<table>
<thead>
<tr>
<th>Title</th>
<th>Almost n-dimensional spaces (Unsolved Problems and its Progress in General Geometric Topology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Levin, Michael</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1999), 1107: 84-86</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63264</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Almost \(n \)-dimensional spaces

M. Levin, Tsukuba University

We consider only separable metric spaces. A space \(X \) is said to be almost \(n \)-dimensional if it has a basis \(\{ U_i \} \) such that if \(\text{cl}U_i \cap \text{cl}U_j = \emptyset \) then \(X = G \cup H \) where \(G \) and \(H \) are closed sets, \(U_i \subset G \setminus H, U_j \subset H \setminus G \) and \(\dim G \cap H \leq n-1 \) and \(n \) is the smallest natural number such that such a basis exists for \(n \). It is clear that \(n \)-dimensional spaces are at most almost \(n \)-dimensional.

Oversteegen and Tymchatyn [9] proved that almost 0-dimensional spaces are at most 1-dimensional. The Erdős space of irrational sequences in Hilbert space is known to be a universal almost 0-dimensional space [5]. Erdős space is 1-dimensional. Homeomorphism groups of positive dimensional Menger compacta are almost 0-dimensional [9] and at least 1-dimensional by classical results of Brechner [2] and Bestvina [1].

Almost 0-dimensional spaces are at most 1-dimensional and the 1-dimensionality cannot be improved. Our first result shows that this interesting behaviour does not occur in higher dimensions and the following one points out an interesting property of almost 0-dimensional spaces.

Theorem 1 (Levin-Tymchatyn [7]) If \(X \) is almost \(n \)-dimensional, \(n \geq 1 \) then \(X \) is \(n \)-dimensional.

Theorem 2 (Levin-Tymchatyn [7]) Let \(X = X_1 \cup X_2 \) where \(X_1 \) is almost 0-dimensional and \(X_2 \) is 0-dimensional. Then \(\dim X \leq 1 \).

The proof of these theorems employs so-called \(L \)-embeddings. A subset \(X \) of a compactum \(K \) is \(L \)-embedded in \(K \) if for every open cover \(\mathcal{U} \) of \(K \) there is a neighbourhood \(U \) of \(X \) in \(K \) such that the continua in \(U \) refine \(\mathcal{U} \). An almost 0-dimensional space is \(L \)-embeddable in a compactum [6] and

Theorem 3 (Levin-Pol [6]) If a space \(X \) is \(L \)-embeddable in a compactum \(K \) then \(\dim X \leq 1 \).

As an application of almost 1-dimensional spaces we will consider an old question of R. Duda about the dimension of a hereditarily locally connected,
non-degenerate space X. Nishiura and Tymchatyn [8] showed that each pair of disjoint, closed, connected subsets of X can be separated by a closed countable subset of X. Hence each basis for X of open connected sets witnesses the almost 1-dimensionality of X. Then Theorem 1 implies:

Theorem 4 (Levin-Tymchatyn [7]) *If X is a hereditarily locally connected, non-degenerate space then $\dim X = 1$.*

A partial solution to the question of R. Duda was given in [9] where it was proved that hereditarily locally connected spaces are at most 2-dimensional.

Finally let us note that Theorem 2 does not hold if X_2 is almost 0-dimensional. Indeed, let Y be 1-dimensional and almost 0-dimensional, let M be a 1-dimensional compactum and let $M = M_1 \cup M_2$, $\dim M_1 = \dim M_2 = 0$. Then $X_1 = Y \times M_1$ and $X_2 = Y \times M_2$ are almost 0-dimensional, and by a theorem of Hurewicz [4] (see also [3], p. 78, 1.9.E(b)) $X = X_1 \cup X_2 = Y \times M$ is 2-dimensional.

References

