Note on Transitive Representations of Generalized Inverse *-Semigroups¹

ISAMU INATA (稲田 勇) TERUO IMAOKA (今岡 輝男)

Abstract

In [1], we obtained that an effective representation of a locally [generalized] inverse *-semigroup S is the sum of a uniquely determined family of transitive representations of S. In this paper, we will determine a transitive representation of a generalized inverse *-semigroup by using right ω -cosets. This is a generalization of Schein's result [5] for inverse semigroups.

1 Introduction

A semigroup S with a unary operation $*: S \to S$ is called a regular *-semigroup if it satisfies (i) $(x^*)^* = x$; (ii) $(xy)^* = y^*x^*$; (iii) $xx^*x = x$. Let S be a regular *-semigroup. An idempotent e in S is called a projection if $e^* = e$. Denote the sets of idempotents and projections of S by E(S) and P(S), respectively.

Let S be a regular *-semigroup. If eSe is an inverse semigroup, for every $e \in E(S)$, S is called a *locally inverse* *-semigroup. If E(S) is a normal band, that is, it satisfies the identity xyzx = xzyx, S is called a *generalized inverse* *-semigroup. A regular *-semigroup S is a generalized inverse *-semigroup if and only if it is a locally inverse *-semigroup and E(S) forms a band.

Result 1.1 [3] Let S be a regular *-semigroup. Define a relation \leq on S by

$$a \le b \iff a = eb = bf \text{ for some } e, f \in P(S).$$

Then \leq is a partial order on S satisfying that $a \leq b$ implies $a^* \leq b^*$. If S is a generalized inverse *-semigroup, then \leq is compatible.

For a subset A of a regular *-semigroup S, the set

$$A\omega = \{x \in S : \text{there exists } a \in A \text{ such that } a \leq x\}$$

is called the closure of A. The following statements are easily verified.

¹This is the abstract and details will be published elsewhere.

(1)
$$A \subseteq A\omega$$
; (2) $A \subseteq B \Rightarrow A\omega \subseteq B\omega$; (3) $(A\omega)\omega = A\omega$.

We say that A is closed if $A\omega = A$.

Lemma 1.2 If H is a regular *-subsemigroup of a generalized inverse *-semigroup S, then $H\omega$ is a closed generalized inverse *-subsemigroup of S.

Let S be a regular *-semigroup and H a regular *-subsemigroup of S. If an element a in S satisfies $aa^* \in H$, then $(Ha)\omega$ is called a $right\ \omega$ -coset of H.

Lemma 1.3 Let S be a generalized inverse *-semigroup, and let $(Ha)\omega$ and $(Hb)\omega$ be right ω -cosets of a regular *-subsemigroup H of S. Then

$$(Ha)\omega \subseteq (Hb)\omega \iff a \in (Hb)\omega.$$

A non-empty set X with its reflexive and symmetric relation σ is called an ι -set, and denoted by $(X; \sigma)$. If σ is transitive, that is, it is an equivalence relation, then $(X; \sigma)$ is called a transitive ι -set.

Let $(X; \sigma)$ be an ι -set. A subset A of X is called an ι -single subset if, for any $x \in X$, there exists at most one element $y \in A$ such that $(x, y) \in \sigma$. If $(X; \sigma)$ is a transitive ι -set, A is an ι -single subset if and only if it satisfies that

$$(a,b) \in \sigma \ (a,b \in A) \implies a = b.$$

A mapping α in the symmetric inverse semigroup \mathcal{I}_X is called a partial one-to-one ι -mapping of $(X;\sigma)$ if $d(\alpha)$ and $r(\alpha)$ are both ι -single subsets of $(X;\sigma)$, where $d(\alpha)$ and $r(\alpha)$ are the domain and the range of α , respectively. Denote the set of all partial one-to-one ι -mappings of $(X;\sigma)$ by $\mathcal{LI}_{(X;\sigma)}$. If σ is transitive, we denote it by $\mathcal{GI}_{(X;\sigma)}$ instead of $\mathcal{LI}_{(X;\sigma)}$. For any α , $\beta \in \mathcal{LI}_{(X;\sigma)}$, denote $\theta_{\alpha,\beta}$ by

$$\theta_{\alpha,\beta} = \{(a,b) \in r(\alpha) \times d(\beta) : (a,b) \in \sigma\} = (r(\alpha) \times d(\beta)) \cap \sigma.$$

Since a subset of an ι -single subset is also an ι -single subset, $\theta_{\alpha,\beta} \in \mathcal{LI}_{(X;\sigma)}$. Let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha, \beta \in \mathcal{LI}_{(X;\sigma)}\}$. Define a multiplication \circ and a unary operation * on $\mathcal{LI}_{(X;\sigma)}$ as follows:

$$\alpha \circ \beta = \alpha \theta_{\alpha,\beta} \beta$$
 and $\alpha^* = \alpha^{-1}$,

where the multiplication of the right side of the first equality is that of \mathcal{I}_X . Denote $\mathcal{L}\mathcal{I}_{(X;\sigma)}(\circ, *)$ by $\mathcal{L}\mathcal{I}_{(X;\sigma)}(\mathcal{M})$ or simply by $\mathcal{L}\mathcal{I}_{(X;\sigma)}$. In this paper, we use $\mathcal{L}\mathcal{I}_{(X;\sigma)}$ rather than $\mathcal{L}\mathcal{I}_{(X;\sigma)}(\mathcal{M})$.

Result 1.4 [4] For an ι -set $(X; \sigma)$, we have the following:

- (1) The *-groupoid $\mathcal{LI}_{(X;\sigma)}$, defined above, is a locally inverse *-semigroup. Moreover, any locally inverse *-semigroup can be embedded (up to *-isomorphism) in $\mathcal{LI}_{(X;\sigma)}$ on some ι -set $(X;\sigma)$.
 - (2) $E(\mathcal{LI}_{(X;\sigma)}) = \mathcal{M}$ and $P(\mathcal{LI}_{(X;\sigma)}) = \{1_A : A \text{ is an } \iota\text{-single subset of } (X;\sigma)\}.$
- (3) If $(X; \sigma)$ is a transitive ι -set, then $\mathcal{LI}_{(X;\sigma)}$ is a generalized inverse *-semigroup. Moreover, any generalized inverse *-semigroup can be embedded (up to *-isomorphism) in $\mathcal{GI}_{(X;\sigma)}$ on some transitive ι -set $(X;\sigma)$.
- (4) If σ is the identity relation on X, then $\mathcal{LI}_{(X;\sigma)}$ is the symmetric inverse semigroup \mathcal{I}_X on X.

We call $\mathcal{LI}_{(X;\sigma)}$ [$\mathcal{GI}_{(X;\sigma)}$] the ι -symmetric locally [generalized] inverse *-semigroup on the ι -set [the transitive ι -set] $(X;\sigma)$ with the structure sandwich set \mathcal{M} .

Result 1.5 [1] Let H be a locally [generalized] inverse *-subsemigroup of $\mathcal{LI}_{(X;\sigma)}$ [$\mathcal{GI}_{(X;\sigma)}$] on a [transitive] ι -set $(X;\sigma)$, and define a relation τ_H on X by

 $(x,y) \in \tau_H \iff there \ exists \ \alpha \in H \ such \ that \ x \in d(\alpha) \ and \ x\alpha = y.$

Then τ_H is a symmetric and transitive relation on X.

The subset $\{x \in X : (x, x) \in \tau_H\} = d(\tau_H)$, say, of X is called the *domain* of τ_H . If $d(\tau_H) = X$, that is, τ_H is an equivalence relation on X, then H is said to be *effective*. If τ_H is the universal relation on X, then H is said to be *transitive*.

A representation $\phi: S \to \mathcal{LI}_{(X;\sigma)}$ of a locally inverse *-semigroup S is called a *effective* [transitive] representation if $S\phi$ is an effective [transitive] locally inverse *-subsemigroup of $\mathcal{LI}_{(X;\sigma)}$. Similarly, the effectivity and the transitivity for a representation $\phi: S \to \mathcal{GI}_{(X;\sigma)}$ of a generalized inverse *-semigroup S are defined.

Result 1.6 [1] An effective representation of a locally [generalized] inverse *-semigroup S is the sum of a uniquely determined family of transitive representations of S.

The purpose of this paper is to characterize a transitive representation of a generalized inverse *-semigroup. The notation and the terminology are those of [1] and [2], unless otherwise stated.

2 Transitive representations

Let S be a generalized inverse *-semigroup, and let $(X; \sigma)$ be a transitive ι -set and $\psi: S \to \mathcal{GI}_{(X;\sigma)}$ $(s \mapsto \psi^s)$ a transitive representation of S. Fix an element z in X and set

$$H = \{ s \in S : z\psi^s = z \}.$$

Lemma 2.1 The set H, defined above, is a closed generalized inverse *-subsemigroup of S.

Define a relation δ on S by

$$\delta = \{(a, b) \in S \times S : z\psi^a = z\psi^b\}.$$

We also assume that $(a,b) \in \delta$ if $z \notin d(\psi^a) \cup d(\psi^b)$.

Lemma 2.2 The relation δ , defined above, is a right congruence on S satisfying the following conditions:

- $(1) \ \delta \cap (H \times H) = H \times H,$
- (2) For $a \in S$ and $h \in H$, $(a,h) \in \delta$ implies $a \in H$.

Let \mathcal{X} be the set of all right ω -cosets of H. Define a relation \sim on \mathcal{X} by

$$(Ha)\omega \sim (Hb)\omega \iff (a,b) \in \delta.$$

Lemma 2.3 The relation \sim , defined above, is an equivalence relation on \mathcal{X} .

Let $\mathcal{X}/\sim = \mathcal{Y}$, say, and denote the \sim -class containing $(Ha)\omega$ by $(Ha)\tilde{\omega}$. For any $a \in S$, define a partial mapping ϕ_H^a on \mathcal{Y} by

$$d(\phi_H^a) = \{(Hxaa^*)\tilde{\omega} : xaa^*x^* \in H\} \quad and \quad \phi_H^a : (Hxaa^*)\tilde{\omega} \mapsto (Hxa)\tilde{\omega},$$

Lemma 2.4 For any $a \in S$ and $(Ha)\tilde{\omega} \in \mathcal{Y}$, we have

$$(Hx)\tilde{\omega} \in d(\phi_H^a) \iff (x, xaa^*) \in \delta$$

Lemma 2.5 For any $a \in S$, $\phi_H^a \in \mathcal{I}_{\mathcal{Y}}$ and $(\phi_H^a)^{-1} = \phi_H^{a^*}$.

Define a relation Ω on \mathcal{Y} by

$$\Omega = \{ ((Hx)\tilde{\omega}, (Hy)\tilde{\omega}) : (Hx)\tilde{\omega}\phi_H^e = (Hy)\tilde{\omega} \text{ for some } e \in E(S) \}.$$

Lemma 2.6 The relation Ω , defined above, is an equivalence relation on \mathcal{Y} , that is, $(\mathcal{Y}; \Omega)$ is a transitive ι -set.

Now we can consider the ι -symmetric generalized inverse *-semigroup $\mathcal{GI}_{(\mathcal{Y};\Omega)}$ on the transitive ι -set $(\mathcal{Y};\Omega)$.

Lemma 2.7 For any $a \in S$, $d(\phi_H^a)$ and $r(\phi_H^a)$ are ι -single subsets of $(\mathcal{Y}; \Omega)$.

Lemma 2.8 For any $a,b \in S$, $\theta_{\phi_H^a,\phi_H^b} = \phi_H^{a^*abb^*}$.

Lemma 2.9 The mapping $\phi_H: S \to \mathcal{GI}_{(\mathcal{Y};\Omega)}$ $(a \mapsto \phi_H^a)$ is a transitive representation of S.

Let $\varphi: S \to \mathcal{GI}_{(X;\sigma)}$ and $\xi: S \to \mathcal{GI}_{(Y;\tau)}$ be two representations of a generalized inverse *-semigroup S. Then φ and ξ are equivalent if there exists a bijection $\theta: X \to Y$ such that, for $s \in S$ and $x \in X$,

$$x \in d(\varphi^s) \iff x\theta \in d(\xi^s) \text{ and } (x\varphi^s)\theta = (x\theta)\xi^s.$$

Lemma 2.10 The transitive representation $\psi: S \to \mathcal{GI}_{(X;\sigma)}$ is equivalent to ϕ_H , defined above.

From result 1.5, lemma 3.1 and 3.2, we obtain a following theorem.

Theorem 2.11 Every effective representation of a generalized inverse *-semigroup S is uniquely a sum of transitive representations ψ_{α} , each of which is equivalent to $\phi_{H_{\alpha}}$ for some closed generalized inverse *-subsemigroup H_{α} of S.

References

- [1] T. E. Hall and T. Imaoka, Representations and amalgamation of generalized inverse *-semigroups, Semigroup Forum 58(1999), 126 141.
- [2] J. M. Howie, Introduction to semigroup theory, Academic Press, London, 1976.
- [3] T. Imaoka, *Prehomomorphisms on regular* *-semigroups, Mem. Fac. Sci. Shimane Univ. **15**(1981), 23 27.
- [4] T. Imaoka and M. Katsura, Representations of locally inverse *-semigroups II, Semigroup Forum 55(1997), 247 255.
- [5] B. M. Schein, Representations of generalized groups, Izv. Vysš. Učebn. Zaved Matematica No. 3 (28) (1962), 164 176.

Department of Mathematics, Shimane University, Matsue 690-8504, Shimane, Japan

The first author's current address: Department of Information Science, Toho University, Funabashi 274-8510, Japan