (1,2),(2,1),(2,2)} and yA = {(1a2)= (272)}'

In this case, A is D;-directable and D;(A) = X*y. Now, let us suppose that
X*y € Lnp(s). Then, y,zy € X*y and ¢ € P,(X*y), and thus, Lemma 2 implies that
yz € X"y which is a contradiction. Therefore, Lnp1) € Lnp(a)-

Example 2. Let A = ({1,2},{z,y}) be the n.d. automaton for which z4 =
{(1,2),(2,1),(2,2)} and y'A = {1, 1)}

Now, A is Ds-directable and z,z%y € D3(A) while zy & D3(A). Let us suppose
that D3(A) € Lnp). Then, there exists an n.d. automaton B = (B, X) such that
D3(A) = Dy(B). In this case z and z?y are D1-directing words of B, and thus, there are
states ¢,d € B such that Bz® = {c}, in particular {c}z® = {c}, and B(2?y)? = {d}.
Then, it is easy to see that B(zy)® = {d}, and hence, zy € D;(B) = D3(A) must hold
which is a contradiction since zy ¢ D3(A). Consequently, Lxps) € Lnpg)-

Regarding the new class defined by property P.(L)LX* = L, the following asser-
tion is valid.

Proposition 5. £’ = Lype) N Lyp)-

Proposition 6. £’ = Lnp(z) N Lxp(y-

From Propositions 5 and 6, the next corollary follows.

Corollary 1. £’ = (Lxpa) N £xpe)) N Lapge)-



Since Lnp(1) and Lnp(s) are incomparable with respect to the inclusion, Lypy N
Lnp(a) is a proper subclass of both Lnp(y and Lypz). On the other hand, by Corollary
1, £' € Lnpa) N Lnpe) and L' C Lnp(z). Both of theses inclusions are proper. To
verify this observation, let us consider the following examples and arguments.

Example 3. Let the n.d. automaton A4 = ({1,2},{z,y}) be defined by z* =
'{(2a1)7(212)} and y'A = {(1’ 1)’ (27 1)} |

Then, y is a D1- and D3-directing word, and y{y}* = D,(A) = D3(A). Now, if
L € £, then P,(L)LX* must hold which is a contardiction since y*z ¢ L, for every
integer k > 1. Therefore, £’ C Lnpa) N Lnp(a)- _
Example 4. Let the n.d. automaton A = ({1,2},{z,y}) be defined by z* =
{(1,2),(2,2)} and g = {(&,1)}. o
Then, A is Dy-directable and Dy(A) = 2X* U y?>X*. Now, if D3(A) € L', then since
y € P,(Dy(A)) and z € Dy(A), yz € Dy(A) must hold which is a contradiction.
Consequently, £ C Lonp(z)-

By the definition of £’ and Proposition 1, we obviously have that £p C £'. For
proving that this inclusion is proper, let us consider the following example.

Example 5. Let A = ({1,2},{z,y}) be defined by z* = {(2,2)} and y* =
{(1,2),(2,2)}.

Then, D;(A) = Dy(A) = D3(A) = yX*. By Proposition 5, yX* € L£'. Let us
suppose now that yX* € Lp. Then, by Proposition 1, zy € yX* must hold which a
contradiction. Therefore, yX* ¢ Lp, and thus, Lp C L.

Summarizing, we obtain that taking into account the three new classes, U, £/, and
Lxp) N Lnpe), if | X| > 2, then we have 8 different classes of regular languages given

by Figure 1, where the semilattice of these classes with respect to the intersection is
presented.

% Loy <o

Figure 1

85



86

Let A = (A, X) be a n.d. automaton and z € X. Then, z is called complete input
sign if az? # 0, for all a € A.

The following statement shows that the languages belonging to Lnp(z) can be
decompose in a particular form.

Proposition 7. If L € Lnp), then L is a disjoint union of regular languages Ly and
L, where at least one of L, and Ly is nonvoid, furthermore,

(1) Ly € Lp provided that Ly # 0
and

(2) P.(L3)LY* = Ly and Y*LyY™* = Ly where Y C X denotes the complete input
symbols of A provided that Y # 0.

In the rest part of the paper, we study the representation of the languages of
Lnp(z) which have the form L = MX*, where M is a regular prefix code. First we
recall some notions.

Let § # M C X*. Then M is said to be a prefiz code over X if M N M X+ = 0.
A prefix code M C X is said to be mazimal if, for any u € X*, there exists v € X*
such that wv € MX*. Finally, a prefix code M is called regular if M is a regular
language.

Propositiori 8. Let M C Xt be a regular prefix code that is not mazximal. Let
L= MX*. Then L € Lnp) if and only if P.(M)M C L. '

The above proposition does not always hold for a regular maximal prefix code.
Example 6. Let X = {z, y} and let A = {1, 2} Moreover, let A = (A, X) be the
following n.d. automaton: z* = {(1,2),(2,2)}, y* = {(1,2)}. '
Then, L = Dy(A) = (2Uyz*y)X*y)X* € Lnp(z). Let M = L\LX*. Then, P,(M)M C
L does not hold since y € P,(M),z € M but yz ¢ L = MX*.

However, for the class of finite maximal prefix codes, we have the following:

Proposition 9. Let § # M C X* be a finite mazimal prefiz code. Let L = MX™.
Then, L € Lnp(g) if and only if P, (MM C L.

Example 7. Let X = {z,y} and let M = {z,yzz,yzy,yy}. Then M is a finite
maximal code. Take y € P,(M) and z € M. Then, yz ¢ MX*. Therefore, M X" ¢

LND(2)-
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