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ABSTRACT. Let $(\mathbb{C}, +)$ be the additive group of complex numbers. First, we prove
that for every $z\in \mathbb{C}$ with $|z|>1$ , there exists a metrizable group topology $\tau(z)$

on $(\mathbb{C}, +)$ such that $\tau(z)$ is coarser than the Euclidean topology and the sequence
$\{z^{n} : n\in N\}$ converges to $0$ in the topological group $(\mathbb{C}, +, \tau(z))$ . Second, let $z$ be
in $\mathbb{C}\backslash \mathbb{R}$ with $|z|>1$ , and for each $k\in N$ , let $I_{k}’(z)$ be the set of all complex numbers
of a form $\alpha_{1}z^{k_{1}}+\alpha_{2}z^{k_{2}}+\cdots+\alpha_{n}z^{k_{n}}$ , where $\alpha_{i}\in \mathbb{Z},$ $k_{i}\in N(i=1,2, \cdots, n)$ ,
$k\leq k_{1}<k_{2}<\cdots<k_{n}$ and $n\in N$ . We prove that $\inf\{|w| : w\in I_{k}’(z)\backslash \{0\}\}arrow\infty$

$(karrow\infty)$ if and only if $z$ is an algebraic integer with degree 2. In this case, we
can easily define a metrizable group topology $\tau$ on $(\mathbb{C}, +)$ such that the sequence
$\{z^{n} : n\in N\}$ converges to $0$ in the topological group $(\mathbb{C}, +, \tau)$ .

1. Let $(\mathbb{C}, +)$ be the additive group of complex numbers and $(\mathbb{R}, +)$ the subgroup
of real numbers. Hattori asked the following problem in his lecture [2].

Problem. For a real number $r$ , does there exist a metrizable group topology $\tau(r)$

on $(\mathbb{R}, +)$ such that $\tau(r)$ is coarser than the usual topology and the sequence { $r^{n}$ :
$n\in N\}$ converges to $0$ in the topological group $(\mathbb{R}, +, \tau(r))$ ?

$i$

Obviously, the answer is positive for all real number $r$ with $|r|<1$ and is negative
for $r=1$ . Hattori [1] showed that the answer is positive for $r=2$ and his proof can
apply to all integers $r$ with $|r|\geq 2$ (see Section 3 below). The pro..blem, however,
has been still unsolved for general $r>1$ . The purpose of this paper is to settle the
problem by proving the result stated in the abstract.

Throughout the paper, let $\mathbb{Z}$ denote the set of integers and $N$ the set of positive
integers. As usual, we $\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}-A=\{-z:z\in A\},$ $A+B=\{w+z : w\in A, z\in B\}$

and $w+A=\{w+z:z\in A\}$ for $A,$ $B\subseteq \mathbb{C}$ and $w\in \mathbb{C}$ .
The following lemma was proved in the paper [3, Lemma 1].
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Lemma 1. Let $z\in \mathbb{C}$ with $|z|>1$ and assume that there exists a family { $I_{k}$ : $k\in$

$N\}$ of subsets of $\mathbb{C}$ satisfying the following conditions (1) $-(5)$ :
(1) $\forall k\in N(0\in I_{k})_{f}$

(2) $\forall k\in N$ ( $-I_{k}=I_{k}$ and $I_{k+1}+I_{k+1}\subseteq I_{k}$ ),
(3) $\forall k\in N\forall w\in Ik\exists m\in N(w+I_{m}\subseteq I_{k})$ ,
(4) $\inf\{|w| : w\in I_{k}\backslash \{0\}\}arrow+\infty(karrow\infty)$ , and
(5) $\forall k\in N\exists m\in N\forall n\in N(m\leq n\Rightarrow z^{n}\in I_{k})$ .

Then, there exists a metrizable group topology $\tau(z)$ on $(\mathbb{C}, +)$ such that $\tau(z)$ is
$coarse\Gamma$ than the Euclidean topology and the sequnence $\{z^{n} : n\in N\}$ converges to $0$

in the topological group $(\mathbb{C}, +, \tau(z))$ .

2. In this section, we prove that for every $z\in \mathbb{C}$ with $|z|>1$ , there exists a metriz-
able group topology $\tau(z)$ on $(\mathbb{C}, +)$ such that $\tau(z)$ is coarser than the Euclidean
topology and the sequence $\{z^{n} : n\in N\}$ converges to $0$ in the topological group
$(\mathbb{C}, +, \tau(Z))$ .
Lemma 2. Let $z\in \mathbb{C}$ with $|z|>1$ . For each $po\mathit{8}itive$ integers $\epsilon,$

$\delta,$ $n\in N$ , there
exists $p=p(\epsilon, \delta, n)\in N$ satisfying the following condition (6) :

(6) For each $m\leq n_{f}a_{i}\in \mathbb{Z}$ with $|a_{i}|\leq\delta$ and $k_{i}\in N(i=1,2, \cdots, m)$ , if
$k_{1}<k_{2}<\cdots<k_{m},$ $p\leq k_{m}$ and $a_{j}z^{k_{j}}+a_{j+1}zk_{\mathrm{j}+1}+\cdots+a_{m}z^{k_{m}}\neq 0$ for
each $j\in\{1,2, \cdots, m\}$ , then $|a_{1}z^{k_{1}}+a_{2}z^{k_{2}}+\cdots+a_{m}z^{k_{m}}|\geq\epsilon$.

Proof. To prove this by induction on $n$ , we first consider the case of $n=1$ . For
each $\epsilon\in N$ , there is $p\in N$ such that $|z|^{p}\geq\epsilon$ . If $p\leq k_{1}$ and $a_{1}\in \mathbb{Z}$ with $a_{1}\neq 0$ ,
then $|a_{1}z^{k_{1}}|\geq|z|^{k_{1}}\geq|z|^{p}\geq\epsilon$. Thus, $p$ satisfies (6) for each $\delta\in N$ and $n=1$ .
Next, we assume that the existence of $p(\epsilon, \delta, n-1)$ has been proved for all $\epsilon\in N$

and all $\delta\in N$ . We now fix $\epsilon\in N$ and $\delta\in N$ and show that there exists $p(\epsilon, \delta, n)$ .
By inductive hypothesis, we have $p’=p(\epsilon+\delta, \delta, n-1)$ . Let $S$ be the set of all
complex numbers $u$ which can be written as a form

$u=b_{1}+b_{2}Z+1+l\ldots bmz^{\ell_{m}}-1$ ,

where $m\leq n,$ $b_{i}\in \mathbb{Z},$ $|b_{i}|\leq\delta(i=1,2, \cdots, m),$ $l_{i}\in N(i=1, \cdots, m-1)$ and
$\ell_{1}<\cdots<l_{m-1}<p’$ . Since $S$ is a finite set, we have $s= \min\{|u|$ : $u\in S,$ $u\neq$

$0\}>0$ . Choose $p”\in N$ such that $|z|^{p’’}\cdot s\geq\epsilon$ , and define $p=p’+p^{\prime/}$ . We show
that $p$ satisfies the condition (6). Let $m\leq n,$ $a_{i}\in \mathbb{Z}$ with $|a_{i}|\leq\delta$ and $k_{i}\in N$

$(i=1,2, \cdots , m)$ , and suppose that $k_{1}<k_{2}<\cdots<k_{m},$ $p\leq k_{m}$ and

(7) $a_{j}z^{k_{\mathrm{j}}}+a_{j+1}z^{k_{\mathrm{j}}}+1+\cdots+a_{m}z^{k_{m}}\neq 0$ for each $j\in\{1,2, \cdots , m\}$ .

Let $w=a_{1}z^{k_{1}}+a_{2}z^{k_{2}}+\cdots+a_{m^{Z^{k_{m}}}}$ . To show that $|w|\geq\epsilon$ , we write $w=z^{k_{1}}(a_{1}+u)$ ,
where $u=a_{2}z^{k_{2}-}k_{1}+\cdots+a_{m^{Z^{k_{m}-k_{1}}}}$ . Note that $u\neq 0$ and $a_{1}+u\neq 0$ by (7). We
distinguish two cases: If $k_{m}-k_{1}<p’$ , then $a_{1}+u\in S$ and $k_{1}>k_{m}-p’\geq p’’$ ,
because $k_{m}\geq p=p’+p’’$ . Thus, $|w|=|z|^{k_{1}}\cdot|a_{1}+u|>|z|^{p^{\prime l}}\cdot S\geq\epsilon$ . If $k_{m}-k_{1}\geq p’$ ,
then $|u|\geq\epsilon+\delta$ by the definition of $p’$ and (7). Since $|a_{1}|\leq\delta$ , it follows that
$|a_{1}+u|\geq\epsilon$ . Hence, $|w|=|z|^{k_{1}}\cdot|a_{1}+u|\geq|z|^{k_{1}}\cdot\epsilon\geq\epsilon$. $\square$

We now prove the main theorem announced in the abstract. For a set $A,$ $\#(A)$

denotes the cardinality of $A$ .
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Theorem 1. For every $z\in \mathbb{C}$ with $|z|>1$ , there exists a $met_{\dot{\mathcal{H}}za}ble$ group topology
$\tau(z)$ on $(\mathbb{C}, +)$ such that $\tau(z)$ is coarser than the Euclidean topology and the sequence
$\{z^{n} : n\in N\}$ converges to $0$ in the topological group $(\mathbb{C}, +, \tau(z))$ .

Proof. Let $p_{1}=1$ and define $p_{j}= \max\{p_{j-}1,p(j, 2^{j}, 2(2^{j}-1))\}$ for each $j\in N$

with $j\geq 2$ . Let $N_{j}=\{k\in N : p_{j}\leq k<p_{j+1}\}$ for each $j\in N$ . For each $k\in N$ , let
$I_{k}$ be the set of all complex numbers $w$ which can be written as a form

$w=a_{1}z+a_{2}Zk_{1}k_{2}k_{n}+\cdots+a_{n}Z$

such
$.$

$\mathrm{t}$hat
(8) $a_{i}\in \mathbb{Z},$ $k_{i}\in N(j=1,2, \cdots, n),$ $k_{1}<k_{2}<\cdots<k_{n}$ and $n\in N$ ,
(9) $\{k_{1}, k_{2}, \cdots, k_{n}\}\subseteq\bigcup_{j\geq k}N_{j}$ ,

(10) $\forall j\in N(\#(\{k_{1}, k2, \cdots , k_{n}\}\cap N_{j})\leq 2^{j-k+1})$ , and
(11) $\forall j\in N\forall i\in\{1,2, \cdots , n\}(k_{i}\in N_{j}\Rightarrow|a_{i}|\leq 2^{j-k+}1)$ .

It suffices to show that the family II $=\{I_{k} : k\in N\}$ satisfies (1)$-(5)$ in Lemna
1. It is not difficult to prove that II satisfies (1), (2) and (5). To prove that II
satisfies (3) and (4), let $k\in N$ and let $w\in I_{k}$ . Then, $w$ can be written as a
form $w=a_{1}z^{k_{1}}+a_{2}z^{k_{2}}+\cdots+a_{n}z^{k_{n}}$ satisfying (8)$-(11)$ . Choose $s\in N$ with
$s> \max\{j\in N : \{k_{1}, k_{2}, \cdots, k_{n}\}\cap N_{j}\neq\emptyset\}$ . Then, $w+I_{s+1}\subseteq I_{k}$ , which means
that I satisfies (3). Finally, we show that $|w|\geq k$ if $w\neq 0$ . Let $m= \min\{\ell\in N$ :
$\ell\leq n$ and $w=a_{1}z^{k_{1}}+a_{2}z^{k_{2}}+\cdots+a_{\ell}z^{k_{l}}$ }. Then,

$w=a_{1}Z^{k}+1a2^{Z^{k_{2}k_{m}}}+\cdots+a_{m}Z$

and $a_{j}z^{k_{j}}+a_{j+1}zk_{j+1}+\cdots+a_{m}z^{k_{m}}\neq 0$ for each $j\in\{1,2, \cdots, m\}$ . Let $t=$

$\max\{j\in N : \{k_{1}, k_{2}, \cdots , k_{m}\}\cap N_{j}\neq\emptyset\}$ ; then $t\geq k$ by (9.). Since $k_{m}\in N_{t}$ ,
$k_{m}\geq p_{t}\geq p(t, 2^{t}, 2(2^{t}-1))$ . By (9) and (10),

$m \leq\sum_{i=k}^{t}2i-k+1=2(2^{t-k}+1-1)\leq 2(2^{t}-1)$ .

Moreover, by (11), $|a_{i}|\leq 2^{t-k+1}\leq 2^{t}$ for each $i=1,2,$ $\cdots,$ $m$ . Hence, it follows
from Lemma 2 that $|w|\geq t\geq k$ . Now, we have proved that $\inf\{|w| : w\in I_{k}\backslash \{\mathrm{o}\}\}\geq$

$k$ , which implies that II satisfies (4). $\square$

Remark 1. Hattori kindly informed the authors that the space $(\mathbb{C}, \tau(z))$ is not a
Baire space. In fact, the set $U_{n}=\{z\in \mathbb{C} : |z|>n\}$ is dense and open in $(\mathbb{C}, \tau(z))$

for each $n\in N,$ but $\bigcap_{n\in N}U_{n}=\emptyset$ . Hence, the space $(\mathbb{C}, \tau(z))$ cannot be completely
me.trizable.

The following corollary, which settles Hattori’s problem, immediately follows
from the above theorem.

Corollary 3. For every $r\in \mathbb{R}$ with $|r|>1$ , there exists a metrizable group topology
$\tau(r)$ on $(\mathbb{R}, +)$ such that $\tau(r)$ is coarser than the usual topology and the sequence
$\{r^{n} : n\in N\}$ converges to $0$ in the topological group $(\mathbb{R}, +, \tau(r))$ .
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3. Let $z\in \mathbb{C}$ with $|z|>1$ . For each $k\in N$ , define $I_{k}’(z)$ to be the set of all complex
numbers $w$ which can be written as a form

$w=\alpha_{1}z+\alpha_{2}Zk_{1}k_{2}k_{n}+\cdots+\alpha_{n}Z$ ,

where $\alpha_{i}\in \mathbb{Z},$ $k_{i}\in N(i=1,2, \cdots, n),$ $k\leq k_{1}<k_{2}<\cdots<k_{n}$ and $n\in N$ . Then,
it is natural to ask if the family $\mathrm{I}\mathrm{I}’(z)=\{I_{k}’(z) : k\in N\}$ satisfies (1)$-(5)$ in Lemma
1. However, the answer is negative; more precisely, $\mathrm{I}’(z)$ always satisfies (1)$-(3)$ and
(5), but it does not necessarily satisfy (4). In particular, if $\mathrm{I}\mathrm{I}’(z)$ satisfies (4) then
the topology obtained by simply taking the family $B(z)=\{u+U_{k} : u\in \mathbb{C}, k\in N\}$

as a base, where $U_{k}= \bigcup_{w\in I_{k}(},z$ ) $\{u\in \mathbb{C} :. |u-w|<1/2^{k}\}$ for each $k\in N$ , is called
the $\mathit{8}imple$ topology induced by $z$ and is denoted by $\tau’(z)$ .

First, we show that for a real number $r$ with $|r|>1,$ $\mathrm{I}\mathrm{I}’(r)$ satisfies (4) if and
only if $r\in \mathbb{Z}$ . If $r\in \mathbb{Z}$, then $I_{k}’(r)$ is no other than the set of all integral multiples
of $r^{k}$ , i.e., $I_{k}’(r)=\{\alpha r^{k} : \alpha\in \mathbb{Z}\}$ , for each $k\in N$ . This implies that $\inf\{|w|$ :
$w\in I_{k}’(r),$ $w\neq 0\})=r^{k}arrow+\infty$ , and hence, $\mathrm{I}\mathrm{I}’(r)$ satisfies (4). This is essentially
Hattori’s proof in [1] that the problem has the positive answer for $r=2$ . Conversely,
the following fact shows that $\mathrm{I}\mathrm{I}’(r)$ does not $\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathfrak{h}r(4)$ if $r\in \mathbb{R}\backslash \mathbb{Z}$ and $|r|>1$ .
Fact. Let $r\in \mathbb{R}\backslash \mathbb{Z}$ with $|r|>1$ . Then, the set $I_{k}’(r)$ defined above is dense in $\mathbb{R}$

for each $k\in N$ .

Proof. Since every integral multiple of an element of $I_{k}’(r)$ is in $I_{k}’(r)$ , it suffices to
show that

(12) $\inf\{|w| : w\in I_{k}’(r), w\neq 0\}=0$

for each $k\in N$ . We distinguish two cases. First, we assume that $r$ is a rational
number, i.e., $r=a/b$ for some $a,$ $b\in$ Z. We may assume that the fraction $a/b$ is
irreducible. To prove (12), let $\epsilon>0$ . Then, we can find even numbers $m,$ $n\in N$

such that $k\leq m<n$ and $a^{m}/b^{n}<\epsilon$ . Since $a/b$ is irreducible, $b^{n-m}$ and $a^{n-m}$ are
mutually prime, which implies that there are $\alpha,$ $\beta\in \mathbb{Z}$ such that $\alpha b^{n-m}+\beta a^{n-m}=$

$1$ . Now, we have $0<\alpha r^{m}+\beta r^{n}<\epsilon$ , because

$\alpha r^{m}+\beta r^{n}=\alpha(\frac{a}{b})m+\beta(\frac{a}{b})n=(\frac{a^{m}}{b^{n}})(\alpha b^{n-m}+\beta a^{n-})m$ .

Since $\alpha r^{m}+\beta r^{n}\in I_{k}’(r)\backslash \{0\},$ (12) is proved.
Next, we assume that $r$ is an irrational number. Let $\epsilon>0$ . Choose $m\in N$ with

$|r|^{k}/m<\epsilon$ and let $M=\{1,2, \cdots , m+1\}$ . Consider the set $A=\{ir-\lfloor ir\rfloor$ : $i\in$

$M\}$ , where $\lfloor ir\rfloor$ is the greatest integer not greater than $ir$ . Since $r$ is irrational,
$ir-\lfloor ir\rfloor\neq jr-\lfloor jr\rfloor$ for $i\neq j$ . Hence, $A$ contains $m+1$ many distinct elements
between $0$ and 1. This means that

$0<|(ir-\lfloor ir\rfloor)-(jr-\lfloor jr\rfloor)|<1/m$

for some $i,j\in M$ with $i\neq j$ . Let $\alpha=i-j$ and $\beta=\lfloor ir\rfloor-\lfloor jr\rfloor$ . Then, $\alpha,$ $\beta\in \mathbb{Z}$

and $0<|\alpha r-\beta|<1/m$ . Hence, $0<|\alpha r^{k+1}-\beta r^{k}|=|r|^{k}|\alpha r-\beta|<|r|^{k}/m<\epsilon$.
Since $\alpha r^{k+1}-\beta r^{k}\in I_{k}’(r)\backslash \{0\}$ , we have (12). $\square$

Second, we determine a complex number $z$ such that $\mathrm{I}\mathrm{I}’(z)$ satisN (4) by proving
the following thorem:
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Theorem 2. Let $z\in \mathbb{C}\backslash \mathbb{R}$ with $|z|>1$ . Then, $\mathrm{I}’(z)$ satisfies (4) if and only if $z$

is an algebraic integer with degree 2, $i.e.,$ $z^{2}+\alpha z+\beta=0$ for some $\alpha,$ $\beta\in \mathbb{Z}$ .
To prove Theorem 2, we need some notations and a lemma. As usual, let $\mathbb{Z}[x]$

denote the set of all polynomials with integral coefficients and $r\mathbb{Z}=\{rn : n\in \mathbb{Z}\}$

for each $r\in \mathbb{R}$ . Further, let $\mathbb{Z}_{0}[x]$ be the subset of $\mathbb{Z}[x]$ consisting of all polynomials
such that the coefficient of the term with the maximum degree is 1. For a set $A$ ,
$\# A$ denotes the cardinality of $A$ .
Lemma 4. Let $z\in \mathbb{C}\backslash \mathbb{R}$ with $|z|>1$ . Assume that $z$ is not an algebraic integer
with $dea\vee ree.2$ . Then, there exists $f(x)\in \mathbb{Z}[x]$ such that $0<|f(Z)|<1$ .

(For the proof, see [4, Lemma 2, P.130-131].)

Let $z\in \mathbb{C}\backslash \mathbb{R}$ be an algebraic integer with degree 2. Then, $z$ is contained in the
imaginary quadratic field $K=\mathbb{Q}(\sqrt{m})$ , where $m$ is a negative square free integer.
As is well known, the ring $a_{K}$ of algebraic integers in $K$ is a lattice, i.e., a free
Zmodule of rank 2 whose basis are 1 and $u$ , where $u=(1+\sqrt{m})/2$ if $m\equiv 1$ (mod
4) and $u=\sqrt{m}$ if $m\equiv 2$ or 3 (mod 4).

Proof of Theorem 2. Let $z\in \mathbb{C}\backslash \mathbb{R}$ with $|z|>1$ . If $z$ is an algebraic integer with
degree 2, then $f(z)\in a_{K}$ for each $f(x)\in \mathbb{Z}[x]$ , where $a_{K}$ is defined as above. Since
$a_{K}$ is a lattice, we have $\alpha=\min\{|f(Z)| : f(z)\neq 0, f(x)\in \mathbb{Z}[x]\}>0$. For each
$w\in I_{k}’(z)\backslash \{0\},$ $w$ can be written as $w=z^{k}f(z)$ for some $f(x)\in \mathbb{Z}[x]$ , and thus,

$|w|=|z|^{k}|f(z)|\geq|z|^{k}\alpha$ .

Hence, $\inf\{|w| : w\in I_{k}’(z)\backslash \{0\}\}=|z|^{k}\alpha$ , which implies that $\mathrm{I}\mathrm{I}’(z)$ satisfies (4).
Conversely, assume that $z$ is not an algebraic integer with degree 2. By Lemma
4, there is $f(x)\in \mathbb{Z}[x]$ such that $0<|f(Z)|<1$ . Let $k\in N$ be fixed. Then,
$z^{k}f(Z)^{n}\in I_{k}’(z)\backslash \{0\}$ for each $n\in N$ . Since $|z^{k}f(Z)^{n}|=|z|^{k}|f(z)|^{n}arrow 0(narrow\infty)$,
we have

$\inf\{|w| : w\in I_{k}’(z)\backslash \{0\}\}=0$ .

Hence, $\mathrm{I}\mathrm{I}’(z)$ fails to satisfy (4), which completes the proof. $\square$

Corollary 5. Assume that either $z\in \mathbb{Z}$ or $z$ is an imaginary algebraic integer
with degree 2, and that $|z|>1$ . $Then_{f}$ there exists a metrizable group topology

$\tau$ on $(\mathbb{C}, +)$ such that $\tau$ is coarser than the Euclidean topology and the sequence
$\{\alpha^{n}z^{n} : n\in N\}$ coverges to $0$ in the topological group $(\mathbb{C}, +, \tau)$ for each $\alpha\in \mathbb{Z}$ .

Proof. By Theorem 2, $\mathrm{I}\mathrm{I}’(z)$ satisfies (4). Hence, the simple topology $\tau’(z)$ induced
by $z$ is a required topology; infact, $\{\alpha^{n}z^{n} : n\in N\}$ converges to $0$ in $(\mathbb{C}, +, \tau’(z))$

for each $\alpha\in \mathbb{Z}$ , because $\alpha^{n}z^{n}\in I_{k}’(z)$ whenever $n\geq k$ , for every $k,$ $n\in N$ .

Remark 2. It is open whether, for every two $z_{1},$ $z_{2}\in \mathbb{C}$ with $z_{1}\neq z_{2}$ and $|z_{i}|>1$

$(i=1,2)$ , there is a metrizable group topology $\tau$ on $(\mathbb{C}, +)$ such that $\tau$ is coarser
than the Euclidean topology and both $\{z_{1}^{n} : n\in N\}$ and $\{z_{2}^{n} : n\in N\}$ converge
to $0$ in $(\mathbb{C}, +, \tau)$ . In particular, the following question asked by Hattori [2] still
remains open: Does there exist a metrizable group topology $\tau$ on $(\mathbb{R}, +)$ such that
$\tau$ is coarser than the Euclidean topology and both $\{2^{n} : n\in N\}$ and $\{3^{n} : n\in N\}$

converge to $0$ in the topological group $(\mathbb{R}, +, \tau)$ ?
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Remark 3. Theorem 2 enables us to construct the simple topology $\tau’(z)$ by a geo-
metrical method. To show this, let $z\in \mathbb{C}\backslash \mathbb{R}$ be a complex number, with $|z|>1$ ,
such that $\mathrm{I}’(z)$ satisfies (4). Then, $z$ is an algebraic integer with degree 2 by Theo-
rem 2. Let $a_{K}$ be the same as the one defined before the proof of Theorem 2. Let
$k\in N$ be fixed for a while. Since $I_{k}’(z)$ is a subgroup of $a_{K},$ $I_{k(Z)}’$ is also a lattice,
and hence, the quotient topological group $T_{k}=\mathbb{C}/I_{k}’(z)$ is homeomorphic to the
torus. Let $h_{k}$ : $\mathbb{C}arrow T_{k}$ be the natural homomorphism. If we define $h_{k}$ : $\mathbb{C}arrow T_{k}$

for each $k\in N$ , then we have a continuous homomorphism

$h$ : $\mathbb{C}arrow T=\prod\ovalbox{\tt\small REJECT}$

$k\in N$

such that $h_{k}=\pi_{k}\circ h$ for each $k\in N$ , where $\pi_{k}$ : $Tarrow T_{k}$ is the projection. Let
$\rho(z)$ be the relative topology on $h[\mathbb{C}]$ induced by the product topology on $T$ . Since
$z^{n}\in I_{k}’(z)$ for each $k\leq n$ , the sequence $\{h(z^{n}) : n\in N\}$ converges to $h(\mathrm{O})$ with
respect to the topology $\rho(z)$ . Now, observe that condition (4) implies that $h$ is a
monomorphism. Moreover, it is not difficult to see that the map $h$ : $(\mathbb{C}, \tau’(z))arrow$

$(h[\mathbb{C}], \rho(z))$ is a homeomorphism. Hence, we can consider that $\rho(z)=\tau’(z)$ .
For an integer $r\in \mathbb{Z},$ $I_{k}’(r)$ coincides with the set of all integral multiples of

$r^{k}$ , i.e., $I_{k}’(r)=r^{k}\mathbb{Z}$ for each $k\in N$ . If $|r|>1$ , then the topology $\tau_{\mathbb{R}}’(r)$ on $\mathbb{R}$

generated by a base $\{s+V_{k} : s\in \mathbb{R}, k\in N\}$ , where $V_{k}^{\vee}= \bigcup_{n\in \mathbb{Z}}\{X\in \mathbb{R}:|x-r^{k}n|<$

$1/2^{k}\}$ , is also a metrizable group topology on $\mathbb{R}$ such that $\tau_{\mathbb{R}}’(r)$ is coarser than the
Euclidean topology and the sequence $\{r^{n} : n\in N\}$ converges to $0$ in the topological
group $(\mathbb{R}, +, \tau_{\mathbb{R}}(\prime r))$ . The topology $\tau_{\mathbb{R}}’(r)$ was first studied by Hattori [1] for $r=2$ .
Similarly to the above, $\tau_{\mathbb{R}}’(r)$ is obtained as a relative topology induced by the
product topology on the product of countably many circles $\{\mathbb{R}/r^{k}\mathbb{Z} : k\in N\}$ .
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