<table>
<thead>
<tr>
<th>Title</th>
<th>Almost n-dimensional spaces (Unsolved Problems and its Progress in General・Geometric Topology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Levin, Michael</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1107: 84-86</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63264</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Almost n-dimensional spaces

M. Levin, Tsukuba University

We consider only separable metric spaces. A space X is said to be almost n-dimensional if it has a basis $\{U_i\}$ such that if $\text{cl}U_i \cap \text{cl}U_j = \emptyset$ then $X = G \cup H$ where G and H are closed sets, $U_i \subset G \setminus H$, $U_j \subset H \setminus G$ and $\dim G \cap H \leq n - 1$ and n is the smallest natural number such that such a basis exists for n. It is clear that n-dimensional spaces are at most almost n-dimensional.

Oversteegen and Tymchatyn [9] proved that almost 0-dimensional spaces are at most 1-dimensional. The Erdős space of irrational sequences in Hilbert space is known to be a universal almost 0-dimensional space [5]. Erdős space is 1-dimensional. Homeomorphism groups of positive dimensional Menger compacta are almost 0-dimensional [9] and at least 1-dimensional by classical results of Brechner [2] and Bestvina [1].

Almost 0-dimensional spaces are at most 1-dimensional and the 1-dimensionality cannot be improved. Our first result shows that this interesting behaviour does not occur in higher dimensions and the following one points out an interesting property of almost 0-dimensional spaces.

Theorem 1 (Levin-Tymchatyn [7]) If X is almost n-dimensional, $n \geq 1$ then X is n-dimensional.

Theorem 2 (Levin-Tymchatyn [7]) Let $X = X_1 \cup X_2$ where X_1 is almost 0-dimensional and X_2 is 0-dimensional. Then $\dim X \leq 1$.

The proof of these theorems employs so-called L-embeddings. A subset X of a compactum K is L-embedded in K if for every open cover \mathcal{U} of K there is a neighbourhood U of X in K such that the continua in U refine \mathcal{U}. An almost 0-dimensional space is L-embeddable in a compactum [6] and

Theorem 3 (Levin-Pol [6]) If a space X is L-embeddable in a compactum K then $\dim X \leq 1$.

As an application of almost 1-dimensional spaces we will consider an old question of R. Duda about the dimension of a hereditarily locally connected,
non-degenerate space \(X \). Nishiura and Tymchatyn [8] showed that each pair of disjoint, closed, connected subsets of \(X \) can be separated by a closed countable subset of \(X \). Hence each basis for \(X \) of open connected sets witnesses the almost 1-dimensionality of \(X \). Then Theorem 1 implies:

Theorem 4 (Levin-Tymchatyn [7]) *If \(X \) is a hereditarily locally connected, non-degenerate space then \(\dim X = 1 \).*

A partial solution to the question of R. Duda was given in [9] where it was proved that hereditarily locally connected spaces are at most 2-dimensional. Finally let us note that Theorem 2 does not hold if \(X_2 \) is almost 0-dimensional. Indeed, let \(Y \) be 1-dimensional and almost 0-dimensional, let \(M \) be a 1-dimensional compactum and let \(M = M_1 \cup M_2 \), \(\dim M_1 = \dim M_2 = 0 \). Then \(X_1 = Y \times M_1 \) and \(X_2 = Y \times M_2 \) are almost 0-dimensional, and by a theorem of Hurewicz [4] (see also [3], p. 78, 1.9.E(b)) \(X = X_1 \cup X_2 = Y \times M \) is 2-dimensional.

References

