Note on Transitive Representations of Generalized Inverse Semigroups (Languages, Algebra and Computer Systems)

Author(s)
Inata, Isamu; Imaoka, Teruo

Citation
数理解析研究所講究録 (1999), 1106: 61-65

Issue Date
1999-07

URL
http://hdl.handle.net/2433/63257

Type
Departmental Bulletin Paper

Textversion
title
Kyoto University
Note on Transitive Representations of Generalized Inverse \(\ast \)-Semigroups

ISAMU INATA (稲田 勇)
TERUO IMAOKA (今岡 輝男)

Abstract

In [1], we obtained that an effective representation of a locally [generalized] inverse \(\ast \)-semigroup \(S \) is the sum of a uniquely determined family of transitive representations of \(S \). In this paper, we will determine a transitive representation of a generalized inverse \(\ast \)-semigroup by using right \(\omega \)-cosets. This is a generalization of Schein’s result [5] for inverse semigroups.

1 Introduction

A semigroup \(S \) with a unary operation \(\ast : S \rightarrow S \) is called a regular \(\ast \)-semigroup if it satisfies (i) \((x^*)^* = x\); (ii) \((xy)^* = y^*x^*\); (iii) \(xx^*x = x\). Let \(S \) be a regular \(\ast \)-semigroup. An idempotent \(e \) in \(S \) is called a projection if \(e^* = e \). Denote the sets of idempotents and projections of \(S \) by \(E(S) \) and \(P(S) \), respectively.

Let \(S \) be a regular \(\ast \)-semigroup. If \(eSe \) is an inverse semigroup, for every \(e \in E(S) \), \(S \) is called a locally inverse \(\ast \)-semigroup. If \(E(S) \) is a normal band, that is, it satisfies the identity \(xyzz = zzyx \), \(S \) is called a generalized inverse \(\ast \)-semigroup. A regular \(\ast \)-semigroup \(S \) is a generalized inverse \(\ast \)-semigroup if and only if it is a locally inverse \(\ast \)-semigroup and \(E(S) \) forms a band.

Result 1.1 [3] Let \(S \) be a regular \(\ast \)-semigroup. Define a relation \(\leq \) on \(S \) by

\[
a \leq b \iff a = eb = bf \text{ for some } e, f \in P(S).
\]

Then \(\leq \) is a partial order on \(S \) satisfying that \(a \leq b \) implies \(a^* \leq b^* \). If \(S \) is a generalized inverse \(\ast \)-semigroup, then \(\leq \) is compatible.

For a subset \(A \) of a regular \(\ast \)-semigroup \(S \), the set

\[
A\omega = \{ x \in S : \text{there exists } a \in A \text{ such that } a \leq x \}
\]

is called the closure of \(A \). The following statements are easily verified.

\footnote{This is the abstract and details will be published elsewhere.}
(1) \(A \subseteq A\omega; \) \(A \subseteq B \Rightarrow A\omega \subseteq B\omega; \) \((A\omega)\omega = A\omega. \)

We say that \(A \) is closed if \(A\omega = A. \)

Lemma 1.2 If \(H \) is a regular \(*\)-subsemigroup of a generalized inverse \(*\)-semigroup \(S, \) then \(H\omega \) is a closed generalized inverse \(*\)-subsemigroup of \(S. \)

Let \(S \) be a regular \(*\)-semigroup and \(H \) a regular \(*\)-subsemigroup of \(S. \) If an element \(a \) in \(S \) satisfies \(aa* \in H, \) then \((Ha)\omega \) is called a right \(\omega \)-coset of \(H. \)

Lemma 1.3 Let \(S \) be a generalized inverse \(*\)-semigroup, and let \((Ha)\omega \) and \((Hb)\omega \) be right \(\omega \)-cosets of a regular \(*\)-subsemigroup \(H \) of \(S. \) Then

\[
(Ha)\omega \subseteq (Hb)\omega \iff a \in (Hb)\omega.
\]

A non-empty set \(X \) with its reflexive and symmetric relation \(\sigma \) is called an \(\iota \)-set, and denoted by \((X; \sigma). \) If \(\sigma \) is transitive, that is, it is an equivalence relation, then \((X; \sigma) \) is called a transitive \(\iota \)-set.

Let \((X; \sigma) \) be an \(\iota \)-set. A subset \(A \) of \(X \) is called an \(\iota \)-single subset if, for any \(x \in X, \) there exists at most one element \(y \in A \) such that \((x, y) \in \sigma. \) If \((X; \sigma) \) is a transitive \(\iota \)-set, \(A \) is an \(\iota \)-single subset if and only if it satisfies that

\[
(a, b) \in \sigma \, (a, b \in A) \implies a = b.
\]

A mapping \(\alpha \) in the symmetric inverse semigroup \(\mathcal{I}_X \) is called a partial one-to-one \(\iota \)-mapping of \((X; \sigma) \) if \(d(\alpha) \) and \(r(\alpha) \) are both \(\iota \)-single subsets of \((X; \sigma), \) where \(d(\alpha) \) and \(r(\alpha) \) are the domain and the range of \(\alpha, \) respectively. Denote the set of all partial one-to-one \(\iota \)-mappings of \((X; \sigma) \) by \(\mathcal{L}\mathcal{I}_{(X;\sigma)}. \) If \(\sigma \) is transitive, we denote it by \(\mathcal{G}\mathcal{I}_{(X;\sigma)} \) instead of \(\mathcal{L}\mathcal{I}_{(X;\sigma)}. \) For any \(\alpha, \beta \in \mathcal{L}\mathcal{I}_{(X;\sigma)}, \) denote \(\theta_{\alpha,\beta} \) by

\[
\theta_{\alpha,\beta} = \{(a, b) \in r(\alpha) \times d(\beta) : (a, b) \in \sigma\} = r(\alpha) \times d(\beta) \cap \sigma.
\]

Since a subset of an \(\iota \)-single subset is also an \(\iota \)-single subset, \(\theta_{\alpha,\beta} \in \mathcal{L}\mathcal{I}_{(X;\sigma)}. \) Let \(\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha, \beta \in \mathcal{L}\mathcal{I}_{(X;\sigma)}\}. \) Define a multiplication \(\circ \) and a unary operation \(\ast \) on \(\mathcal{L}\mathcal{I}_{(X;\sigma)} \) as follows:

\[
\alpha \circ \beta = \alpha \theta_{\alpha,\beta} \beta \quad \text{and} \quad \alpha^* = \alpha^{-1},
\]

where the multiplication of the right side of the first equality is that of \(\mathcal{I}_X. \) Denote \(\mathcal{L}\mathcal{I}_{(X;\sigma)}(\circ, \ast) \) by \(\mathcal{L}\mathcal{I}_{(X;\sigma)}(\mathcal{M}) \) or simply by \(\mathcal{L}\mathcal{I}_{(X;\sigma)}. \) In this paper, we use \(\mathcal{L}\mathcal{I}_{(X;\sigma)}(\mathcal{M}) \) rather than \(\mathcal{L}\mathcal{I}_{(X;\sigma)}. \)
Result 1.4 [4] For an \(\iota \)-set \((X; \sigma) \), we have the following:

1. The \(*\)-groupoid \(\mathcal{G}\mathcal{I}_{(X;\sigma)} \), defined above, is a locally inverse \(*\)-semigroup. Moreover, any locally inverse \(*\)-semigroup can be embedded (up to \(*\)-isomorphism) in \(\mathcal{L}\mathcal{I}_{(X;\sigma)} \) on some \(\iota \)-set \((X; \sigma) \).

2. \(E(\mathcal{L}\mathcal{I}_{(X;\sigma)}) = \mathcal{M} \) and \(P(\mathcal{L}\mathcal{I}_{(X;\sigma)}) = \{1_A : A \text{ is an } \iota \text{-single subset of } (X; \sigma)\} \).

3. If \((X; \sigma) \) is a transitive \(\iota \)-set, then \(\mathcal{L}\mathcal{I}_{(X;\sigma)} \) is a generalized inverse \(*\)-semigroup. Moreover, any generalized inverse \(*\)-semigroup can be embedded (up to \(*\)-isomorphism) in \(\mathcal{G}\mathcal{I}_{(X;\sigma)} \) on some transitive \(\iota \)-set \((X; \sigma) \).

4. If \(\sigma \) is the identity relation on \(X \), then \(\mathcal{L}\mathcal{I}_{(X;\sigma)} \) is the symmetric inverse semigroup \(\mathcal{I}_X \) on \(X \).

We call \(\mathcal{L}\mathcal{I}_{(X;\sigma)} [\mathcal{G}\mathcal{I}_{(X;\sigma)}] \) the \(\iota \)-symmetric locally [generalized] inverse \(*\)-semigroup on the \(\iota \)-set [the transitive \(\iota \)-set] \((X; \sigma) \) with the structure sandwich set \(\mathcal{M} \).

Result 1.5 [1] Let \(H \) be a locally [generalized] inverse \(*\)-subsemigroup of \(\mathcal{L}\mathcal{I}_{(X;\sigma)} [\mathcal{G}\mathcal{I}_{(X;\sigma)}] \) on a [transitive] \(\iota \)-set \((X; \sigma) \), and define a relation \(\tau_H \) on \(X \) by

\[
(x, y) \in \tau_H \iff \text{there exists } \alpha \in H \text{ such that } x \in d(\alpha) \text{ and } x\alpha = y.
\]

Then \(\tau_H \) is a symmetric and transitive relation on \(X \).

The subset \(\{x \in X : (x, x) \in \tau_H\} = d(\tau_H) \), say, of \(X \) is called the domain of \(\tau_H \). If \(d(\tau_H) = X \), that is, \(\tau_H \) is an equivalence relation on \(X \), then \(H \) is said to be effective. If \(\tau_H \) is the universal relation on \(X \), then \(H \) is said to be transitive.

A representation \(\phi : S \to \mathcal{L}\mathcal{I}_{(X;\sigma)} \) of a locally inverse \(*\)-semigroup \(S \) is called an effective [transitive] representation if \(S\phi \) is an effective [transitive] locally inverse \(*\)-subsemigroup of \(\mathcal{L}\mathcal{I}_{(X;\sigma)} \). Similarly, the effectivity and the transitivity for a representation \(\phi : S \to \mathcal{G}\mathcal{I}_{(X;\sigma)} \) of a generalized inverse \(*\)-semigroup \(S \) are defined.

Result 1.6 [1] An effective representation of a locally [generalized] inverse \(*\)-semigroup \(S \) is the sum of a uniquely determined family of transitive representations of \(S \).

The purpose of this paper is to characterize a transitive representation of a generalized inverse \(*\)-semigroup. The notation and the terminology are those of [1] and [2], unless otherwise stated.
2 Transitive representations

Let S be a generalized inverse \ast-semigroup, and let $(X;\sigma)$ be a transitive ι-set and $\psi : S \rightarrow G\mathcal{I}(X;\sigma) (s \mapsto \psi^s)$ a transitive representation of S. Fix an element z in X and set

$$H = \{ s \in S : z\psi^s = z \}.$$

Lemma 2.1 The set H, defined above, is a closed generalized inverse \ast-subsemigroup of S.

Define a relation δ on S by

$$\delta = \{ (a, b) \in S \times S : z\psi^a = z\psi^b \}.$$

We also assume that $(a, b) \in \delta$ if $z \not\in d(\psi^a) \cup d(\psi^b)$.

Lemma 2.2 The relation δ, defined above, is a right congruence on S satisfying the following conditions:

1. $\delta \cap (H \times H) = H \times H$,
2. For $a \in S$ and $h \in H$, $(a, h) \in \delta$ implies $a \in H$.

Let \mathcal{X} be the set of all right ω-cosets of H. Define a relation \sim on \mathcal{X} by

$$(Ha)\omega \sim (Hb)\omega \iff (a, b) \in \delta.$$

Lemma 2.3 The relation \sim, defined above, is an equivalence relation on \mathcal{X}.

Let $\mathcal{X}/\sim = \mathcal{Y}$, say, and denote the \sim-class containing $(Ha)\omega$ by $(Ha)\tilde{\omega}$. For any $a \in S$, define a partial mapping ϕ^a_H on \mathcal{Y} by

$$d(\phi^a_H) = \{ (Hxaa^*)\tilde{\omega} : xaa^*x^* \in H \} \quad \text{and} \quad \phi^a_H : (Hxaa^*)\tilde{\omega} \mapsto (Hxa)\tilde{\omega},$$

Lemma 2.4 For any $a \in S$ and $(Ha)\tilde{\omega} \in \mathcal{Y}$, we have

$$(Hx)\tilde{\omega} \in d(\phi^a_H) \iff (x, xaa^*) \in \delta.$$

Lemma 2.5 For any $a \in S$, $\phi^a_H \in \mathcal{I}_y$ and $(\phi^a_H)^{-1} = \phi^{a^*}_H$.

Define a relation Ω on \mathcal{Y} by

$$\Omega = \{ ((Hx)\tilde{\omega}, (Hy)\tilde{\omega}) : (Hx)\tilde{\omega}\phi^e_H = (Hy)\tilde{\omega} \text{ for some } e \in E(S) \}.$$
Lemma 2.6 The relation Ω, defined above, is an equivalence relation on \mathcal{Y}, that is, $(\mathcal{Y}; \Omega)$ is a transitive ι-set.

Now we can consider the ι-symmetric generalized inverse $*$-semigroup $\mathcal{GI}(\mathcal{Y}; \Omega)$ on the transitive ι-set $(\mathcal{Y}; \Omega)$.

Lemma 2.7 For any $a \in S$, $d(\phi^a_H)$ and $r(\phi^a_H)$ are ι-single subsets of $(\mathcal{Y}; \Omega)$.

Lemma 2.8 For any $a, b \in S$, $\theta_{\phi^a_H, b}$ is ϕ^{ab*}_H.

Lemma 2.9 The mapping $\phi_H : S \rightarrow \mathcal{GI}(\mathcal{Y}; \Omega)$ is a transitive representation of S.

Let $\varphi : S \rightarrow \mathcal{GI}(X, \sigma)$ and $\xi : S \rightarrow \mathcal{GI}(Y, \tau)$ be two representations of a generalized inverse $*$-semigroup S. Then φ and ξ are equivalent if there exists a bijection $\theta : X \rightarrow Y$ such that, for $s \in S$ and $x \in X$,

$$x \in d(\varphi^s) \iff x\theta \in d(\xi^s) \text{ and } (x\varphi^s)\theta = (x\theta)\xi^s.$$

Lemma 2.10 The transitive representation $\psi : S \rightarrow \mathcal{GI}(X, \sigma)$ is equivalent to ϕ_H, defined above.

From result 1.5, lemma 3.1 and 3.2, we obtain a following theorem.

Theorem 2.11 Every effective representation of a generalized inverse $*$-semigroup S is uniquely a sum of transitive representations ψ_α, each of which is equivalent to ϕ_{H_α} for some closed generalized inverse $*$-subsemigroup H_α of S.

References

